
BIT Numer Math (2010) 50: 885–917
DOI 10.1007/s10543-010-0280-6

Nonsmooth exclusion test for finding all solutions
of nonlinear equations

M.D. Stuber · V. Kumar · P.I. Barton

Received: 3 November 2009 / Accepted: 18 August 2010 / Published online: 16 September 2010
© Springer Science + Business Media B.V. 2010

Abstract A new approach is proposed for finding all real solutions of systems of
nonlinear equations with bound constraints. The zero finding problem is converted
to a global optimization problem whose global minima with zero objective value,
if any, correspond to all solutions of the original problem. A branch-and-bound al-
gorithm is used with McCormick’s nonsmooth convex relaxations to generate lower
bounds. An inclusion relation between the solution set of the relaxed problem and
that of the original nonconvex problem is established which motivates a method to
generate automatically, starting points for a local Newton-type method. A damped-
Newton method with natural level functions employing the restrictive monotonic-
ity test is employed to find solutions robustly and rapidly. Due to the special struc-
ture of the objective function, the solution of the convex lower bounding problem
yields a nonsmooth root exclusion test which is found to perform better than earlier
interval-analysis based exclusion tests. Both the componentwise Krawczyk operator
and interval-Newton operator with Gauss-Seidel based root inclusion and exclusion
tests are also embedded in the proposed algorithm to refine the variable bounds for
efficient fathoming of the search space. The performance of the algorithm on a vari-
ety of test problems from the literature is presented, and for most of them, the first
solution is found at the first iteration of the algorithm due to the good starting point
generation.

Communicated by Hans Petter Langtangen.

M.D. Stuber · P.I. Barton (�)
Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139,
USA
e-mail: pib@mit.edu

V. Kumar
Computation for Design and Optimization, Massachusetts Institute of Technology, Cambridge, MA,
02139, USA

mailto:pib@mit.edu

886 M.D. Stuber et al.

Keywords Global optimization · Interval analysis · Convex relaxation ·
Branch-and-bound

Mathematics Subject Classification (2000) 65G40 · 90C57 · 34A34

1 Introduction

One of the most challenging problems arising in many science and engineering ap-
plications is the reliable solution of systems of nonlinear equations. This is expressed
mathematically as finding x ∈ R

n such that

f(x) = 0 (1)

where f : R
n → R

n is the function describing a certain model. Also, quite often
the model under consideration is only valid on a subset of R

n, usually in an n-
dimensional box formed by physical bounds on the variables x. Such a box X is
described as the connected compact set

X = {x ∈ R
n : xL ≤ x ≤ xU }

where xL ∈ R
n and xU ∈ R

n are, respectively, the lower and upper bounds on x. The
box X is an interval vector, and therefore is an element of the set of all interval
subsets of R

n denoted IR
n. Thus, X ⊂ R

n can equivalently be expressed as the vector
X ∈ IR

n whose ith element is Xi or X(i) with xL
i and xU

i as lower and upper bounds,
respectively. The algorithm presented in this paper is a complete method, in that it
finds all isolated real solutions of (1) in a given box X ∈ IR

n with mathematical
certainty, as defined in [26].

In practice, Newton and quasi-Newton type methods are widely applied to (1)
to achieve superlinear convergence (see, e.g. [27]), but only locally. Local conver-
gence means that, corresponding to each isolated solution x∗ of (1), there exists an
ε > 0 defining a neighborhood Nε(x∗) of x∗ such that all starting points located in
Nε(x∗) will generate a sequence of iterates converging to the solution x∗. Attempts
have been made to enlarge the neighborhood of convergence, known as “global con-
vergence”, by use of step-length control strategies known as line searches. This re-
quires approximately minimizing a suitably chosen one-dimensional merit function.
A common choice for merit function is the squared Euclidean norm of f(x) which
leads to the damped-Newton method. However, even for mildly ill-conditioned prob-
lems, the damped-Newton method produces extremely small stepsizes leading to very
slow convergence. As pointed out by Deuflhard [3], this happens because, for ill-
conditioned problems, the Newton direction and the steepest-descent direction of this
merit function are almost orthogonal. This observation motivates the choice of the
natural level function as a merit function [3] which gives a steepest-descent direc-
tion parallel to the Newton direction. However, the natural level function changes at
each iteration and so traditional descent arguments can no longer be used to prove
global convergence. This led Bock et al. [1] to propose the restrictive monotonicity

Exclusion test for nonlinear equations 887

test (RMT) which is essentially an alternative stepsize selection strategy to exact or
approximate line searches using natural level functions.

