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Convex and concave relaxations of implicit functions
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Process Systems Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Ave., Bldg. 66-464, Cambridge 02139, MA, USA
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A deterministic algorithm for solving nonconvex NLPs globally using a reduced-space approach is pre-
sented. These problems are encountered when real-world models are involved as nonlinear equality
constraints and the decision variables include the state variables of the system. By solving the model
equations for the dependent (state) variables as implicit functions of the independent (decision) variables,
a significant reduction in dimensionality can be obtained. As a result, the inequality constraints and objec-
tive function are implicit functions of the independent variables, which can be estimated via a fixed-point
iteration. Relying on the recently developed ideas of generalized McCormick relaxations and McCormick-
based relaxations of algorithms and subgradient propagation, the development of McCormick relaxations
of implicit functions is presented. Using these ideas, the reduced space, implicit optimization formula-
tion can be relaxed. When applied within a branch-and-bound framework, finite convergence to ε-optimal
global solutions is guaranteed.

Keywords: global optimization; McCormick relaxations; nonconvex programming

AMS Subject Classifications: 65K05; 65H10; 90C26

1. Introduction

Nonconvex nonlinear programs (NLPs) of the form:

min
y∈Y⊂R

ny
f (y)

s.t. g(y) ≤ 0

h(y) = 0

(1)

can be formulated to solve a wide variety of problems in diverse disciplines ranging from opera-
tions research to engineering design. Local algorithms, such as sequential quadratic programming
(SQP) [7], are not guaranteed to find the desired global optima. Thus deterministic global opti-
mization algorithms such as branch-and-bound (B&B) [6] and branch-and-reduce [30] have been
developed. However, all currently known deterministic global optimization algorithms suffer from
worst-case exponential run time. Therefore, if the original program (1) can be reformulated as an
equivalent program with reduced dimensionality, there is potential for a significant reduction in
computational cost. The primary framework of the algorithm presented in this paper is based on
the B&B algorithm.
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Optimization Methods & Software 425

‘Selective branching’ strategies (i.e. where only a subset of the variables are branched on)
have been developed to reduce the run time. The works [13,14,23,26] all require very special
problem structures that can be exploited to reduce the number of variables that are branched on.
A more general reduced-space B&B approach was first introduced in [4], which builds on the
previous selective branching ideas. In the work of Epperly and Pistikopoulos [4], the variables y
are partitioned into two sets of variables and the nonconvex functions are factored according to
which set of variables the factors are dependent upon. It is required that all functions of the first
set of variables are convex and all functions of the second set of variables are continuous. Under
some other assumptions, convergence of the B&B algorithm is guaranteed while only branching
on the second set of variables. The authors of Epperly and Pistikopoulos [4] state that this type of
factorization and partitioning is applicable to most practical problems. However, the method was
developed largely with inequality constraints in mind. The authors of Epperly and Pistikopoulos
[4] state that equality constraints can be handled using a pair of opposing inequality constraints.
However, given the requirements of their algorithm for selective branching, it can be shown that this
restricts the equality constraints that can be handled to parametric linear systems (Section 3.3).
Therefore, general nonlinear systems of equations cannot be addressed. Furthermore, in [19],
the authors compared their method of relaxing implicit functions with selective branching and
experienced a significant performance benefit from relaxing implicit functions.

Consider the equality constraints of (1) as the system of equations:

h(y) = 0, (2)

where h : Dy → R
nx is continuously differentiable, with Dy ⊂ R

ny open. Here, it is assumed that
the vector y ∈ Dy can be separated into dependent and independent variables z ∈ R

nx and p ∈ R
np ,

respectively, with y = (z, p) such that h can be solved for z in terms of p, with (z,p) ∈ Dy. (2)
can then be written as

h(z, p) = 0. (3)

If, for some np-dimensional interval P ⊂ R
np , such z exist that satisfy (3) at each p ∈ P, then they

define an implicit function of p, that will be expressed as x : P → R
nx . Such a partition of the

vector y is valid, and even natural, for many practical ‘real-world’problems. For instance, consider
h as a steady-state model of a chemical process. The variables z would correspond to the process
state variables and p would correspond to the model parameters. Unless otherwise stated, it will
be assumed that for some X ⊂ R

nx , there exists at least one continuously differentiable implicit
function x : P → X such that h(x(p), p) = 0 holds for every p ∈ P. Conditions under which x
is unique in X are given by the so-called semilocal implicit function theorem [24]. Continuous
differentiability follows from the same result.

Just as y was partitioned into (z, p), the search space of the optimization problem (1) is
partitioned as Y = X × P. The program (1) may then be reformulated as the following program:

min
p∈P

f (x(p), p)

s.t. g(x(p), p) ≤ 0.
(4)

It can readily be deduced that if ny − nx is small (nx >> np), the formulation (4) offers a significant
reduction in dimensionality. Contrasting the selective branching works, no structural assumptions
have been made nor are required beyond the existence of an implicit function.

In order to solve (4) to global optimality with B&B, a method for calculating convex relaxations
of f (x(·), ·) and g(x(·), ·) on P is required. The major complication is that x is not known explicitly
and may not even have a closed algebraic form, but can only be approximated using a fixed-point
algorithm, for instance. Thus, the objective function, f (x(·), ·), and the inequality constraint(s),
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426 M.D. Stuber et al.

g(x(·), ·), are implicitly defined and must be evaluated with embedded fixed-point iterations.
Because of this, the involved functions no longer have a factorable representation. Therefore
relaxation techniques that rely on explicit algebraic and/or factorable functions, such as standard
McCormick [18] relaxations or αBB [1], are no longer applicable. However, if relaxations of the
implicit function x were made available by some method, the functions f and g could be composed
with them, using a generalization of the ideas of McCormick [31], and relaxations of f and g could
be calculated.

In [19], Mitsos and coworkers laid the foundations for calculating relaxations of implicit func-
tions x evaluated by an algorithm with a fixed number of iterations known a priori. They outline
the automatic construction of McCormick convex/concave relaxations of factorable functions
and automatic subgradient calculation. The automatic construction of McCormick relaxations
and subgradient calculation was done using libMC, a predecessor of the currently available
C++ library MC++ [3]. The types of algorithms considered in their work, however, only included
algorithms in which the number of iterations is known a priori, such as Gauss elimination, thus
their methods are not applicable to problems in which x is evaluated by more general fixed-point
algorithms, such as Newton’s method.

In [31], the authors present the generalized McCormick relaxations. This generalization of
McCormick relaxations allows for the application of McCormick relaxations to a much broader
class of functions, such as those defined by iterative algorithms [31]. Beyond the important
theoretical results, the generalized formulation has the important property that they may take
previously known or calculated relaxations as arguments, say for further refinement. One focus
in [31], that is of interest here, was on the relaxation of the successive-substitution fixed-point
iteration. In relaxing the fixed-point iteration, the authors show that relaxations of the sequence
of approximations of x could be calculated [31]. However, in order to relax f and g rigorously,
valid relaxations of x are required, not of approximations of x. This will be the primary focus of
the new theoretical developments contained in this paper.

In the next section, the necessary background information, including interval analysis, fixed-
point iterations, and McCormick’s relaxations and subgradients, will be discussed. In Section 3,
new ideas and results involved in relaxing implicit functions are presented, followed by the global
optimization algorithm in Section 4. It should be noted that the theoretical developments in these
sections assume that for some interval X , the implicit function x : P → X is unique. In general,
there are multiple implicit functions that are solutions of (3). Details on the uniqueness assumption
and how multiple solution branches can be handled are discussed in Section 4.

2. Background

This section contains the definitions and previously developed material from the literature required
for the development of global optimization of implicit functions.

2.1 Fixed-point iterations

The term fixed-point iteration applies to a general class of iterative methods, for which the iteration
count required to satisfy a given convergence tolerance is not typically known a priori. They are
commonly employed to solve systems of equations such as (2). The general ideas are introduced
here. For the focus of this paper, fixed-point iterations will be used to evaluate the embedded
implicit functions in (4). For a more in-depth look at these iterative methods, the reader is directed
to [25].
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Optimization Methods & Software 427

Definition 2.1 (Fixed-Point) Let f : Z ⊂ R
m → R

m. A point z ∈ Z is a fixed point of f if
z = f(z).

An iteration will be referred to as a fixed-point iteration if it takes the form

zk+1 := φ(zk), k ∈ N,

with φ : A ⊂ Z → R
m. The name suggests that the iteration will be used to find a fixed-point of

φ. However, this is ambitious in the sense that these iterations are not guaranteed to do so except
under certain conditions. One such condition is if φ is a contraction mapping.

Definition 2.2 (Contraction mapping [29]) Let Z be a metric space with metric d. A function
φ : A ⊂ Z → Z is said to be a contraction mapping or contractive on a set B ⊂ A if φ(B) ⊂ B
and there exists an α ∈ (0, 1) such that

d(φ(x), φ(y)) ≤ αd(x, y), ∀ x, y ∈ B.

Definition 2.3 (Jx, ∇x) Let A ⊂ R
m and B ⊂ R

n be open. Suppose h : A × B → R
m is differ-

entiable on A × B. Then for each b ∈ B, let Jxh(z, b) denote the m × m Jacobian matrix of h(·, b)

evaluated at z ∈ A. Similarly, ∇xhi(z, b) denotes the m × 1 gradient vector of hi(·, b) evaluated
at z ∈ A.

Newton-type methods for (2) are based on the form z := φ(z) = z − Y(z)h(z), where it is not
guaranteed that φ is contractive on any set. Taking Y(z) to be the inverse of the (nonsingular)
Jacobian matrix Jxh evaluated at the current iterate zk gives the standard Newton’s method, which
under mild assumptions is guaranteed to be contractive in a neighbourhood of an isolated solution.
Likewise, taking Y(z) to be a (nonsingular) constant matrix results in the parallel-chord method
[25]. In [25], the authors present an in-depth analysis of the theoretical results on fixed-point
iterations including conditions for guaranteed convergence, etc. The key result on which Newton-
type methods rely is the mean-value theorem. A slightly modified form of that stated in [21] is
presented here.

Theorem 2.4 (Mean-value theorem) Let A ∈ R
m be open and connected and let f : A → R be

differentiable on A. If A contains the line segment with endpoints a and b, then there exists a point
c = λa + (1 − λ)b with λ ∈ (0, 1) such that

f (b) − f (a) = ∇f (c)T(b − a). (5)

The result that we rely upon is the parametric extension of the mean-value theorem.

Corollary 2.5 (Parametric mean-value theorem) Let A ∈ R
m be open and connected and let

P ⊂ R
np , and let f : A × P → R be differentiable on A for every p ∈ P. Let v, w : P → A. Suppose

that, for every p ∈ P, the set A contains the line segment with endpoints v(p) and w(p). Then
there exists y : P → A such that, for each p ∈ P, y(p) = λ(p)v(p) + (1 − λ(p))w(p) for some
λ : P → (0, 1), and

f (w(p), p) − f (v(p), p) = ∇xf (y(p), p)T(w(p) − v(p)). (6)

Proof Proof can be found in [34]. �
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428 M.D. Stuber et al.

2.2 Interval analysis

This section contains a very brief overview of interval analysis, specifically for the application of
calculating convex and concave relaxations of functions below. For more information on interval
arithmetic, the reader is directed to [24].

Definition 2.6 (Intervals) An interval will be defined as the connected compact set

Z = [zL, zU ] = {z ∈ R
m : zL ≤ z ≤ zU},

with zL, zU ∈ R
m (zL ≤ zU) as the lower and upper bounds, respectively. The set of all nonempty

interval subsets of R
m is denoted IR

m. The set of all nonempty interval subsets of any set A ⊂ R
m

is denoted IA.

Definition 2.7 (Interval vector) An interval vector Z ∈ IR
m is an m-dimensional vector whose

components are intervals denoted by a subscript Zi for i = 1, 2, . . . , m.

Interval vectors will be referred to as intervals where the context is clear. An interval-valued
function F : IA → IR

n, evaluated at any Z ∈ IA, is denoted in capitals as F(Z).

Definition 2.8 (Width) The width of an interval Z ∈ IR is defined as w(Z) = zU − zL.

Definition 2.9 (Interval extension) Let Z ⊂ R
m. An interval-valued function F : IZ → IR

n is
called an interval extension of the real-valued function f : Z → R

n, if

[f(z), f(z)] = F([z, z]), ∀ z ∈ Z .

Definition 2.10 (Inclusion monotonicity [20,24]) Let Z ⊂ R
m. An interval-valued function F :

IZ → IR
n is called inclusion monotonic if for every A, B ∈ IZ ,

B ⊂ A ⇒ F(B) ⊂ F(A). (7)

Definition 2.11 (Inclusion function) Let Z ⊂ R
m. An interval-valued function F : IZ → IR

n is
called an inclusion function of f on Z if

f(A) ⊂ F(A), ∀ A ∈ IZ ,

where f(A) is the image of A under f .

Theorem 2.12 (Fundamental theorem of interval analysis) Let Z ∈ IR
m and let F : IZ → IR

n

be an inclusion monotonic interval extension of f : Z → R
n. Then F is an inclusion function of f

on Z.