Although these efforts have significantly enlarged the region of convergence, find-
ing a close enough “starting point” still remains a nontrivial task, as practical prob-
lems are often large, highly nonlinear and ill-conditioned and therefore exhibit a very
small neighborhood of convergence. In practice, a large amount of time can be ex-
pended trying to find a suitable starting point using a variety of ad hoc strategies. An
important contribution of the algorithm proposed here is the development of a reliable
technique to generate automatically starting points which are in a sense “reasonably
close” to the solutions sought.

Interval Newton-type methods apply a modified form of real-valued Newton-type
methods to interval-valued variables. Coupled with a generalized bisection strategy
[7], initial intervals are refined and converge to boxes that enclose all isolated (real)
solutions of (1). A detailed discussion of interval-based methods for solving systems
of equations can be found in the monograph by Neumaier [25]. Such methods usu-
ally have operators under different names (e.g., interval-Newton, Krawczyk) which
are interval-valued functions of interval- and real-valued variables. While the inter-
val iteration schemes for solving systems of nonlinear equations have been used to
obtain tight enclosures of the solutions, what is most significant is the ability to pro-
vide an existence and uniqueness test known as a root inclusion test. Furthermore,
there are also many root exclusion tests with which one can ascertain that no solution
for the system of equations exists in the given box. The interval-Newton operator
can compute tight enclosures of the solution and its calculation simply requires the
solution of an interval linear system. A Gauss-Seidel implementation offers an effi-
cient way to calculate the solution, however, it requires division by an interval matrix
component that may contain zero. Although extended interval arithmetic may then be
employed, there are also negative implications with doing so. On the other hand, the
less-tight Krawczyk operator avoids such divisions and therefore may be preferred
over the interval-Newton operator for some problems. Almost always, precondition-
ing matrices are desired or required in the computation of the interval operators, and
the strength of the associated exclusion and inclusion tests depends on the quality of
such preconditioning.

In the proposed algorithm, once a solution is found, the Krawczyk or interval-
Newton [25] root inclusion test is applied to fathom a region of the search space which
is known to contain this unique solution. Also, since the solution has been found prior
to the application of the inclusion test, excellent preconditioning is achieved using
the inverse of the Jacobian matrix evaluated at the solution. The interval-Newton and
Krawczyk’s root exclusion tests are also embedded in the proposed algorithm, which
help in refining the variable bounds and in fathoming regions not containing a so-
lution. Interval Newton-type methods have been successfully applied by Schnepper
and Stadtherr [28] to find all solutions of nonlinear equations with bound constraints.
Their approach is an improvement of the interval-Newton/generalized bisection strat-
egy of Kearfott [10] with suitable modifications in the bisection strategy and precon-
ditioner computation and storage. It finds boxes which contain the solutions with
mathematical certainty.

A global optimization reformulation of the root finding problem has been used
successfully by Maranas and Floudas [18] to find all solutions of systems of nonlin-

888 M.D. Stuber et al.

ear equations. In the proposed algorithm, an approach similar to [18] is used in that
the original problem is converted to a global optimization problem with the objec-
tive function taken as a suitable norm of f(x). Most general, deterministic strategies
applied to solve nonconvex programs involve solving a corresponding convex pro-
gram in which the objective function is a convex relaxation of the original nonconvex
function. The optimal value of this convex program is always a lower bound on the
optimal value of the original nonconvex program on the chosen set. McCormick [19]
has proposed an automatic, recursive procedure for constructing the convex relax-
ation of any elementary function that can be implemented as a computer program. In
most cases, convex relaxations constructed using McCormick’s procedure are found
to be tighter than those obtained by other alternative approaches (such as αBB [18],
interval extension [25]) and hence McCormick’s procedure has been used in the pro-
posed algorithm.

As will be shown later, due to the special structure of the objective function, the
McCormick relaxation has certain properties leading to an inclusion relation between
the solution set of the convex relaxation and the set of solutions of (1). This inclusion
relation is exploited to generate starting points automatically for local Newton-type
iterations. Not only this, the presented technique also yields a root exclusion test to
verify that no admissible solution of (1) exists in the set under consideration. This
feature proves extremely useful in its own right in accelerating the convergence of
the algorithm and in general can also be used to debug poorly formulated models
and/or simulation problems. Moreover, this so-called nonsmooth root exclusion test
is found to outperform both the Krawczyk exclusion test and the interval-Newton
with Gauss-Seidel exclusion tests on a variety of test problems from the literature.

In general, the convex relaxations generated using McCormick’s method are non-
smooth (i.e., not differentiable on their domains) and hence standard convex opti-
mization algorithms which assume differentiability cannot be applied. However, there
is a class of nonsmooth optimization methods available in the literature, such as bun-
dle methods [14, 17] and the variable metric method [15], which can be applied to
solve the resulting nonsmooth convex program, provided the objective function value
and a subgradient can be evaluated at all desired points.

A number of algorithms reported in the literature, including Wilhem and Swaney
[29], whose algorithm finds a single solution, and Kearfott [9], whose algorithm finds
all solutions utilizing interval-Newton existence tests within a generalized bisection
algorithm, have embedded a Newton-type method within a branch-and-bound frame-
work for solving systems of nonlinear equations. The proposed algorithm does this by
integrating RMT damped-Newton iterations with a convex lower bounding strategy.
This is motivated by the automatic generation of a reasonably good starting point as
a result of solving the convex lower bounding problem and hence often leads to fast
convergence to the solutions sought using a real-valued Newton-type method. The
algorithm applies a RMT-based subroutine NWTSLV, after a suitable starting point
is computed, and in most of the test problems NWTSLV is found to converge to a
solution from the generated starting point. The efficacy of this feature is evidenced
from the fact that the first solution to most of the test problems is found at the very
first iteration of the algorithm. This approach is particularly helpful when only one
admissible solution to (1) is required. For example, when attempting to solve suffi-

Exclusion test for nonlinear equations 889

ciently large and/or complex problems, finding all solutions is not always necessary
or even tractable.

Homotopy-continuation [5] and global terrain [13] are two other global root find-
ing methods of a different class. Homotopy-continuation follows a smooth solution
path from an arbitrary initial guess to a solution of (1). Whereas global terrain in-
telligently surveys a function surface relying on the fact that solutions and singular
points are connected by smooth paths. Both methods benefit from having the abil-
ity to calculate real and complex solutions to (1). However, homotopy-continuation
falls short of locating all solutions when there exist multiple (disconnected) solution
paths within the feasible region. Similarly, due to the heuristic termination criterion
that global terrain relies on, it may too fail to find all solutions prior to termination.
Although the proposed method cannot locate complex solutions, the trade-off is that
it is a complete method, and therefore offers the ability to guarantee that all isolated
real solutions have been located (to within ε tolerance) within the box X upon termi-
nation.

2 Problem formulation

The root finding problem described by (1) can be reformulated as the following global
optimization problem over the admissible domain X ∈ IR

n:

min
x∈X

‖f(x)‖

where ‖.‖ can be any vector norm. Numerical considerations dictate that the 1-norm
is the best choice in the presented algorithmic framework, as will be discussed in
Sect. 3.2. This results in the following optimization problem:

min
x∈X

n∑

i=1

|fi(x)|. (2)

If the optimal value of the above optimization problem is zero, any corresponding x
will be a solution of (1). In fact, the global optimal solutions with zero optimal value
of (2) are equivalent to the admissible solution set of (1).