2.3 McCormick relaxations

McCormick [18] developed a technique for generating convex and concave relaxations of a given
function, defined as follows.

Definition 2.13 (Relaxations of functions [19]) Given a convex set Z ⊂ R
n and a function f :

Z → R, a convex function f c : Z → R is a convex relaxation (or convex underestimator) of f
on Z if f c(z) ≤ f (z) for every z ∈ Z. A concave function f C : Z → R is a concave relaxation (or
concave overestimator) of f on Z if f C(z) ≥ f (z) for every z ∈ Z.
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Optimization Methods & Software 429

The relaxations of vector-valued or matrix-valued functions are defined by applying the above
inequalities componentwise.

Definition 2.14 (Univariate intrinsic function [31]) The function u : B ⊂ R → R is a univari-
ate intrinsic function if, for any A ∈ IB, the following are known and can be evaluated
computationally:

(1) an interval extension of u on A that is an inclusion function of u on A,
(2) a concave relaxation of u on A,
(3) a convex relaxation of u on A.

In order to construct relaxations of a function using the rules outlined by McCormick [18], the
function must be factorable, defined as follows.

Definition 2.15 (Factorable function [31]) A function f : Z ⊂ R
nz → R is factorable if it can

be expressed in terms of a finite number of factors v1, . . . , vm such that, given z ∈ Z , vi(z) = zi for
i = 1, . . . , nz, and for each nz < k ≤ m, vk is defined as either

(a) vk = vi + vj, i, j < k, or
(b) vk = vivj, i, j < k, or
(c) vk = uk ◦ vi, i < k, where uk : Bk → R is a univariate intrinsic function,

and f (z) = vm(z). A vector-valued function f is factorable if every component fi is factorable.

The functions f , g, and h considered in this paper are assumed to be factorable. Such an assump-
tion is not very restrictive since this includes almost any function that can be represented finitely
on a computer. McCormick’s [18] relaxation technique computes convex and concave relaxations
of factorable functions by recursively applying simple rules for relaxing binary addition, binary
multiplication, and univariate composition with univariate intrinsic functions.

Definition 2.16 (Composite relaxations: uG , oG ) Let D ⊂ R
nx , Z ∈ ID, and P ∈ IR

np . Let G :
D × P → R

nx . The functions uG , oG : R
nx × R

nx × P → R
nx are called composite relaxations of

G on Z × P if for any ψc, ψC : P → R
nx , the functions uG (ψc(·), ψC(·), ·) and oG (ψc(·), ψC(·), ·)

are, respectively, convex and concave relaxations of G (q(·), ·) on P for any function q : P → Z
and any pair of convex and concave relaxations (ψc, ψC) of q on P.

Provided that G is factorable, functions uG and oG satisfying the previous definition can be
computed using generalized McCormick relaxations as described in [31]. By the properties of
generalized McCormick relaxations, the functions uG and oG are continuous on R

nx × R
nx × P.

Remark 1 Strictly speaking, by the definition of generalized McCormick relaxations and the
definition of composite relaxations given in [31], the bounding information (i.e. Z × P in
Definition 2.16) is required and should be taken as explicit arguments of uG and oG . How-
ever, for notational clarity in this work, the bounding information will not be passed as arguments
of the composite relaxations and instead will be stated explicitly wherever composite relaxations
are used.

Remark 2 More generally, composite relaxations for any arbitrary function G (v(·), w(·), . . . ,
z(·), ·), on P, taking arbitrarily many functions as arguments, can be constructed in an analogous
manner. Also, the inner functions need not be vector valued, but can be matrix valued, by treating
each column vector of the matrix-valued function as a vector-valued function and applying the
above definition.
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430 M.D. Stuber et al.

2.4 Subgradients

Since McCormick relaxations are potentially nondifferentiable, subgradients provide useful infor-
mation to a nonsmooth optimization algorithm or can be used to compute affine relaxations of the
functions. The rules for calculating subgradients of McCormick relaxations and corresponding
affine relaxations are thoroughly discussed in [19].

Definition 2.17 (Subgradients) Let Z ⊂ R
n be a nonempty convex set, f c : Z → R be convex

and f C : Z → R be concave. A vector-valued function sc
f : Z → R

n is called a subgradient of
f c on Z if for every z̄ ∈ Z , f c(z) ≥ f c(z̄) + (sc

f (z̄))
T(z − z̄), ∀z ∈ Z. Likewise, a vector-valued

function sC
f : Z → R

n is called a subgradient of f C on Z if for every z̄ ∈ Z , f C(z) ≤ f C(z̄) +
(sC

f (z̄))T(z − z̄), ∀z ∈ Z.

Remark 3 Subgradients are not unique in general. The procedures in [19] compute a single
element of the subdifferential, therefore the subgradient functions above are well defined. Sub-
gradients of vector-valued functions fc, fC : Z → R

m, convex and concave, respectively, will be
matrix-valued functions denoted σc

f , σC
f : Z → R

n×m. Furthermore, subgradients of matrix-valued
functions Fc, FC : Z → R

m×m, convex and concave, respectively, will be 3rd-order tensor-valued
functions denoted σ̂

c
F, σ̂C

F : Z → R
n×m×m.

Definition 2.18 (Affine relaxations) Let Z ⊂ R
n be a nonempty convex set and define f : Z →

R
n. The functions fa, fA : Z → R

n are called affine relaxations of f if fa(z) ≤ f(z) ≤ fA(z), ∀z ∈
Z , and fa and fA are affine on Z.

In the same notation as the above definition, a natural choice of affine relaxations is given by

fa(z) = fc(z̄) + (σc
f (z̄))

T(z − z̄) and fA(z) = fC(z̄) + (σC
f (z̄))T(z − z̄).

Definition 2.19 (Composite subgradients: SuG , SoG ) Let D ⊂ R
nx , P ∈ IR

np , and Z ∈ ID. Let
q : P → Z and G : D × P → R

nx . Let uG , oG be composite relaxations of G on Z × P. The
functions SuG , SoG : R

nx × R
nx × R

np×nx × R
np×nx × P → R

np×nx are called composite subgra-
dients of uG and oG on Z × P, respectively, if for any ψc, ψC : P → R

nx and σc
ψ : σC

ψ : P →
R

np×nx , the functions SuG (ψc(·), ψC(·), σc
ψ(·), σC

ψ(·), ·), and SoG (ψc(·), ψC(·), σc
ψ(·), σC

ψ(·), ·) are,
respectively, subgradients of uG (ψc(·), ψC(·), ·) and oG (ψc(·), ψC(·), ·), provided ψc and ψC

are, respectively, convex and concave relaxations of q on P and σc
ψ and σC

ψ are, respectively,
subgradients of ψc and ψC on P.

Remark 4 Similar to composite relaxations, composite subgradients of convex and concave
relaxations of any G (v(·), q(·), . . . , z(·), ·) on P, taking arbitrarily many functions as arguments,
can be constructed analogously to the case considered in Definition 2.19.Again, the inner functions
need not be vector-valued, but can be matrix-valued, by treating each column vector of the matrix-
valued function as a vector-valued function and applying the above definition. As per Remark 3,
subgradients of a matrix-valued function will be third-order tensors.

3. Relaxation of implicit functions

This section contains new developments regarding relaxations of implicit functions. Two different
methods for constructing relaxations of implicit functions will be discussed. The first technique
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Optimization Methods & Software 431

(Sections 3.1 and 3.2) is directly relaxing fixed-point iterations that are used to approximate
solutions of systems of equations, as in [31]. This method, along with new results are discussed
in detail in Section 3.1. This approach can be quite limited, however, and shortcomings of this
method are discussed in Section 3.2. The second technique (Sections 3.3 and 3.4), referred to
as Relaxations of Solutions of Parametric Systems, circumvents the shortcomings of the first
method by relaxing the actual implicit functions themselves, without reference to an associated
fixed-point iteration, and is thus more broadly applicable. The case of parametric linear systems
is discussed in Section 3.3. In Section 3.4, the case of parametric nonlinear systems is discussed.

3.1 Direct relaxation of fixed-point iterations

Consider the system of equations in (3). Let the (factorable) function φ : Dx × Dp → R
nx be an

algebraic rearrangement of h such that h(z, p) = z − φ(z, p) = 0 ⇔ z = φ(z, p) and Dx × Dp ⊂
Dy. For example, consider h(z, p) = z − sin(z + p) = 0 ⇔ z = sin(z + p) or h(z, p) = z2 + pz +
C = 0 ⇔ z = −(z2 + C)/p.

Assumption 3.1 There exists x : P → R
nx such that x(p) = φ(x(p), p), ∀p ∈ P, and an interval

[xL, xU ] ≡ X ∈ IR
nx is known such that x(P) ⊂ X and x(p) is unique in X for all p ∈ P.

The parametric extension of the well-known interval-Newton method, which is discussed in
[10,24,34], exhibits the theoretical capability of finding an X satisfying this assumption. Finding
such an X is really a precursor to calculating relaxations since, for the purposes of this paper, it
is desired to relax a single implicit function.

In [31], the authors consider the computation of relaxations of xk : P → R
nx , the approximations

of x, defined by the fixed-point iteration:

xk+1(p) := φ(xk(p), p), ∀ p ∈ P. (8)

If φ(·, p) is a contraction mapping on X for every p ∈ P, then this iteration is referred to as a
successive-substitution fixed-point iteration. Under this assumption, it can be shown that {xk} → x
so that this method provides relaxations of arbitrarily good approximations of x. However, this
result is rather weak in that it does not provide us with guaranteed valid relaxations of the implicit
function x upon finite termination. In contrast, the following result provides sequences, {xk,c} and
{xk,C}, such that xk,c and xk,C are relaxations of x on P, for every k ∈ N. Moreover, this result
does not require contractivity of φ on X . Thus, although approximations of the value of x may
not even be available, valid relaxations of x are readily calculable.

Definition 3.2 (ūφ , ōφ) Let uφ , oφ be composite relaxations of φ on X × P.The functions ūφ , ōφ :
R

nx × R
nx × P → R

nx will be defined as

ūφ(zc, zC , p) ≡ max{zc, uφ(zc, zC , p)},
ōφ(zc, zC , p) ≡ min{zC , oφ(zc, zC , p)},

∀(zc, zC , p) ∈ R
nx × R

nx × P with the max / min operations applied componentwise.

Definition 3.3 (Sūφ
, Sōφ

) Let uφ , oφ be composite relaxations of φ on X × P. Let Suφ
, Soφ

be
composite subgradients of uφ and oφ on X × P, respectively. The functions Sūφ

, Sōφ
: R

nx × R
nx ×
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432 M.D. Stuber et al.

R
np×nx × R

np×nx × P → R
np×nx will be defined as

Sūφ
(zc, zC , σc

z, σC
z , p̄) =

{
σc

z if ūφ(zc, zC , p̄) = zc

Suφ
(zc, zC , σc

z, σC
z , p̄) otherwise

Sōφ
(zc, zC , σc

z, σC
z , p̄) =

{
σC

z if ōφ(zc, zC , p̄) = zC

Soφ
(zc, zC , σc

z, σC
z , p̄) otherwise

∀(zc, zC , σc
z, σC

z , p̄) ∈ R
nx × R

nx × R
np×nx × R

np×nx × P.

It should be noted that the functions Sūφ
and Sōφ

define composite subgradients of ūφ and ōφ

on X × P, respectively.

Theorem 3.4 Let x0,c, x0,C : P → R
nx be defined by x0,c(p) = xL and x0,C(p) = xU for all p ∈ P.

Then the elements of the sequences {xk,c} and {xk,C} defined by xk+1,c(·) = ūφ(xk,c(·), xk,C(·), ·)
and xk+1,C(·) = ōφ(xk,c(·), xk,C(·), ·) are convex and concave relaxations of x on P, respectively,
for every k ∈ N.

Proof x0,c and x0,C are trivially convex and concave relaxations of x on P, respectively. Sup-
pose this is true of xk,c and xk,C for some k ≥ 0. By Definition 2.16, uφ(xk,c(·), xk,C(·), ·) and
oφ(xk,c(·), xk,C(·), ·) are also relaxations of x(·) = φ(x(·), ·) on P. Since the maximum of two
convex functions is convex and the minimum of two concave functions is concave, xk+1,c(·) =
ūφ(xk,c(·), xk,C(·), ·) and xk+1,C(·) = ōφ(xk,c(·), xk,C(·), ·) are convex and concave relaxations of
x(·) = φ(x(·), ·) on P, respectively. Induction completes the proof. �

Theorem 3.5 Let x0,c, x0,C : P → R
nx be defined by x0,c(p) = xL and x0,C(p) = xU , for all p ∈

P. Let σ0,c
x (p) = σ0,C

x (p) = 0, for all p ∈ P. Let relaxations of x on P be given by xk+1,c(·) =
ūφ(xk,c(·), xk,C(·), ·) and xk+1,C(·) = ōφ(xk,c(·), xk,C(·), ·), k ∈ N. Then the sequences {σk,c

x } and
{σk,C

x } defined by

σk+1,c
x (·) := Sūφ

(xk,c(·), xk,C(·), σk,c
x (·), σk,C

x (·), ·),
σk+1,C

x (·) := Sōφ
(xk,c(·), xk,C(·), σk,c

x (·), σk,C
x (·), ·)

are, respectively, subgradients of xk+1,c and xk+1,C on P for k ∈ N.