However, in general (2) is a nonconvex program and a local solver cannot guaran-
tee convergence to a global optimal solution. Hence, for such problems, one strategy
is to construct a convex relaxation of the objective function and solve the resulting
convex program to generate a lower bound on the global optimal value.

Definition 1 (Convex/concave relaxation) Let u,o,φ : C ⊂ R
n → R with C non-

empty and convex. Suppose u is convex and o is concave on C. Then u is a convex
relaxation of φ on C if

u(x) ≤ φ(x), ∀x ∈ C,

and o is a concave relaxation of φ on C if

o(x) ≥ φ(x), ∀x ∈ C.

890 M.D. Stuber et al.

Convex and concave relaxations are quite frequently used in global optimization
algorithms and given a function, a variety of techniques are known for constructing
these relaxations. In the proposed algorithm McCormick’s procedure [19] is used for
the construction of convex relaxations as discussed below.

2.1 McCormick’s composition theorem

McCormick [19] has proposed a method for constructing convex and concave relax-
ations of a function F [f (x)] defined by the composition of a multivariate function f

with a univariate function F . The following theorem, known as McCormick’s com-
position theorem, enables the construction of convex and concave relaxations of the
composition.

Theorem 1 (McCormick’s composition theorem) Let C ⊂ R
n be a nonempty convex

set. Consider the composite function F ◦ f where f : C → R is continuous, and let
f (C) ⊂ [a, b]. Suppose that a convex function cu and a concave function co satisfying

cu(x) ≤ f (x) ≤ co(x), ∀x ∈ C

are known. Let e : [a, b] → R be a convex relaxation of F on [a, b] and let E :
[a, b] → R be a concave relaxation of F on [a, b]. Let zmin be point at which e

attains its infimum on [a, b] and let zmax be point at which E attains its supremum
on [a, b]. If the above conditions hold, then

u(x) = e[mid{cu(x), co(x), zmin}]
is a convex relaxation of F ◦ f on C and,

o(x) = E[mid{cu(x), co(x), zmax}]
is a concave relaxation of F ◦ f on C, where the mid function selects the middle
value of the three scalars.

The theorem requires prior knowledge of a and b such that f (C) ⊂ [a, b]. This
can be done by taking the natural interval extension [25] of f on a box X ⊃ C and
using f Land f U for a and b, respectively. Hence, the relaxations become dependent
on the strength of the interval extensions and so a weak interval extension may result
in weak relaxations.

2.2 Convex relaxations of factorable functions

Factorable functions are similar to the class of functions for which natural interval
extensions can be calculated.

Definition 2 (Factorable function) Let f : C ⊂ R
n → R with C nonempty and con-

vex. Then f is a factorable function if it can be expressed in terms of a finite se-
quence of factors v1, . . . , vN such that, given x ∈ C, vk = xk for i = 1, . . . , n, and for
i = n + 1, . . . ,N as

Exclusion test for nonlinear equations 891

1. vi = vj + vk , j, k < i or,
2. vi = vjvk , j, k < i or,
3. vi = F(vj), j < i where F(·) is a univariate intrinsic function,

and f (x) = vN(x).

Subtraction and division operations can be handled by introducing univariate neg-
ative and reciprocal intrinsic functions. Most of the functions that are implementable
as a computer program are factorable in the above sense. There are usually several
different representations of a given function as factors, and different representations
may yield different convex and concave relaxations. For example, x2 can be treated
as a univariate intrinsic function or as a binary multiplication to yield two different
relaxations.

If the interval extensions and convex and concave relaxations of two functions are
known on a given interval, the corresponding relaxations for their sum, difference and
product can be easily computed. For example, to compute a relaxation of the binary
product f1f2 on C having cu

i and co
i , i = 1,2 as their convex and concave relaxations,

respectively, it is required to find numbers f L
1 , f U

1 , f L
2 , f U

2 (usually obtained from
the natural interval extensions) such that

C ⊂ {x : f L
1 ≤ f1(x) ≤ f U

1 , f L
2 ≤ f2(x) ≤ f U

2 }.
From the convex envelope of a bilinear function it is known that

f1(x)f2(x) ≥ max{f L
2 f1(x) + f L

1 f2(x) − f L
1 f L

2 , f U
2 f1(x) + f U

1 f2(x) − f U
1 f U

2 },
∀x ∈ C. (3)

Now defining,

α1(x) ≡ min{f L
2 cu

1(x), f L
2 co

1(x)},
α2(x) ≡ min{f L

1 cu
2(x), f L

1 co
2(x)},

β1(x) ≡ min{f U
2 cu

1(x), f U
2 co

1(x)},
β2(x) ≡ min{f U

1 cu
2(x), f U

1 co
2(x)},

it can be verified that the functions α1, α2, β1 and β2 are convex on C. Also, it follows
from (3) that

f1(x)f2(x) ≥ max{α1(x)+α2(x)−f L
1 f L

2 , β1(x)+β2(x)−f U
1 f U

2 }, ∀x ∈ C. (4)

Each argument in the max function on the RHS of (4) is convex and the maximum
of two convex functions is convex, making it a valid convex relaxation of f1f2 on C.
A parallel argument can be developed for computing the concave relaxation of the
binary product form.

In order to construct convex and concave relaxations of a factorable function f

on C, given an interval vector (box) X ⊃ C, set the first i = 1,2, . . . , n convex and

892 M.D. Stuber et al.

concave relaxations as:

cu
i = xi,

co
i = xi

and the interval extensions i = 1,2, . . . , n as

Vi = Xi,

where again, Xi are the elements of the interval vector X. Assuming convex and
concave relaxations are known for all univariate intrinsic functions from which f is
composed, each factor i = n + 1, . . . ,N can be augmented with expressions defining
its concave and convex relaxations, using the rules for univariate intrinsic functions,
binary addition and binary multiplication. Each factor i = n + 1, . . . ,N can also be
augmented with the expression for its natural interval extension in order to propa-
gate the bounds needed in the expressions for the relaxations. This in fact defines
a sequence of statements that can be executed by a computer program in order to
evaluate simultaneously:

1. f at x,
2. the required convex and concave relaxations on X at x, and
3. the natural interval extension of f on the box X.

Hence, the relaxations can be easily implemented as a computer program using the
operator overloading features of modern programming languages. The running time
required will be a small fixed multiple of the running time required to evaluate the
original factorable representation of the function.

It is evident that, due to the frequent occurrence of min, max and mid terms in the
expressions for evaluating McCormick’s relaxations, these relaxations are usually
nonsmooth and so convex optimization methods assuming differentiability cannot
be applied to solve the resulting convex program. However, nonsmooth optimization
techniques employing subgradients of the objective function can be applied. Recently,
a method to compute subgradients of McCormick’s convex relaxations has also been
developed [20] which works in a very similar manner to the way in which automatic
differentiation computes the gradient of a smooth function [4]. This enables the re-
sulting convex program to be solved using nonsmooth optimization methods such as
bundle methods [14, 17] and the variable metric method [15]. The Fortran codes [16]
implementing the variable metric method (PVARS) and the proximal bundle method
(PBUNS) work quite well on McCormick’s nonsmooth functions and have been used
in the implementation of the presented algorithm. McCormick’s convex relaxation of
the objective function in (2) is computed to define the lower bounding convex pro-
gram, a solution of which gives a root exclusion test as well as a reliable technique to
automatically generate a starting point for a real-valued Newton-type iteration.

3 Theoretical development

Consider the nonconvex minimization problem (2). By constructing McCormick’s
convex underestimator u : X → R of the objective function over X, the following

Exclusion test for nonlinear equations 893

convex program

min
x∈X

u(x) (5)

can be formulated and solved to bound the optimal value of (2). Since this convex
program is obtained using McCormick’s convex underestimators, it will be referred
to as McCormick’s convex program subsequently in this paper.