Proof From the hypothesis, x0,c and x0,C are (constant) convex and concave relax-
ations of x on P, respectively, and σ0,c

x = σ0,C
x = 0 are subgradients of x0,c and x0,C

on P, respectively. Suppose this holds for k ∈ N. Then we have xk,c and xk,C , con-
vex and concave relaxations of x on P, respectively, and σk,c

x (·) and σk,C
x (·), subgradi-

ents of xk,c and xk,C on P, respectively. By the definition of the composite subgradient
(Definition 2.19), subgradients of uφ(xk,c(·), xk,C(·), ·) and oφ(xk,c(·), xk,C(·), ·) on P are given by
Suφ

(xk,c(·), xk,C(·), σk,c
x (·), σk,C

x (·), ·) andSoφ
(xk,c(·), xk,C(·), σk,c

x (·), σk,C
x (·), ·), respectively, and by

Definition 3.3, Sūφ
(xk,c(·), xk,C(·), σk,c

x (·), σk,C
x (·), ·) and Sōφ

(xk,c(·), xk,C(·), σk,c
x (·), σk,C

x (·), ·) are
subgradients of

xk+1,c(·) := ūφ(xk,c(·), xk,C(·), ·) = max{xk,c(·), uφ(xk,c(·), xk,C(·), ·)},
xk+1,C(·) := ōφ(xk,c(·), xk,C(·), ·) = min{xk,C(·), oφ(xk,c(·), xk,C(·), ·)}

on P, respectively. Induction completes the proof. �
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Optimization Methods & Software 433

It is of great interest to understand when this procedure for calculating relaxations works well.
Although improvement on the bounds cannot be guaranteed in general, one can find cases when
improvement is definitely not possible; thus providing a necessary condition for improvement.

Theorem 3.6 Let {xk} be a sequence generated by the fixed-point iteration (8) starting from
x0(p) ∈ X, ∀p ∈ P. If xk(p) /∈ X for some p ∈ P, k ∈ N, then the sequences {xk,c} and {xk,C} from
Theorem 3.4 are such that there exists a p ∈ P such that xk,c(p) = xL or xk,C(p) = xU for every
k ∈ N.

Proof By hypothesis, x0(p) ∈ X for every p ∈ P and x0,c = xL and x0,C = xU . Therefore x0,c

and x0,C are convex and concave relaxations of x0 on P, respectively. Suppose this is true
for (K − 1) ∈ N where K is the iteration in which xK(p̄) /∈ X such that xk(p̄) ∈ X, ∀k < K
for some p̄ ∈ P. Then by Definition 2.16 and Theorem 3.4, uφ(xK−1,c(p), xK−1,C(p), p) ≤
φ(xK−1(p), p) ≤ oφ(xK−1,c(p), xK−1,C(p), p) for every p ∈ P (noting xK−1(p) ∈ X, ∀p ∈ P).
Since xK(p) = φ(xK−1(p), p), ∀p ∈ P, this implies uφ(xK−1,c(p), xK−1,C(p), p) ≤ xK(p) ≤
oφ(xK−1,c(p), xK−1,C(p), p), ∀p ∈ P. However, since xK(p̄) /∈ X, it follows that uφ(xK−1,c(p̄),
xK−1,C(p̄), p̄) < xL or oφ(xK−1,c(p̄), xK−1,C(p̄), p̄) > xU .Therefore ūφ(xK−1,c(p̄), xK−1,C(p̄), p̄) =
xL or ōφ(xK−1,c(p̄), xK−1,C(p̄), p̄) = xU . Additionally, since uφ and oφ are composite relaxations
of φ on X × P, and will therefore always bound φ, since φ maps X × P outside of X, this implies
the result holds for every iteration k < K as well. �

3.2 Direct relaxation of Newton-type iterations

According to Theorem 3.6, the property that φ maps X × P into X is desirable in order to calculate
relaxations that are potential improvements on the original bounds of X. This property will be
exhibited by any φ that is a contraction mapping. Consider the system of Equations (3) and now
suppose that h cannot be rearranged algebraically as in the previous section, such that (8) is
contractive. Thus, h will be a member of a more general class of functions. The following result
guarantees that a different form of fixed-point iteration can still be constructed from any such
system and under some other fixed-point results, may be guaranteed to be contractive. However,
as will be shown in this section, the fact that φ is contractive is not enough to calculate relaxations
of x that are guaranteed to be refinements on the bounds of X using the method of Section 3.1.
Although, this property is a necessary condition.

Proposition 3.7 For any function h : A ⊂ R
n → R

n, there existsφ : A → R
n such thatφ(z) = z

if and only if h(z) = 0.

Proof Proof can be found in [34]. �

By the previous proposition, the function φ : X × P → R
nx can be defined as

φ(z,p) ≡ z − Y(z, p)h(z, p) (9)

with Y(z, p) ∈ R
nx×nx being nonsingular for all (z, p) ∈ X × P. Then

xk+1(p) := φ(xk(p), p) (10)

is a fixed-point iteration. Thus, the method of Section 3.1 can still, in principle, be used to construct
relaxations of x on P. However, the following result shows that the relaxations of x constructed
in this way cannot be tighter than the bounds xL and xU .
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434 M.D. Stuber et al.

Theorem 3.8 Let φ be defined as in (9) and suppose Assumption 3.1 holds. Let x0,c, x0,C : P →
R

nx be defined by x0,c(p) = xL and x0,C(p) = xU for all p ∈ P. Let uφ and oφ be composite
relaxations ofφ on X × P and let ūφ and ōφ be defined as in Definition 3.2. Let xk,c, xk,C : P → X be
defined by xk+1,c(·) := ūφ(xk,c(·), xk,C(·), ·) and xk+1,C(·) := ōφ(xk,c(·), xk,C(·), ·). Then xk,c(p) =
xL and xk,C(p) = xU for every p ∈ P and all k ∈ N.

Proof Let f(z, p) = −Y(z,p)h(z, p). By the rules of McCormick [31] relaxations, uφ and oφ can
be written as

uφ(xk,c(p), xk,C(p), p) = xk,c(p) + uf(xk,c(p), xk,C(p), p),

oφ(xk,c(p), xk,C(p), p) = xk,C(p) + of(xk,c(p), xk,C(p), p),

where, respectively, uf and of are composite relaxations of f on X × P. By Definition 2.16,
uf(xk,c(·), xk,C(·), ·) and of(xk,c(·), xk,C(·), ·) are convex and concave relaxations of f(x(·), ·) on
P, respectively, for every k ∈ N. By definition, f(x(p), p) = 0, ∀p ∈ P. Thus

uf(xk,c(p), xk,C(p), p) ≤ 0 ≤ of(xk,c(p), xk,C(p), p)

hold for every p ∈ P for every k ≥ 0. Note that x0,c(p) = xL and x0,C(p) = xU . Suppose the same
is true of xk,c and xk,C , respectively. Then,

xk,c(p) + uf(xk,c(p), xk,C(p), p) ≤ xk,c(p) = xL,

xk,C(p) + of(xk,c(p), xk,C(p), p) ≥ xk,C(p) = xU .

By Definition 3.2, we have

xk+1,c(p) := max{xk,c, xk,c(p) + uf(xk,c(p), xk,C(p), p)} = xL,

xk+1,C(p) := min{xk,C , xk,C(p) + of(xk,c(p), xk,C(p), p)} = xU .

Induction completes the proof. �

The importance of the above theorem is that the convex and concave relaxations of the generic
Newton-type form (9), discussed in Proposition 3.7, can be no tighter than the original bounds
given by X, and will in fact be fixed at these bounds. For those readers that are familiar with the
interval-Newton method [24], this result is analogous to the reason why one cannot simply take
an interval extension of the Newton iteration and improve the initial bounds on a locally unique
solution. This result motivates the need for a different technique for calculating valid convex and
concave relaxations of x. Again, it should be noted that fixed-point iterations of different forms,
such as the successive-substitution iteration discussed above and in [31], may not have the same
problem, per Theorem 3.4, so long as φ maps X × P into X.

The next two sections describe a different method which is capable of constructing relaxations
of x on P that are potentially refinements of the bounds given by X, when no successive substi-
tution rearrangement for h exists that is a contraction mapping. First, the method is developed
for parametric linear systems in Section 3.3. The extension to parametric nonlinear systems is
developed in Section 3.4.

3.3 Relaxations of solutions of parametric linear systems

Consider the parametric linear system:

A(p)z = b(p), (11)

with A : P → Da ⊂ R
nx×nx and b : P → Db ⊂ R

nx factorable, z ∈ R
nx , and p ∈ P.

D
ow

nl
oa

de
d 

by
 [

M
at

th
ew

 S
tu

be
r]

 a
t 0

9:
50

 2
0 

Ja
nu

ar
y 

20
16

 



Optimization Methods & Software 435

Assumption 3.9

(1) There exists δ : P → R
nx such that A(p)δ(p) = b(p), ∀p ∈ P, and an interval [δL, δU ] ≡ � ∈

IR
nx is available such that δ(P) ⊂ � and δ(p) is unique in � for every p ∈ P.

(2) Intervals A ∈ IDa and B ∈ IDb are known such that A(P) ⊂ A, b(P) ⊂ B, and 0 /∈ Aii for
all i.

SinceA and b are factorable, the intervals A and B are easily calculable using interval analysis, e.g.
by calculating their natural interval extensions. The set � may be computed using a parametric
interval linear solver such as that in [27]. The assumption that 0 /∈ Aii, ∀i implies that aii(p) �=
0 for all p ∈ P. However, this can be relaxed by assuming that there exists a preconditioning
matrix Y ∈ R

nx×nx such that the diagonal elements of YA do not enclose 0 and thus the product
YA(p) has nonzero diagonal elements for every p ∈ P. In [24], various results on the relationship
between Y, A, and A are discussed. The key result of this section offers a way of calculating
relaxations of solutions to parametric linear systems. To begin, the solution δ will be characterized
in semi-explicit form.

Definition 3.10 (f) Define the function f : Db × Da × R
nx → R

nx such that f(b̃, Ã, δ̃) = δ̃
∗
,

where the ith component of δ̃
∗

is given by the loop:

for i = 1, . . . , nx do

δ̃∗
i := (b̃i − ∑

j<i ãij δ̃
∗
j − ∑

j>i ãij δ̃j)

ãii

end

(12)

where ãij is the (i, j)th element of Ã, b̃i is the ith component of b̃, and δ̃i is the ith component of δ̃.

Lemma 3.11 Suppose Assumption 3.9 holds. Then δ(p) = f(b(p), A(p), δ(p)) for every p ∈ P,
i.e. δ(p) is a fixed-point of f(b(p), A(p), ·) for every p ∈ P.

Proof By hypothesis, A(p)δ(p) = b(p) holds and the ith equation can be expressed as

nx∑
j=1

aij(p)δj(p) = bi(p), ∀ p ∈ P.

Or, equivalently written

aii(p)δi(p) +
∑
j<i

aij(p)δj(p) +
∑
j>i

aij(p)δj(p) = bi(p), ∀ p ∈ P.

Solving for δi:

δi(p) = (bi(p) − ∑
j<i aij(p)δj(p) − ∑

j>i aij(p)δj(p))

aii(p)
, ∀ p ∈ P.

It immediately follows that

f1(b(p),A(p), δ(p)) = δ∗
1(p) = (b1(p) − ∑

j>1 a1j(p)δj(p))

a11(p)
= δ1(p).
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436 M.D. Stuber et al.

Suppose δk = δ∗
k holds for k < nx. Then

fk+1(b(p),A(p), δ(p)) = δ∗
k+1(p) = (bk+1(p) − ∑

j<k+1 aij(p)δ∗
j − ∑

j>k+1 aij(p)δj)

aii(p)

= (bk+1(p) − ∑
j<k+1 aij(p)δj − ∑

j>k+1 aij(p)δj)

aii(p)
= δk+1(p).

Induction completes the proof. �

Using the characterization of the implicit function δ provided by Lemma 3.11, convex and
concave relaxations of δ on P can be computed by iteratively refining the bounds δL and δU .

Theorem 3.12 (Relaxations of parametric linear systems) Let Ac, AC : P → R
nx×nx be convex

and concave relaxations of A on P, respectively, and let bc, bC : P → R
nx be convex and concave

relaxations of b on P, respectively. Let uf and of be composite relaxations of f on B × A × � × P.
Let δ0,c, δ0,C : P → R

nx be defined by δ0,c(p) = δL and δ0,C(p) = δU for all p ∈ P. Then the
sequences {δk,c} and {δk,C} defined by the iteration

δk+1,c(·) := ūf(bc(·), bC(·), Ac(·), AC(·), δk,c(·), δk,C(·)),
δk+1,C(·) := ōf(bc(·), bC(·), Ac(·), AC(·), δk,c(·), δk,C(·)),

are convex and concave relaxations of δ on P, respectively, for every k ∈ N, with ūf , ōf defined
analogously to Definition 3.2.