3.1 Nonsmooth root exclusion test

Theorem 2 (Nonnegativity) Let f : X → R
n be any factorable function defined on an

n-dimensional box X. Then, the McCormick’s convex relaxation u : X → R underes-
timating the vector 1-norm ‖f(·)‖1 of f is nonnegative on X.

Proof Let cu
i and co

i , respectively, denote convex and concave relaxations of function
fi on X for i = 1,2, . . . , n. Thus,

cu
i (x) ≤ fi(x) ≤ co

i (x), ∀x ∈ X, i = 1,2, . . . , n.

Also suppose that the numbers f L
i and f U

i are known (e.g., from natural interval
extensions) such that

f L
i ≤ fi(x) ≤ f U

i , ∀x ∈ X, i = 1,2, . . . , n.

To construct the convex relaxation ui of |fi(·)| over X we observe that the uni-
variate outer function is F(z) = |z| which being convex is its own convex relax-
ation and attains its infimum at zi,min = mid{f L

i , f U
i ,0} over [f L

i , f U
i] for i =

1,2, . . . , n. Hence, using McCormick’s composition theorem the convex underesti-
mator of |fi(·)| over X will be given by

ui(x) = |mid{cu
i (x), co

i (x), zi,min}| ≥ 0, i = 1,2, . . . , n. (6)

Now, the convex relaxation u for the 1-norm of f can be obtained by adding the
individual convex underestimators ui , as summation of convex functions preserves
convexity. Hence,

u(x) =
n∑

i=1

ui(x) ≤
n∑

i=1

|fi(x)|, ∀x ∈ X.

Using (6), all the terms involved in the left summation above are nonnegative thereby
making u nonnegative on X. �

The theorem above is proved only for the 1-norm of f but can be easily gener-
alized to any norm. It implies that the optimal value of the convex program (5) is
nonnegative. Thus, if (5) is solved and its optimal value is found to be positive, then
based on the underestimating property of the convex relaxation, it is concluded that
no solution to (1) exists in X. This so-called root exclusion test provides a rigorous
method to verify that no admissible solution to f(x) = 0 exists and proves extremely

894 M.D. Stuber et al.

useful to debug poorly formulated models and/or simulation problems. In the pro-
posed branch-and-bound algorithm for solving systems of nonlinear equations this
test is used to fathom a large part of the search space.

3.2 Automatic starting point generation

If the optimal value of (5) is found to be zero, it does not necessarily imply that
an admissible solution of (1) exists. Nevertheless, the solution point found can be
used as an automatically generated starting point for a Newton-type iteration to find
a solution to (1), if it exists. The following theorem motivates this choice of starting
point.

Theorem 3 (Solution set inclusion) Let f : X → R
n be any factorable function de-

fined on an n-dimensional box X and let the sets S and U be defined as

S = {x ∈ X : f(x) = 0},
U = {x ∈ X : u(x) = 0}

where u is the McCormick convex relaxation of the 1-norm ‖f(·)‖1 of f on X. Then,
S ⊂ conv(S) ⊂ U ⊂ X, where conv(S) denotes the convex hull of the set S.

Proof Let x̂ ∈ conv(S). Using Caratheodory’s theorem, there exist scalars λj ≥ 0 and
xj ∈ S for j = 1,2, . . . , n + 1, such that

x̂ =
n+1∑

j=1

λj xj and
n+1∑

j=1

λj = 1.

Again, any x∗ ∈ S will also be a zero optimal solution of the optimization problem

min
x∈X

‖f(x)‖1 = min
x∈X

n∑

i=1

|fi(x)|.

Using the nonnegativity and underestimating property of u, it follows that

0 ≤ u(x∗) ≤
n∑

i=1

|fi(x∗)| = 0, ∀x∗ ∈ S

⇒ u(x∗) = 0, ∀x∗ ∈ S.