Proof δ0,c and δ0,C are trivially convex and concave relaxations of δ on P. Suppose this holds
for k ≥ 0. Then δk,c and δk,C are relaxations of δ on P. By Definition 2.16

uf(bc(·), bC(·),Ac(·),AC(·), δk,c(·), δk,C(·)),
of(bc(·), bC(·),Ac(·),AC(·), δk,c(·), δk,C(·)),

are convex and concave relaxations of f(b(·),A(·), δ(·)) on P, respectively. By Lemma 3.11,
δ(·) = f(b(·),A(·), δ(·)), and hence these are also relaxations of δ on P. Since the maximum of
two convex functions is convex and the minimum of two concave functions is concave,

δk+1,c(·) = ūf(bc(·), bC(·),Ac(·),AC(·), δk,c(·), δk,C(·)),
δk+1,C(·) = ōf(bc(·), bC(·),Ac(·),AC(·), δk,c(·), δk,C(·)),

are convex and concave relaxations of δ on P, respectively. Induction completes the proof. �

Remark 5 The definition of f does not have explicit dependence on p, however, this is just a
special case of the general form (8). Therefore uf and of are said to be composite relaxations of f on
B × A × � × P, which is consistent with the definition of composite relaxations (Definition 2.16).

It should be noted that the functions δk,c and δk,C can be no worse than the original bounds. Thus,
Theorem 3.12 offers an efficient procedure for constructing relaxations of solutions to parametric
linear systems that may be, potentially significant, refinements of the original bounds. It should also
be mentioned that because of how f is defined, each component i makes use of information from
the previous j < i updated components. It is said that f is evaluated in a sequential componentwise
manner. Similarly, relaxations of f are calculated in a sequential componentwise manner. What this
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Optimization Methods & Software 437

amounts to is the sequential componentwise refinement of relaxations of δj making use of the newly
calculated refinements of the previous components (i < j). This procedure is analogous to how
the Gauss–Seidel method propagates the newly calculated (i < j) information forward to (j > i)
components to get better approximations of the solution and potentially speed up convergence.
Subgradients of these relaxations can also be calculated.

Theorem 3.13 Let Ac, AC : P → R
nx×nx be convex and concave relaxations of A on P,

respectively, and let bc, bC : P → R
nx be convex and concave relaxations of b on P, respec-

tively. Let δ0,c, δ0,C : P → R
nx be defined by δ0,c(p) = δL and δ0,C(p) = δU for all p ∈ P and

σ
0,c
δ (p) = σ

0,C
δ (p) = 0, for all p ∈ P. Let σ̂

c
A, σ̂C

A : P → R
np×nx×nx be subgradients of Ac, AC on

P, respectively. Similarly, let σc
b, σC

b : P → R
np×nx be subgradients of bc, bC on P, respectively.

Let relaxations of δ, (δk,c, δk,C), be given by Theorem 3.12. Let Suf , Sof be composite subgradients
of uf and of on B × A × � × P, respectively. Then the sequences {σk+1,c

δ } and {σk+1,C
δ } defined

by

σ
k+1,c
δ (·) := Sūf (b

c(·), bC(·), σc
b(·), σC

b (·), Ac(·), AC(·), σ̂c
A(·), σ̂C

A(·), δk,c(·), δk,C(·), σk,c
δ (·),

σ
k,C
δ (·)),

σ
k+1,C
δ (·) := Sōf (b

c(·), bC(·), σc
b(·), σC

b (·), Ac(·), AC(·), σ̂c
A(·), σ̂C

A(·), δk,c(·), δk,C(·), σk,c
δ (·),

σ
k,C
δ (·))

are subgradients of δk+1,c and δk+1,C on P, respectively, with Sūf and Sōf defined analogously to
Definition 3.5.

Proof The proof is analogous to that for Theorem 3.5. �

3.4 Relaxations of solutions of parametric nonlinear systems

As in Section 3.2, the general form of h will be considered such that h cannot be rearranged
algebraically as in Section 3.1.

Assumption 3.14

(1) There exists x : P → Dx such that h(x(p), p) = 0, ∀p ∈ P, and an interval X ≡ [xL, xU ] ⊂
IDx is available such that x(P) ⊂ X and x(p) is unique in X for all p ∈ P.

(2) Derivative information ∇xhi, i = 1, . . . , nx is available and is factorable, say by automatic
differentiation [2,8].

(3) A matrix Y ∈ R
nx×nx is known such that M ≡ YJxH(X, P) satisfies 0 /∈ Mii for all i, where

JxH is an inclusion monotonic interval extension of Jxh on X × P.

The matrix M can be calculated by taking natural interval extensions [20,24]. Furthermore,
parametric interval-Newton methods [9,10,24,34] offer a way to calculate X satisfying Assump-
tion 3.14. The matrix Y is simply a preconditioning matrix and has been the topic of many
articles. Specifically, Kearfott [16] discusses the application to interval-Newton methods. A fre-
quently valid choice is Y = [m(JxH(X , P))]−1, which is popular due to its relatively efficient
computation. As in Section 3.3, we begin by characterizing x in semi-explicit form.
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438 M.D. Stuber et al.

Lemma 3.15 Choose any z : P → R
nx such that z(P) ⊂ X. There exists a matrix-valued function

M : P → M such that

−Yh(z(p), p) = M(p)(x(p) − z(p)), ∀ p ∈ P

with M ≡ YJxH(X , P).

Proof From the parametric mean-value Theorem 2.5, there exists a function yi : P → X such
that

hi(x(p), p) − hi(z(p), p) = ∇xhi(yi(p), p)T(x(p) − z(p)), ∀ p ∈ P

for the ith component of h. Writing the mean-value form for i = 1, . . . , nx, and noticing that
hi(x(p), p) = 0 for all i, we get

−h(z(p), p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∇xh1(y1(p), p)T

∇xh2(y2(p), p)T

...

∇xhnx (y
nx (p), p)T

⎤
⎥⎥⎥⎥⎥⎥⎦

(x(p) − z(p)), ∀ p ∈ P.

Multiplying both sides by Y, we get

−Yh(z(p), p) = Y

⎡
⎢⎢⎢⎢⎢⎢⎣

∇xh1(y1(p), p)T

∇xh2(y2(p), p)T

...

∇xhnx (y
nx (p), p)T

⎤
⎥⎥⎥⎥⎥⎥⎦

(x(p) − z(p)), ∀ p ∈ P.

Let B : X × X × · · · × X × P → R
nx×nx be defined so that

M(·) = B(y1(·), y2(·), . . . , ynx (·), ·) ≡ Y

⎡
⎢⎢⎢⎢⎢⎢⎣

∇xh1(y1(·), ·)T

∇xh2(y2(·), ·)T

...

∇xhnx (y
nx (·), ·)T

⎤
⎥⎥⎥⎥⎥⎥⎦

.

ByAssumption 3.14(3), there exists a matrixY so that M ≡ YJxH(X, P) is such that 0 /∈ Mii. Since
yi(P) ⊂ X holds and the image B(X , X , . . . , X , P) is such that B(X, X, . . . , X, P) ⊂ YJxH(X, P)

holds, then M(P) ⊂ M. �

It is important to notice that, for the purposes of this paper, M need not be calculated explicitly.
However, it is required that convex and concave relaxations of M on P can be calculated. This is
fortuitous since it is easier to relax M than calculate M explicitly.

Lemma 3.16 Let z, M, and B be as in Lemma 3.15. Let uB, oB be composite relaxations of B on
X × X × · · · × X × X × P. Let xc, xC : P → R

nx be convex and concave relaxations of x on P,
respectively, such that xc(p) ≤ z(p) ≤ xC(p), ∀p ∈ P. Then the functions

Mc(·) ≡ uB(xc(·), xC(·), . . . , xc(·), xC(·), ·)
MC(·) ≡ oB(xc(·), xC(·), . . . , xc(·), xC(·), ·),

are convex and concave relaxations of M on P, respectively.
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Proof By Assumption 3.14(2), ∇xhi, i = 1, . . . , nx, is available and factorable. We know that
for each p ∈ P and all i = 1, . . . , nx and j = 1, . . . , nx, either xj(p) ≤ yi

j(p) ≤ zj(p) or zj(p) ≤
yi

j(p) ≤ xj(p). Also, we have valid relaxations such that xc(p) ≤ z(p) ≤ xC(p), ∀p ∈ P. Thus,
it is clear xc(p) ≤ yi(p) ≤ xC(p), ∀p ∈ P and i = 1, . . . , nx. Since xc and xC are convex and
concave relaxations of yi on P for i = 1, . . . , nx by Definition 2.16, and uB and oB are composite
relaxations of B on X × X × · · · × X × X × P, it follows directly that Mc and MC are valid convex
and concave relaxations of M on P. �

Two different techniques for constructing relaxations of solutions of parametric nonlinear sys-
tems, that rely on the above results, will now be presented along with very general composite
relaxation results. The complete results and procedures regarding constructing relaxations of
solutions of parametric nonlinear systems will then be presented.

Definition 3.17 (ψ) Let b : X × P → R
nx such that b ≡ Yh. Define the function ψ : X ×

M × X × P → R
nx such that ∀(z̃, M̃, x̃, p) ∈ X × M × X × P, ψ(z̃, M̃, x̃, p) = x̃∗, where the ith

component of x̃∗ is given by the loop:

for i = 1, . . . , nx do

x̃∗
i := z̃i − (bi(z̃, p) + ∑

j<i m̃ij(x̃∗
j − z̃j) + ∑

j>i m̃ij(x̃j − z̃j))

m̃ii
,

end.

(13)

The reader should note that this is simply a formal definition of a single iteration of the paramet-
ric version of the Gauss–Seidel method if M̃ was taken as the Jacobian matrix. If M̃ was taken to
be M as in Lemma 3.15, this is a semi-explicit characterization of the implicit function x through
its mean-value form. This characterization is very closely related to the function f from the linear
systems section above. The following result shows that if relaxations of x are known, they can
be refined. Later, the full method, that is practical computationally, for refining relaxations of x
iteratively is presented which relies on this result.

Theorem 3.18 Let z and M be as in Lemma 3.15. Let Mc, MC : P → R
nx×nx be relaxations of

M on P, let xk,c, xk,C : P → R
nx be relaxations of x on P, and let zc, zC : P → R

nx be relaxations
of z on P. Let uψ and oψ be composite relaxations of ψ on X × M × X × P. Then convex and
concave relaxations of x on P are given by

xk+1,c(·) := ūψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
xk+1,C(·) := ōψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),

respectively, with ūψ and ōψ defined analogously to Definition 3.2.

Proof Similar to the linear systems result above, we will show that x is a fixed-point of ψ. By
Lemma 3.15

M(p)(x(p) − z(p)) = −Yh(z(p), p), ∀ p ∈ P,

and 0 /∈ Mii ⊃ mii(P), ∀i. Now, it is clear that, for i = 1, . . . , nx, we can write

xi(p) = zi(p) − (bi(z(p), p) + ∑
j<i mij(p)(xj(p) − zj(p)) + ∑

j>i mij(p)(xj(p) − zj(p)))

mii(p)
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440 M.D. Stuber et al.

with b = Yh. It immediately follows that

ψ1(z(p), M(p), x(p), p) = x∗
1(p) = z1(p) − (b1(z(p), p) + ∑

j>1 m1j(p)(xj(p) − zj(p)))

m11(p)

= x1(p).

Similar to the proof of Lemma 3.11, using induction, xi(p) = ψi(z(p), M(p), x(p), p) = x∗
i , ∀i.

Therefore x is a fixed-point of ψ for every p ∈ P. From the hypothesis and Definition 2.16, it
follows that

uψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
oψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·)

are relaxations of ψ(z(·), M(·), x(·), ·) on P that are also relaxations of x(·) = ψ(z(·), M(·), x(·), ·)
on P. It immediately follows that

xk+1,c(·) := ūψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
xk+1,C(·) := ōψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),

are convex and concave relaxations of x on P, respectively. �

As in Section 3.3, the sequential componentwise refinement of relaxations of x enable the
calculations of subsequent components (j > i) to make use of the newly calculated refinements
of the previous components (j < i).

Theorem 3.19 Let z and M be as in Lemma 3.15. Let Mc, MC : P → R
nx×nx be relaxations of

M on P, let xk,c, xk,C : P → R
nx be relaxations of x on P, and let zc, zC : P → R

nx be relaxations
of z on P. Let σ̂

c
M, σ̂C

M : P → R
np×nx×nx be subgradients of Mc and MC on P, respectively, let

σk,c
x , σk,C

x : P → R
np×nx be subgradients of xk,c and xk,C on P, respectively, and let σc

z, σC
z : P →

R
np×nx be subgradients of zc and zC on P, respectively. Let Suψ

and Soψ
be composite subgradients

of uψ and oψ on X × M × X × P, respectively. Then we have

σk+1,c
x (·) := Sūψ

(zc(·), zC(·), σc
z(·), σC

z (·), Mc(·), MC(·), σ̂c
M(·), σ̂C

M(·), xk,c(·), xk,C(·), σk,c
x (·),

σk,C
x (·), ·),

σk,C
x (·) := Sōψ

(zc(·), zC(·), σc
z(·), σC

z (·), Mc(·), MC(·), σ̂c
M(·), σ̂C

M(·), xk,c(·), xk,C(·), σk,c
x (·),

σk,C
x (·), ·)

are subgradients of

xk+1,c(·) := ūψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·)
xk+1,C(·) := ōψ(zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·)

on P, with Sūf and Sōf defined analogously to Definition 3.3.

Proof The proof is analogous to that for Theorem 3.5. �

A second technique for constructing relaxations of solutions of parametric nonlinear systems
will now be presented.
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Definition 3.20 (χ) The function χ : X × M × X × P → R
nx will be defined as

χ(z̃, M̃, x̃, p) ≡ z̃ − Yh(z̃, p) + (I − M̃)(x̃ − z̃), (14)

∀(z̃, M̃, x̃, p) ∈ X × M × X × P.

Theorem 3.21 Let z and M be as in Lemma 3.15. Let Mc, MC : P → R
nx×nx be relaxations of

M on P, let xk,c, xk,C : P → R
nx be relaxations of x on P, and let zc, zC : P → R

nx be relaxations
of z on P. Let uχ and oχ be composite relaxations of χ on X × M × X × P. Then convex and
concave relaxations of x on P are given by

xk+1,c(·) := ūχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
xk+1,C(·) := ōχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),

respectively, with ūχ and ōχ defined analogously to Definition 3.2.

Proof First, we will show that x is a fixed-point of χ. By Proposition 3.7, we can write φ(w, p) =
w − Yh(w, p) so that φ(w, p) = w ⇔ h(w, p) = 0. Now,

φ(x(p), p = φ(x(p), p) + φ(z(p), p) − φ(z(p), p),

= x(p) − Yh(x(p), p) + z(p) − Yh(z(p), p) − z(p) + Yh(z(p), p),

= z(p) − Yh(z(p), p) + (x(p) − z(p)) − Y(h(x(p), p) − h(z(p), p)),

for all p ∈ P. From the definition of M and z, Y(h(x(p), p) − h(z(p), p)) = M(p)(x(p) − z(p))

holds. Substituting in we get

φ(x(p), p) = z(p) − Yh(z(p), p) + (x(p) − z(p)) − M(p)(x(p) − z(p)),

= z(p) − Yh(z(p), p) + (I − M(p))(x(p) − z(p)),

= χ(z(p), M(p), x(p)).

Thus, x(p) = φ(x(p), p) = χ(z(p), M(p), x(p)). From the hypothesis and by Definition 2.16, it
follows that

uχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
oχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),

are relaxations of χ(z(·), M(·), x(·), ·) on P that are also relaxations of x(·) = χ(z(·), M(·), x(·), ·)
on P. It immediately follows that

xk+1,c(·) := ūχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),
xk+1,C(·) := ōχ (zc(·), zC(·), Mc(·), MC(·), xk,c(·), xk,C(·), ·),

are convex and concave relaxations of x on P, respectively. �

Remark 6 Similar to how ψ, from above, and f from Section 3.3 were defined, it is easy to
rearrange χ to be calculated in a sequential componentwise fashion.

Remark 7 The subgradient result for ψ, Theorem 3.19, trivially holds with ψ replaced by χ.

D
ow

nl
oa

de
d 

by
 [

M
at

th
ew

 S
tu

be
r]

 a
t 0

9:
50

 2
0 

Ja
nu

ar
y 

20
16

 



442 M.D. Stuber et al.

One hypothesis that the above results rely upon is the existence of an appropriate function
z : P → X, for which relaxations are readily available. Without such a function, convex and
concave relaxations of x that are potential improvements on the initial bounds cannot be calculated.
This issue is addressed next.

Definition 3.22 (z) Let xa, xA : P → R
nx be any affine relaxations of x on P, respectively. For

some λ ∈ [0, 1] define the function z : P → R
nx with the following procedure:

for i = 1, . . . , nx do

ξi(·) := λxa
i (·) + (1 − λ)xA

i (·)

�i := [ξL
i , ξU

i ] =
[

min
p∈P

ξi(p), max
p∈P

ξi(p)

]

if ξL
i < xL

i then

x̂a
i (·) := xL

i , else x̂a
i (·) := xa

i (·)
if ξU

i > xU
i then

x̂A
i (·) := xU

i , else x̂A
i (·) := xA

i (·)
zi(·) := λx̂a

i (·) + (1 − λ)x̂A
i (·)

end

It should be noted that the interval �i = [minp∈P ξ(p), maxp∈P ξ(p)] can be calculated easily
and efficiently for each i using interval analysis. Also, defining z to be affine is important because
affine functions are trivially convex and concave, so that the calculation of valid relaxations is
trivial.

Lemma 3.23 Suppose xa, xA : P → R
nx are any affine relaxations of x on P. Then the function

z : P → R
nx , defined in Definition 3.22, is affine and maps P into X.

Proof Consider a single i and set �i := [ξL
i , ξU

i ] as in Definition 3.22. It should be noted that the
cases where xA

i (p) ≤ xL
i and/or xa

i (p) ≥ xU
i for any p ∈ P cannot occur since, by definition xa

i (p) ≤
xi(p) ≤ xA

i (p), ∀p ∈ P, implying xi(p) ≤ xL
i and/or xi(p) ≥ xU

i , violating Assumption 3.14(1).
First, consider the case that xL

i ≤ ξL
i and ξU

i ≤ xU
i . Trivially, zi(·) := λxa

i (·) + (1 − λ)xA
i (·)

satisfies xL
i ≤ zi(·) ≤ xU

i , ∀p ∈ P, and thus zi maps P into Xi and since it is a convex combi-
nation of affine functions, it is affine. Next, consider the case that ξL

i < xL
i and xU

i < ξU
i . Then

zi(·) := λxL
i + (1 − λ)xU

i maps P into Xi, trivially, and since it is a convex combination of two
affine (constant) functions, it is affine. Consider the case that only one bound is violated, say
ξL

i < xL
i and ξU

i ≤ xU
i . Then zi(·) := λxL

i + (1 − λ)xA
i (·) and since xL

i is affine (constant) and xA
i

is affine, zi is affine and xL
i ≤ λxL

i + (1 − λ)xA
i (·). A similar argument can be made for the case

in which the upper bound is violated: ξU
i > xU

i and xL
i ≤ ξL

i . Therefore z is affine and maps P
into X. �

The if statements in Definition 3.22 check, for a particular choice of λ, whether or not the
hyperplanes defined by λxa(·) + (1 − λ)xA(·), will violate the bounds on X for some ith com-
ponent. If that is the case, the hyperplane is calculated so as to not violate the bounds on X. A
convenient choice for the ith hyperplane is simply the plane that lies in the middle corresponding
to λ = 0.5. Other choices for z exist. For instance, in one dimension, the function z can be taken
to be the secant connecting the endpoints x(pL) and x(pU). The above result together with the
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Optimization Methods & Software 443

definition of the composite subgradient (Definition 2.19), offers an automatic way to calculate
z that is valid for all systems in general. In order to simplify the notation for later results, the
following procedure will be defined.

Subroutine 3.24 (Aff)

Aff(c, C,σc, σC, λ, X , P, p̄){
for i = 1, . . . , nx do

Xa
i := ci +

np∑
j=1

(σc
T)ij(Pj − p̄j)

XA
i := Ci +

np∑
j=1

(σC
T)ij(Pj − p̄j)

�i := λXa
i + (1 − λ)XA

i

if ξL
i < xL

i then

(σc)ji := 0, ∀j = 1, . . . , np

ci := xL
i

if ξU
i > xU

i then

(σC)ji := 0, ∀j = 1, . . . , np

Ci := xU
i

end

return {c, C, σc, σC}
}

Remark 8 Note that the first three computations in Subroutine 3.24 are interval computations
performed using interval analysis.

Remark 9 The reader is reminded that, by Definition 3.3 and the previous definitions of sub-
gradients, p̄ is the point at which the subgradient information is calculated; referred to as the
reference point. The choice of this point is arbitrary from a theoretical point-of-view provided
that it satisfies certain properties. From an application point-of-view, the choice may result in
tighter or weaker relaxations and is left to the user to modify as a tuning parameter.

Theorem 3.25 Let x0,c, x0,C : P → R
nx be defined as x0,c(p) = xL and x0,C(p) = xU for every

p ∈ P. Let σ0,c
x , σ0,C

x : P → R
np×nx be defined as σ0,c

x (p), σ0,C
x (p) = 0 for every p ∈ P. Let uB, oB

be composite relaxations of B on X × · · · × X × P and ūψ , ōψ be composite relaxations of ψ on
X × M × X × P. Let SuB , SoB be composite subgradients of uB, oB, respectively. Then, for any
choice of {p̄k}, and {λk} with p̄k ∈ P and λk ∈ [0, 1] for k ∈ N, the elements of the sequences
{xk,c} and {xk,C} defined by the iteration:

(c, C, σc, σC) := Aff(xk,c(p̄k), xk,C(p̄k), σk,c
x (p̄k), σk,C

x (p̄k), λk , X, P, p̄k)

xk,a(p) := c + (σc)
T(p − p̄k), ∀ p ∈ P
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444 M.D. Stuber et al.

xk,A(p) := C + (σC)T(p − p̄k), ∀ p ∈ P

zk(·) := λkxk,a(·) + (1 − λk)xk,A(·)
σk

z := λkσc + (1 − λk)σC

Mk,c(·) := uB(xk,a(·), xk,A(·), . . . , xk,a(·), xk,A(·), ·)
Mk,C(·) := oB(xk,a(·), xk,A(·), . . . , xk,a(·), xk,A(·), ·)
σ̂

k,c
M (·) := SuB(x

k,a(·), xk,A(·), σc, σC, . . . , xk,a(·), xk,A(·), σc, σC, ·)
σ̂

k,C
M (·) := SoB(x

k,a(·), xk,A(·), σc, σC, . . . , xk,a(·), xk,A(·), σc, σC, ·)
xk+1,c(·) := ūψ(zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)
xk+1,C(·) := ōψ(zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)
σk+1,c

x (·) := Sūψ
(zk(·), zk(·), σk

z , σk
z , Mk,c(·), Mk,C(·), σ̂k,c

M (·), σ̂k,C
M (·), xk,c(·),

xk,C(·), σk,c
x (·), σk,C

x (·), ·)
σk+1,C

x (·) := Sōψ
(zk(·), zk(·), σk

z , σk
z , Mk,c(·), Mk,C(·), σ̂k,c

M (·), σ̂k,C
M (·), xk,c(·),

xk,C(·), σk,c
x (·), σk,C

x (·), ·)
are convex and concave relaxations of x on P, respectively. Furthermore, the elements of the
sequences {σk,c

x } and {σk,C
x } are subgradients of the elements of the sequences {xk,c} and {xk,C},

respectively, at the reference points {p̄k} for k ∈ N.

Proof By definition, x0,c and x0,C are, respectively, convex and concave relaxations of x on P.
Similarly, σ0,c

x and σ0,C
x are subgradients of x0,c and x0,C on P, respectively. Suppose this holds

for arbitrary k ∈ N. Then xk,c and xk,C are, respectively, convex and concave relaxations of x on
P and σk,c

x and σk,C
x are subgradients on P. Then it follows from the definition of Subroutine 3.24

that xk,a and xk,A are affine relaxations of x on P. Furthermore, zk is affine and maps into X by
Lemma 3.23. From the definition of zk , it is clear that xk,a(p) ≤ zk(p) ≤ xk,A(p), ∀p ∈ P, which
implies that Mk,c and Mk,C are relaxations of M on P by Lemma 3.16. Moreover, σc and σC are
subgradients of xk,a and xk,A, respectively, so that σ̂

k,c
M and σ̂

k,C
M are subgradients of Mk,c and Mk,C

on P, respectively, by Definition 2.19. By Theorem 3.18,

xk+1,c(·) := ūψ(zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)
xk+1,C(·) := ōψ(zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)

are relaxations of x on P and by Definition 3.3 and Theorem 3.19

σk+1,c
x (·) := Sūψ

(zk(·), zk(·), σk
z , σk

z , Mk,c(·), Mk,C(·), σ̂k,c
M (·), σ̂k,C

M (·), xk,c(·),
xk,C(·), σk,c

x (·), σk,C
x (·), ·)

σk+1,C
x (·) := Sōψ

(zk(·), zk(·), σk
z , σk

z , Mk,c(·), Mk,C(·), σ̂k,c
M (·), σ̂k,C

M (·), xk,c(·),
xk,C(·), σk,c

x (·), σk,C
x (·), ·)

are subgradients of xk+1,c and xk+1,C , respectively. Induction completes the proof. �

Therefore, the iterations outlined in the above theorem can be regarded as methods for poten-
tially refining the calculated bounds on x or any other initial convex and concave bounds on x.
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(a) (b)

Figure 1. Relaxations of the solution in (a) X1 and (b) X2 for the simple example.

However, the above theorem does not guarantee that the calculated convex and concave relaxations
will in fact always be improvements on the initial bounds. Nevertheless, the theorem is important
because it does offer a way to calculate relaxations that are no worse than the original bounds
and potentially tighter, unlike the situation discussed in Theorem 3.8. To illustrate relaxations
constructed using this result, the following simple example is given.

Example 3.26 Consider the system h(z, p) = z2 + pz + 4 with p ∈ P = [6, 9]. The two real roots
are given by the quadratic formula. Using the parametric interval-Newton method [10,24,34],
two conservative intervals, X1 = [−0.78, −0.4] and X2 = [−10.0, −5.0], were calculated that
are guaranteed to each contain a unique solution x(p) such that h(x(p), p) = 0, ∀p ∈ P. Three
different z functions were used, each corresponding to a different λk = λ value, and convex and
concave relaxations of x(p) were constructed. For each λ, p̄k = p̄ was chosen to be the midpoint
of P. Figure 1 shows the relaxations for the two solutions corresponding to each λ value after
applying two iterations of the procedure, after which, no significant refinements could be made.

Another method for refining the bounds of an implicit function through McCormick relaxations
can be derived from Theorem 3.21. The following method is the analogue to the Krawczyk interval
method for bounding solutions of nonlinear systems.

Theorem 3.27 Let x0,c, x0,C : P → R
nx be defined as x0,c(p) = xL and x0,C(p) = xU for every

p ∈ P. Let σ0,c
x , σ0,C

x : P → R
np×nx be defined as σ0,c

x (p) = σ0,C
x (p) = 0 for every p ∈ P. Let uB, oB

be composite relaxations of B on X × · · · × X × P and ūχ , ōχ be composite relaxations of χ on
X × M × X × P. Let SuB , SoB be composite subgradients of uB, oB, respectively. Then, for any
choice of {p̄k}, and {λk} with p̄k ∈ P and λk ∈ [0, 1] for k ∈ N, the elements of the sequences
{xk,c} and {xk,C} defined by the iteration:

(c, C, σc, σC) := Aff(xk,c(p̄k), xk,C(p̄k), σk,c
x (p̄k), σk,C

x (p̄k), λk , X, P, p̄k)

xk,a(p) := c + (σc)
T(p − p̄k), ∀ p ∈ P

xk,A(p) := C + (σC)T(p − p̄k), ∀ p ∈ P

zk(·) := λkxk,a(·) + (1 − λk)xk,A(·)
σk

z := λkσc + (1 − λk)σC

Mk,c(·) := uB(xk,a(·), xk,A(·), . . . , xk,a(·), xk,A(·), ·)
Mk,C(·) := oB(xk,a(·), xk,A(·), . . . , xk,a(·), xk,A(·), ·)

D
ow

nl
oa

de
d 

by
 [

M
at

th
ew

 S
tu

be
r]

 a
t 0

9:
50

 2
0 

Ja
nu

ar
y 

20
16

 



446 M.D. Stuber et al.

σ̂
k,c
M (·) := SuB

(
xk,a(·), xk,A(·), σc, σC, . . . , xk,a(·), xk,A(·), σc, σC, ·)

σ̂
k,C
M (·) := SoB

(
xk,a(·), xk,A(·), σc, σC, . . . , xk,a(·), xk,A(·), σc, σC, ·)

xk+1,c(·) := ūχ

(
zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)

xk+1,C(·) := ōχ

(
zk(·), zk(·), Mk,c(·), Mk,C(·), xk,c(·), xk,C(·), ·)

σk+1,c
x (·) := Sūχ

(
zk(·), zk(·), σk

z , σk
z , Mk,c(·), Mk,C(·), σ̂k,c

M (·), σ̂k,C
M (·),

xk,c(·), xk,C(·), σk,c
x (·), σk,C

x (·), ·)
σk+1,C

x (·) := Sōχ

(
zk(·), zk(·), σk

z , σk
z , Mk,c(·), Mk,C(·), σ̂k,c

M (·), σ̂k,C
M (·),

xk,c(·), xk,C(·), σk,c
x (·), σk,C

x (·), ·)
are convex and concave relaxations of x on P, respectively, for k ∈ N. Furthermore, the elements
of the sequences {σk,c

x } and {σk,C
x } are subgradients of the elements of the sequences {xk,c} and

{xk,C}, respectively, at the reference points {p̄k} for k ∈ N.

Proof The proof is analogous to the proof of Theorem 3.25. �

Remark 10 There are many alternative implementations of the iterations in Theorems 3.25
and 3.27. Computationally, evaluating the relaxations constructed using the iterations in The-
orems 3.25 and 3.27 can only be done at a single p. In order to accomplish this, relaxations at
p̄k must first be computed. Therefore, one such alternative implementation is to choose a single
p̄k = p̄ ∈ P and apply one of the iterations to get affine relaxation information, and subsequently,
use this information to define the zk function. With this information calculated up front, the first
nine instructions are no longer dependent on the iteration k.

4. Global optimization of implicit functions

The continuous branch-and-bound (B&B) framework is a popular algorithm for solving globally
nonconvex NLPs as in (1). It is discussed in [11,15] thoroughly. The B&B algorithm relies on
refining bounds on the global optima while rigorously ruling out potentially large regions of the
search space where global optima are guaranteed not to lie, termed fathoming. The algorithm
is guaranteed to terminate in finitely many iterations when ε-tolerance has been reached. B&B
will be employed here to solve programs with embedded implicit functions, as in (4), in a similar
fashion. In fact, the B&B algorithm will be applied to (4) without modifying any of its underlying
features or procedures. Therefore, the only difference between the B&B algorithm presented
here and the B&B algorithm for standard form global optimization problems, is simply how the
functions involved are evaluated and how their relaxations are calculated. Furthermore, due to the
required properties of the bounding information on implicit functions, namely that X encloses a
unique implicit function, the B&B algorithm presented here will only handle one solution branch
at a time. For systems with multiple solution branches, as in Example 3.26, the user has the
freedom to decide how the full problem is solved. For instance, for each m solution branches,
the B&B algorithm can be called to solve each m problem in a parallel fashion on a multi-core
computer.Alternatively, the B&B algorithm could be called to solve each m problems sequentially
making use of the best upper bound found and potentially fathoming subsequent problems whose
lower bound determined at the root node is greater than the best upper bound (fathoming on value
dominance). Before presenting the full B&B algorithm, the NLP subproblems, on which it relies,
will be discussed.
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Optimization Methods & Software 447

4.1 Upper-bounding problem

Given a subinterval, Pl, of the decision space P, define the upper-bounding problem:

min
z∈X,p∈Pl

f (z, p)

s.t. g(z, p) ≤ 0,

h(z, p) = 0.

(15)

This problem is solved locally to obtain a local solution (ẑl, p̂l
), if one exists. Lastly, a valid upper

bound on the optimal solution value will be defined as f UBD
l ≡ f (ẑl, p̂l

).

4.2 Lower-bounding problem

Given a subinterval, Pl, of the decision space P, define the lower-bounding problem:

f LBD
l = min

p∈Pl
f c(p) = uf (xc(p), xC(p), p)

s.t. gc(p) = ug(xc(p), xC(p), p) ≤ 0,
(16)

where the composite relaxations uf and ug will be constructed by first using the procedures
outlined in Section 3 for constructing convex and concave relaxations of the implicit function x
on Pl and then applying the rules of generalized McCormick relaxations for composition. The
lower-bounding problem (16) is convex by construction and is solved to global optimality. Denote
the solution found by p̆, if it exists, and let f LBD

l ≡ uf (xc(p̆), xC(p̆), p̆).

4.3 Global optimization algorithm

The B&B algorithm for global optimization of implicit functions is given.

Algorithm 1

(1) Initialization
(a) Set � = {P}.
(b) Set k := 0, εtol > 0, α0 = +∞, β0 = −∞.

(2) Termination
(a) Check if � = ∅. If true, terminate, the instance is infeasible
(b) Check if αk − βk ≤ εtol. If true, terminate, f ∗ := αk is an εtol-optimal estimate for the

optimal objective function value and p∗ is a feasible point at which f ∗ is attained.
(c) Delete from � all nodes Pl with f LBD

l ≥ αk and set βk := minPl∈� f LBD
l .

(3) Node Selection
(a) Pop and delete a node Pl from stack � such that βk = f LBD

l .
(4) Lower-Bounding Procedure

(a) Solve convex lower-bounding problem (16) globally on Pl.
(b) If no feasible solution exists, set f LBD

l := +∞, otherwise set f LBD
l := uf (xc(p̆), xC(p̆), p̆).

If a feasible solution is found that is feasible in (4) and f (x(p̆), p̆) < αk , set αk :=
f (x(p̆), p̆), and p∗ := p̆.

(5) Upper-Bounding Procedure (optional)
(a) Solve the NLP subproblem (15) locally on Pl.
(b) If a feasible solution is found and f UBD

l < αk , set αk := f UBD
l , p∗ := p̂.
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448 M.D. Stuber et al.

(6) Fathoming
(a) Check if f LBD

l = +∞ or f LBD
l ≥ αk. If true, go to 2.

(7) Branching
(a) Find j ∈ arg maxi=1,...,np w(Pl

i) and create two new nodes Pl′ and Pl′′ by bisecting Pl
j .

(b) Set f LBD
l′ , f LBD

l′′ := f LBD
l and push the new nodes onto top of stack �.

(c) Set k := k + 1, go to 2.

4.4 Finite convergence

Guaranteed finite εtol-optimal convergence of Algorithm 1 is established in this section.

Definition 4.1 (X) Let X : IP → IR
nx be a continuous, interval-valued function which is both

an interval extension and inclusion function of x on P such that for each p ∈ P, x(p) is the unique
solution of h(x(p), p) = 0 in X(P).

It is assumed that such a function X is readily available by some procedure, such as the para-
metric extension of interval-Newton methods [10,24,34]. In (15), the set X is the initial interval
bounds on the implicit function that satisfies the previous assumptions (i.e. Assumption 3.1, 3.9,
and 3.14). Under Definition 4.1, X has much more specific properties which are required to guar-
antee the convergence properties of the relaxations. This stricter definition is not required in order
to solve the upper-bounding problem (15). However, the methods for calculating X satisfying the
previous assumptions also ensure the stricter interval properties in Definition 4.1. Therefore, X in
(15) will be equal to X(P) in Definition 4.1.

Assumption 4.2 For Z ≡ X(P), there exist continuous functions F : IZ × IP → IR and G :
IZ × IP → IR

ng such that F is both an interval extension and an inclusion function of f on
Z × P and G is both an interval extension and an inclusion function of g on Z × P.

For f and g factorable and continuous on open sets containing Z × P, F and G are calculable
by taking natural interval extensions [20,24].

Lemma 4.3 Consider a nested sequence of intervals {Pq} (i.e. Pm ⊂ Pq, ∀m > q), Pq ⊂ P, q ∈
N, such that {Pq} → [p̄, p̄] for some p̄ ∈ P. Let xc

q, xC
q be relaxations of x on Pq. Let f c

q (·) =
uq

f (x
c
q(·), xC

q (·), ·) be a convex relaxation of the objective function f on Pq. Let f̂ c
q = minp∈Pq f c

q (p).

Then limq→∞ f̂ c
q = f (x(p̄), p̄).

Proof From continuity of X on IP, it is clear that limq→∞ X(Pq) = X([p̄, p̄]) and since
X is an interval extension of x, X([p̄, p̄]) = [x(p̄), x(p̄)]. Let Fq be an interval func-
tion satisfying Assumption 4.2 on IX(Pq) × IPq. Then, by continuity of Fq, we have
limq→∞ Fq(X(Pq), Pq) = F([x(p̄), x(p̄)], [p̄, p̄]) = [f (x(p̄), p̄), f (x(p̄), p̄)] = f (x(p̄), p̄). By con-
struction, f̂ c

q (p) ∈ Fq(X(Pq), Pq), ∀p ∈ Pq for every q, and therefore it follows limq→∞ f̂ c
q =

f (x(p̄), p̄). �

Lemma 4.4 Suppose Algorithm 1 generates an infinite sequence of nested nodes {Pq}, then
limq→∞ Pq = [p̄, p̄].

Proof Each node Pq is a subinterval partition of P that is an np-dimensional rectangle. The
branching rule is a bisection along one of the longest edges of the currently selected node Pq.
This result follows analogously from Proposition IV.2 in [15]. �
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Optimization Methods & Software 449

Lemma 4.5 Suppose Algorithm 1 generates an infinite sequence of nested nodes {Pq}, then
{Pq} → [p̄, p̄] and p̄ is feasible in (4).

Proof By Lemma 4.4, if Algorithm 1 generates an infinite sequence of nested nodes {Pq}, then
{Pq} → [p̄, p̄]. Suppose p̄ is infeasible in the original problem, i.e. gi(x(p̄), p̄) > 0 for some
i = 1, 2, . . . , ng. Let gc(·) = ug(xc(·), xC(·), ·). By continuity of g, there exists an open ball, of
radius δ > 0, around p̄, labelled Bδ(p̄), such that p̂ ∈ Bδ(p̄) ⇒ gi(x(p̂), p̂) > 0 for some i =
1, 2, . . . , ng. This implies that for some finite q′, Pq′ ⊂ Bδ(p̄). Therefore, there exists a q′′ > q′ such
that for some i = 1, 2, . . . , ng, we have gc

i (p) > 0, ∀p ∈ Pq′′
, where continuity of gc

i (and xc, xC)
on P follows from the definition of composite relaxations (Definition 2.16) and the properties
of generalized McCormick [31] relaxations. Thus, the convex lower-bounding problem (16) is
infeasible for all q > q′′. Finally, the node containing p̄ would be fathomed no later than at node
q′′ + 1. Therefore, Algorithm 1 cannot generate an infinite sequence of nested nodes that converge
to an infeasible point. �

Lemma 4.6 Suppose an infinite sequence of nested nodes, {Pq}, is generated by Algorithm 1.
Let f c

q (·) = uq
f (x

c
q(·), xC

q (·), ·) and gc
q(·) = uq

g(xc
q(·), xC

q (·), ·) be convex relaxations of f and g on
Pq, respectively. Let f ∗,c

q = minp∈Pq f c
q (p) : gc

q(p) ≤ 0. Then {Pq} → [p̄, p̄] and limq→∞ f ∗,c
q =

f (x(p̄), p̄).

Proof By Lemma 4.5, {Pq} → [p̄, p̄], with p̄ ∈ P feasible. Let f̂ c
q = minp∈Pq f c

q (p). Since f̂ c
q is

the solution of the convex unconstrained problem, it is clear that f̂ c
q ≤ f ∗,c

q . Since f ∗,c
q is a rigorous

lower bound of f (x(·), ·) on Pq, we have f̂ c
q ≤ f ∗,c

q ≤ f (x(p̄), p̄). Since limq→∞ f̂ c
q = f (x(p̄), p̄)

from Lemma 4.3, it is clear that limq→∞ f ∗,c
q = f (x(p̄), p̄). �

Lemma 4.7 Let f ∗ denote the globally optimal objective function value for (4). The sequence of
lower bounds generated by Algorithm 1 is either finite or satisfies limk→∞ βk = f ∗.

Proof This result follows from Theorem 2.1 in [12] where the hypotheses are guaranteed by
Lemmas 4.4–4.6 above. �

Lemma 4.8 Suppose that an infinite sequence of nested nodes, {Pq}, is generated by Algorithm 1.
Also, suppose that the upper-bounding problem (15) can locate a feasible point for every q ≥ q′
for some finite q′, and thus a valid upper bound can be located in every subsequent node. Then,
the upper-bounding operation converges to the global solution of (4), i.e. limk→∞ αk = f ∗.

Proof From Lemma 4.5, ifAlgorithm 1 generates an infinite sequence of nested nodes, {Pq}, then
{Pq} → [p̄, p̄] and p̄ is feasible. From Lemma 4.6, we know that limq→∞ f ∗,c

q (p) = f (x(p̄), p̄).
Suppose that p̄ is not a global minimizer. Then f ∗ < f (x(p̄), p̄) implying that for some q′′ we have
f ∗,c
q′′ > f ∗. However, using the bound-improving node selection property of Algorithm 1, this node

would have never been selected again for branching. Therefore p̄ must be a global minimizer
p∗ = p̄.

From continuity of f , for some ε > 0, there exists an open ball of radius δ > 0 around p∗, Bδ(p∗),
such that p ∈ Bδ(p∗) ⇒ |f (x(p), p) − f (x(p∗), p∗)| < ε, where continuity of x on P follows from
continuous differentiability of h and the implicit function theorem.

By hypothesis, after some finite q′, a feasible point p̂ ∈ Pq can be found that provides a valid
upper bound f UBD

q . By the bound-improving property, if f UBD
q is lower than the current upper bound

αk , then αk := f UBD
q . For q large enough, a feasible point p will be located such that p ∈ Bδ(p∗). By

continuity of f , we have |f (x(p),p) − f (x(p∗), p∗)| < ε ⇒ |f UBD
q − f (x(p∗), p∗)| < ε ⇒ f UBD

q <
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450 M.D. Stuber et al.

f (x(p∗), p∗) + ε. Since f (x(p∗), p∗) ≤ αk ≤ f UBD
q , we have f (x(p∗), p∗) ≤ αk < f (x(p∗), p∗) +

ε. Thus limk→∞ αk = f (x(p∗), p∗) = f ∗. �

Theorem 4.9 (Finite Convergence) Let X be as defined in Definition 4.1 and suppose Assump-
tion 4.2 holds. Also, suppose the hypotheses of Lemma 4.8 are satisfied. Then, after finitely many
iterations, Algorithm 1 terminates with either ε-optimal global solutions, such that αk − βk ≤ εtol,
or a guarantee that the problem is infeasible.

Proof Follows immediately from Lemmas 4.7 and 4.8 and the deletion by infeasibility rule. �

5. Illustrative examples

Example 5.1 For the purposes of illustrating a problem having multiple implicit function
branches, consider the problem outlined in Example 3.26 with the objective function f : Z × P →
R defined as

f (z, p) = z.

The absolute and relative convergence tolerances were set to 10−3 and Algorithm 1 was called
in a sequential fashion with the domain X1 first, followed by X2. The solution p∗ = 9 was found
with a value of f ∗ = −8.53113. The problem was solved by Algorithm 1 taking five iterations
on X1 and nine iterations on X2 with a total time of 8.7 × 10−3s. The lower-bounding problems
were solved using PBUN, a nonsmooth optimization algorithm developed in [17].

If a lower-bounding problem returned a feasible point p, the model equations were solved at
this point using Newton’s method with Gauss–Seidel and the objective function was evaluated
for an upper bound on the solution, instead of solving (15) locally.

For comparison, this problem was modelled in GAMS version 23.9 [28] using the BARON
solver [35]. For a fairer comparison, the local search procedure for obtaining an upper bound
was turned off. Similarly, since no preprocessing steps were being employed with Algorithm 1,
the GAMS preprocessor was turned off. BARON solved the problem after two iterations with
guaranteed optimality after 0.04 s.

Example 5.2 Let Z ∈ IR
3 and P ∈ IR

3. Consider the objective function f : Z × P → R

defined as

f (z, p) =
3∑

j=1

⎛
⎝[aj(pj − cj)]2 +

∑
i �=j

ai(pi − ci)

−5

(
(j − 1)(j − 2)(z2 − z1) +

3∑
i=1

(−1)i+1zi

))2

(17)

with ai, ci being constants for i = 1, 2, 3, given in Table 1.
Consider the equality constraints

h(z, p) =

⎛
⎜⎜⎝

1.00 × 10−9(exp[38z1] − 1) + p1z1 − 1.6722z2 + 0.6689z3 − 8.0267

1.98 × 10−9(exp[38z2] − 1) + 0.6622z1 + p2z2 + 0.6622z3 + 4.0535

1.00 × 10−9(exp[38z3] − 1) + z1 − z2 + p3z3 − 6.0

⎞
⎟⎟⎠ = 0. (18)
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Optimization Methods & Software 451

Table 1. Constants for the
objective function of Exam-
ple 5.2.

Example 1 Constants

a1 37.3692
c1 0.602
a2 18.5805
c2 1.211
a3 6.25
c3 3.60

The full-space optimization formulation is

min
(z,p)∈Z×P

f (z, p)

s.t. h(z, p) = 0

Z = [−5, 5]3

P = [0.6020, 0.7358] × [1.2110, 1.4801] × [3.6, 4.4].

(19)

The reduced-space, box-constrained, formulation becomes

min
p∈P

f (x(p), p)

P = [0.6020, 0.7358] × [1.2110, 1.4801] × [3.6, 4.4]
(20)

Using the parametric interval-Newton method with interval Gauss–Seidel, an interval, X, that
conservatively bounds the implicit function x on all of P, can be calculated:

X = [0.5180, 0.5847] × [−3.9748, −3.0464] × [0.3296, 0.5827].

It is apparent that X is significantly tighter than Z . This problem has a suboptimal local
minimum at p = (0.602, 1.46851, 3.6563) with a value of 731.197 and a global minimum at
p∗ = (0.703918, 1.43648, 3.61133) with a value of 626.565. This problem was solved in 0.4 s
with Algorithm 1 taking 43 iterations with tolerances for convergence as 10−3 for relative error
and absolute error. The convex lower-bounding problems were again solved using PBUN.

The upper bound was obtained as in the previous example. Plots of the implicit objective
function f (x(p), p) are shown below in Figure 2 for four different values of p3. Similarly, the
implicit objective function and corresponding relaxations are shown in Figure 3 for the same four
values of p3.

For comparison, this problem was modelled in GAMS version 23.9 [28] using the BARON
solver [35]. Starting with the variable interval Z , BARON failed to solve the problem noting ‘No
feasible solution was found’. Using the interval X calculated above, BARON solved the problem
and returned the global solution in 1 s after 810 iterations. For completeness, the preprocessor was
turned on. Without solving NLPs, BARON performs no differently than without the preprocessor.
Allowing the preprocessor to solve NLPs, the solution is found after solving two NLPs and
BARON terminates with guaranteed optimality in 0.5 s.

Example 5.3 Consider the parameter estimation example presented in [19] which was adapted
from [32,33]. This problem attempts to determine whether or not a proposed kinetic mechanism
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452 M.D. Stuber et al.

Figure 2. The objective function of Example 5.2 on P1 × P2 at three different p3 values.

sufficiently predicts the behaviour of a reacting system for which experimental data are available.
The following kinetic mechanism is proposed:

Z + Y
k1−→ A, A + O2

k2f←→
k2f /K2

D,

A + O2
k3f←→

k3f /K2

B, B
k4−→ M + N ,

2A
k5−→ P,

which is modelled as a system of nonlinear ordinary differential equations (ODEs):

dcA

dt
= k1cZcY − cO2(k2f + k3f )cA + k2f

K2
cD + k3f

K3
cB − k5c2

A,

dcB

dt
= k3f cO2 cA −

(
k3f

K3
+ k4

)
cB,

dcD

dt
= k2f cAcO2 − k2f

K2
cD,

dcY

dt
= −k1scY cZ ,

dcZ

dt
= −k1cY cZ ,

cA(t = 0) = 0, cB(t = 0) = 0, cD(t = 0) = 0, cY (t = 0) = 0.4, cZ(t = 0) = 140,
(21)
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Optimization Methods & Software 453

Figure 3. The objective function of Example 5.2 on P1 × P2 at three different p3 values and corresponding convex and
concave relaxations.

where cj is the concentration (in appropriate units) of species j, T = 273, K2 = 46 exp[6500/T −
18], K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 = 1.2 × 10−3, and cO2 = 2 × 10−3. The uncer-
tain model parameters are p = (k2f , k3f , k4) with k2f ∈ [10, 1200], k3f ∈ [10, 1200], and k4 ∈
[0.001, 40]. Each experimental measurement is given in the form of Id = cA + 2

21 cB + 2
21 cD which

comes from the Beer–Lambert law for relating measured absorbance to concentration with a cor-
rection for multiple species [32]. The same data used in [19] is used here and can be downloaded
from http://yoric.mit.edu/libMC/libmckinexdata.txt.

Using the implicit-Euler discretization scheme, the time domain is discretized into n = 200
evenly spaced nodes and the solution of the ODE system (21) can be approximated, with reasonable
accuracy, as the solution of a corresponding nonlinear algebraic system with 5n state variables
and 3 parameters. The method of Mitsos et al. [19] was not applicable to this implicit scheme
and so in [19] the method was demonstrated using the explicit-Euler discretization scheme. As an
aside, approximating the solution of an ODE system using the explicit-Euler numerical integration
method may suffer from numerical instabilities when the problem is stiff (i.e. when the solution
exhibits fast transient behaviour) whereas the implicit technique, albeit more computationally
expensive per time step, is unconditionally stable and can therefore handle much larger time steps
than the explicit approach. However, it should be noted that unconditional stability does not imply
that the solution is reasonably accurate for large time steps. The ODE (21) is considered to be
moderately stiff and so either approach may work well. For i = 1, . . . , n, the resulting nonlinear
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454 M.D. Stuber et al.

Figure 4. (Left) The sparsity pattern of the system with n = 7 discretization. Each 5 × 5 block is highlighted to show
how the system can be solved in a sequential block-by-block fashion. (Right) An expanded view of three time steps
showing how information from the previous node is used to solve the 5 × 5 system associated with the current node.

algebraic system is

0 = ci−1
A − ci

A + �t

(
k1ci

Y ci
Z − cO2(k2f + k3f )c

i
A + k2f

K2
ci

D + k3f

K3
ci

B − k5ci
A

2
)

,

0 = ci−1
B − ci

B + �t

(
k3f cO2 c

i
A −

(
k3f

K3
+ k4

)
ci

B

)
,

0 = ci−1
D − ci

D + �t

(
k2f c

i
AcO2 − k2f

K2
ci

D

)
,

0 = ci−1
Y − ci

Y + �t(−k1sc
i
Y ci

Z),

0 = ci−1
Z − ci

Z + �t(−k1ci
Y ci

Z),

(22)

where for n = 200, �t = 0.01. The resulting explicit NLP formulation therefore has 5n + 3
variables with

z = (c1
A, c1

B, c1
D, c1

Y , c1
Z , . . . , . . . , . . . , . . . , . . . , c200

A , c200
B , c200

D , c200
Y , c200

Z ).

By solving the system for the state variables as implicit functions of the parameters, the resulting
implicit NLP formulation has just 3 independent variables. This can be done using two different
techniques. The first, which is not recommended, is to treat the nonlinear system of equations
as fully coupled and essentially solve for the state variables simultaneously. Thus, in order to
construct relaxations of implicit functions, using this technique would require relaxing 1000
implicit functions simultaneously. The second technique, which is how numerical integration is
typically performed, exploits the block structure of the problem.

Taking a look at the sparsity pattern of the system, a portion of which is shown in Figure 4,
it is easy to notice that each equation at node i is only dependent on the variables at node i and
the variables at node i − 1. Therefore, if the variables at node i − 1 are known, node i can be
solved as a system of five nonlinear equations. Since node 0 is specified by the initial conditions,
this technique can be applied sequentially from node 1 to node 200. Again, this is how the
implicit-Euler numerical integration method is applied. Constructing relaxations is then done in
an analogous fashion. Relaxations are constructed for each system of 5 equations using the method
of Section 3.4 and subsequently used in the construction of relaxations of each system associated
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Table 2. Suboptimal local minima of Example 5.3
(using the sequential block solve technique) found using
the multi-start SQP approach.

k2f k3f k4 f ∗ × 10−4

235.04 1048.8 0.33151 1.7066726
350.72 931.25 0.38279 1.7056881
678.53 596.96 0.82748 1.7024373
765.26 450.21 12.414 1.6807190
355.02 926.55 11.766 1.7056560
740.18 523.81 13.717 1.6993238
735.88 528.60 13.993 1.6995289
627.16 552.87 12.187 1.7051711
775.44 437.23 17.576 1.6802801

with the next node with the relaxations of node 0 taken to be exactly the initial conditions for all
p ∈ P (since they are constant on P). The initial intervals are taken as ci

j ∈ [0, 140], j �= Y , ∀i and
ci

Y ∈ [0, 0.4], ∀i. This approach is recommended over the simultaneous approach as it is not only
significantly less computationally expensive, but it also produces much tighter relaxations.

The objective function for this problem is stated as

f (z, p) =
n∑

i=1

(I i − I i
d)

2

where I i = ci
A + 2

21 ci
B + 2

21 ci
D, i = 1, . . . , n, with ci

A, ci
B, ci

D, i = 1, . . . , n, given by the solution of
the nonlinear system (22) and Ii

d , i = 1, . . . , n, are the experimental data mentioned previously.
In an effort to survey the topological features of the objective function for this problem, multi-

start optimization techniques were employed. The full-space NLP formulation (i.e. with 1003
variables and 1000 equality constraints) was solved by multi-starting the MINOS solver [22] in
GAMS version 23.9 [28]. Only one optimum was found and it happened to correspond with the
global solution. The SNOPT solver [7] was also used and a single suboptimal feasible solution
was identified along with the solution found by the MINOS solver. Alternatively, the implicit NLP
formulation, where the implicit functions are evaluated using the second technique described above
(i.e. sequential block solution), was then solved by multi-starting the MATLAB SQP solver. In this
case, eight suboptimal local minima were found along with the global minimum. The suboptimal
local minima that were found are reported in Table 2. This is a rather interesting result because it
means that, for this problem, the reduced-space formulation has many suboptimal local minima,
whereas the full-space formulation may only have a few. This is consistent with what was found
in the methanol-to-hydrocarbons example in [5] but is not a result that holds in general as is
demonstrated by [5] with the Lotka–Volterra example.

The reduced-space NLP was solved using Algorithm 1, without a local-search upper-bounding
procedure, taking 4700 s (1.3 h) and 1133 iterations with convergence tolerances of 10−2 and
10−5 for absolute and relative error, respectively. The optimal parameter values were found,
p∗ = (798.019, 423.845, 12.9685) with f ∗ = 16, 796.04, and the ‘best fit’ corresponding to the
optimal solution p∗ was plotted against the experimental data in Figure 5. It should be noticed
that the width of the parameter interval for k4 is quite a lot smaller than the width of the other
two parameter intervals. For such cases, it is recommended that branching on the parameter space
occurs according to relative width as opposed to absolute width. Therefore, the relative-width
branching heuristic was employed here.

As was concluded in [19], the model with the best fit parameters does not agree with experi-
mental data at early times. Since a certificate of global optimality was obtained, one can conclude
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456 M.D. Stuber et al.

Figure 5. The optimal ‘best fit’ of the model plotted against the experimental data.

that the model cannot represent the physical system at early times. The high cost-per-node is
due to the extremely expensive function evaluations for this problem. Even though there are only
three independent variables, evaluating the objective function requires evaluating 1000 implicit
functions and constructing relaxations requires interval bounds and relaxations on 1000 implicit
functions.

For comparison, the full-space NLP was modelled in GAMS 23.9 [28] and solved using BARON
[35]. Both a selective-branching strategy and the standard strategy of branching on all variables
were studied. Using MINOS as the local-search algorithm for solving the upper-bounding prob-
lem, BARON converged to the solution found using the multi-start approach discussed above
within just a few seconds, for each branching strategy. However, using SNOPT [7] as the local-
search algorithm for solving the upper-bounding problem, BARON converged to a suboptimal
solution in just a few seconds for each branching strategy. It should be noted that in each case,
BARON terminates normally claiming that it found a solution with a guarantee of global optimal-
ity. The behaviour of BARON here is not fully understood and so it is considered to be ineffective
at solving this problem. Alternatively, each strategy was tried without using local-search algo-
rithms for the upper-bounding problems and without using preprocessing. When considering the
strategy of branching on all of the variables, BARON fails to solve the problem. For this case,
the algorithm terminates after about 460 s with the result that no feasible solution could be found.
Again, this is a very strange result since the problem is indeed feasible. Figure 6 is a plot showing
the performance, in terms of the ratio of the lower and upper bounds versus CPU time in seconds,
ofAlgorithm 1 versus BARON with selective branching and without a local-solve upper-bounding
procedure. After about 30 s, Algorithm 1 improves on the bounds quite effectively, even without a
local-search upper-bounding procedure. It takes BARON about 50,000 s to achieve the same level
of convergence as Algorithm 1 achieves after the 30 s mark. After about 100 s, Algorithm 1 begins
to exhibit slower but consistent improvement on the bounds until it converges. When Algorithm 1
converges to the global solution (after 4700 s), BARON is about 75% converged. The BARON
selective branching strategy fails to converge even after more than 70 h when the maximum num-
ber of iterations of 100,000 is reached. At this time BARON is only 97% converged. It is clear
that for this problem, Algorithm 1 performs far more favourably than BARON.

Again, for completeness, the experiments were run with preprocessing switched on. There was
no change in performance with preprocessing switched on without solving NLPs. Allowing NLPs
to be solved in the preprocessing step yields results similar to those discussed previously regarding
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Figure 6. The performance of two methods on the kinetic mechanism example in terms of convergence.

the multi-start approach. Again, with MINOS as the NLP solver, the problem is solved in just a
few seconds. Using SNOPT, the problem is solved in about 3 min.

6. Conclusion

A reformulation of the standard NLP with equality constraints has been proposed that is an
equivalent formulation offering a potentially large reduction in dimensionality. By solving the
equality constraints for dependent variables as implicit functions of independent variables, they
are eliminated from the program and the implicit functions are embedded within the objective
function and inequality constraint(s). If the original problem had only equality constraints, the
reduced-space reformulation is simply an inequality-constrained problem. In order to solve the
reduced-space problem, new results for relaxing implicit functions were developed.

One new result was presented that guarantees that relaxations of a successive-substitution iter-
ation are also valid relaxations of the implicit function. Another key result pertaining to solutions
of parametric linear systems was presented. This result states that relaxations of the solution of a
parametric linear system can be calculated iteratively in a fashion analogous to the Gauss–Seidel
method. It was demonstrated that relaxations of the generic Newton-type iteration cannot be
refinements of the original bounds on the implicit function. This proves that direct relaxations of
Newton-type iterations are not useful, but relaxations of convergent successive-substitution itera-
tions may be useful. Because of this, new methods, analogous to interval Newton-type methods,
were developed that essentially relax the implicit functions by relaxing the mean-value theorem.
These novel developments offer ways to calculate relaxations of an implicit function that is a
parametric solution of a general nonlinear system of equations that cannot be approximated via a
successive-substitution iteration. Furthermore, subgradients of such relaxations can be calculated,
which are useful in the solution of the resulting nonsmooth convex program.

Utilizing these new results, a reduced-space global optimization algorithm has been proposed
for solving nonconvex NLPs with embedded implicit functions. The algorithm was shown to
converge in finitely many iterations to an ε-optimal solution. The algorithm was applied to three
numerical examples which demonstrate a proof-of-concept.
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Appendix 1. Parameterized generalized bisection

Calculating an interval X such that existence and uniqueness of an enclosed implicit function x(p), ∀p ∈ P is guaranteed,
a prerequisite for applying Algorithm 1, is still an open research topic. One such method, discussed in length in [34] is the
parameterized generalized bisection procedure. This implementation of the generalized bisection procedure accounts for
the parameter dimension by eliminating the situation referred to as a partial enclosure, whereby x(p) ∈ X only for some
values of p ∈ P. Such a partial enclosure situation is likely if the X dimension were to be blindly bisected as in the standard
generalized bisection procedure. Furthermore, there may not exist a cut in the X dimension such that the partial enclosure
situation can be avoided without also considering partitioning P. Such is the case when multiple solution branches are
located near one another. Therefore, both the X and P dimensions must be systematically partitioned. Figure A1 illustrates
this idea.

The overall objective then is to produce intervals Xi × Pj , i = 1, . . . , nj , j = 1, . . . m such that the Pj are as large as
possible. Furthermore, ∪jPj = P and ∪j ∪i=1,...,nj Xi × Pj covers the entire solution set on P with a unique continuous
solution branch in each Xi × Pj . The algorithmic framework is given below.

Algorithm 2

(1) Initialization
(a) Pick initial box (X0, P0), initialize solution set � and stack S = {(X0, P0)}. Set iteration count l := 0.

(2) Termination
(a) Stack empty? (S = ∅?)

(i) Yes. Algorithm terminates.
(ii) No. Pop and delete a box (Z , P) from stack S , set l := l + 1.

(b) If 0 ∈ H(Z , P), go to 4. Else, go to 2 ((Z , P) has been fathomed).
(3) Interval Refinement

(a) Apply parametric interval-Newton-type iteration with extended division starting at Z0 := Z.
(i) If any iteration k yields two disjoint intervals, labelled ZL and ZR, by extended division, place (ZL , P) and

(ZR, P) on S . Go to 2.
(ii) At every iteration k, apply the standard interval inclusion test.

(a). If the interval-Newton-type operator yields an empty interval, go to 2, (Z , P) has been fathomed.
(iii) If the iteration converges and the inclusion test has never been passed, go to 4. Else, place (Zk , P) in solution

set �, go to 2.
(4) Improved Existence and Uniqueness Test

(a) Apply a sharper existence and uniqueness test.
(i) If test is passed, place (Zk , P) on solution set �, go to 2. Else, continue.

(ii) If test is failed but partial enclosure possibility is excluded, go to 5. Else, go to 6.
(5) Partition X Direction

(a) Partition Z using some strategy to avoid creating partial enclosures and add the resulting boxes to the stack S .

(a) (b)

Figure A1. (a)A box X × P in which there does not exist a position to cut X (dashed lines) such that no partial enclosures
are produced. (b) After partitioning P, there exist positions to cut X avoiding partial enclosures.
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Figure A2. The three solution branches of Example A.1 and the interval boxes computed by Algorithm 2. Note that the
middle solution branch has an interval box enclosing it but the box is exact to within machine precision.

(6) Partition P Direction
(a) Partition P using some strategy. Add resulting boxes to the stack S .

The specific methods for partitioning the X direction and the P direction are discussed in [34] but they are largely
heuristic and open for modification and tuning by the user. To demonstrate the application of Algorithm 2, consider the
following numerical example.

Example A.1 Consider

h(z, p) = −z3 + pz = 0,

with P0 = [0, 20] and X0 = [−10, 10]. This system has three continuous solution branches that can be defined analytically:
x(p) = 0, ±√

p. The result of applying Algorithm 2 using the parametric interval-Newton method is shown in Figure A2.
The solution branch x(p) = 0 has an interval box enclosing it but it is exact within machine precision and therefore
does not appear on the plot. Furthermore, the bifurcation point at p = 0 is enclosed by a box having a width equal to a
user-selected minimum. The box enclosing the bifurcation point is flagged ‘unknown’ by the algorithm after the stack S
is emptied. This means that further analysis is required by the user as the algorithm cannot process it further. As can be
seen in Figure A2, Algorithm 2 effectively partitions and refines the initial interval X0 × P0 into subintervals that each
enclose locally unique continuous solution branches.
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