Again nonnegativity and convexity of u gives

0 ≤ u(x̂) = u

(
n+1∑

j=1

λj xj

)
≤

n+1∑

j=1

λju(xj) = 0

⇒ u(x̂) = 0 ⇒ x̂ ∈ U ⇒ conv(S) ⊂ U. �

Exclusion test for nonlinear equations 895

As per the above theorem, the automatically generated starting point will lie in
the set U which contains the convex hull of the desired solution set S. If the number
of admissible solutions to (1) is small as compared to the dimension n (a reasonable
expectation for engineering problems), then conv(S) will be a smaller set relative
to X. Also, if U is not much larger than conv(S), any of the points in U is likely to
be close to an admissible solution of (1). In fact, the difference of these two sets bear
a close relation with the tightness of the convex relaxation u(x).

Continuing with the notations used in the proof of Theorem 2, let cu
i and co

i

be convex and concave relaxations of fi(x) on X, respectively, and ui denotes the
McCormick convex relaxation of |fi(·)| for i = 1,2, . . . , n. The convex relaxation u

of ‖f(·)‖1 will be

u(x) =
n∑

i=1

ui(x). (7)

By definition x∗ ∈ U ⇒ u(x∗) = 0. Nonnegativity of ui together with (7) imply that
for i = 1,2, . . . , n

ui(x∗) = 0 ⇒ |mid{cu
i (x∗), co

i (x
∗), zi,min}| = 0. (8)

Now, assuming that at least one admissible solution of f(x) = 0 exists, the following
necessary condition

f L
i ≤ 0 ≤ f U

i , ∀i = 1,2, . . . , n,

will always hold true over X. This implies,

zi,min = mid{f L
i , f U

i ,0} = 0, ∀i = 1,2, . . . , n.

Also, by construction cu
i (x∗) ≤ co

i (x
∗) and in light of the above assumption only one

of the following holds true:

cu
i (x∗) ≤ 0 ≤ co

i (x
∗), (9)

0 < cu
i (x∗) ≤ co

i (x
∗), (10)

cu
i (x∗) ≤ co

i (x
∗) < 0. (11)

The last two inequality relations (10) and (11) imply ui(x∗) �= 0 leaving (9) which
clearly asserts ui(x∗) = 0 as per (8). Hence, the set U can be alternatively described
as

U = {x∗ ∈ X : cu
i (x∗) ≤ 0,−co

i (x
∗) ≤ 0, i = 1,2, . . . , n}. (12)

This characterization of U further motivates the choice of starting point to be a point
lying inside it. The concave co

i (x
∗) and convex cu

i (x∗) relaxations of the functions
fi(x) at any point in x∗ ∈ U are opposite in sign for i = 1,2, . . . , n, making it likely
for x∗ to be close to a point in the solution set S. Moreover, U being the solution set of
a convex program, it is expected to be a convex set, as confirmed by the above charac-
terization (12), where it is represented explicitly by inequality constraints involving
convex functions.

896 M.D. Stuber et al.

Furthermore, even if no admissible solution of (1) exists, there is the possibility
that in the computed natural interval extension of f over X, f L

i ≤ 0 and f U
i ≥ 0,

∀i = 1,2, . . . , n. Hence, the natural interval extension will not be able to detect the
nonexistence of a root. Moreover, in this case zi,min = 0, ∀i = 1,2, . . . , n. Assume
that for any 1 ≤ i ≤ n either cu

i (x) > 0 or co
i (x) < 0, ∀x ∈ X. Thus, u(x) > 0, ∀x ∈ X

and the nonsmooth exclusion test can detect nonexistence of a root.
In the proposed branch-and-bound algorithm, convex relaxations and subgradients

are calculated automatically using the library libMC [2] and the nonsmooth solver
PVARS [16] is used to solve McCormick’s convex program (5). Assuming that S is
nonempty over the current box X, the solver is supposed to find a point in the set U

with an optimal value of zero. It can be easily deduced that, in theory, the set U is
invariant for any choice of 1, 2 or ∞ norms of f. However, numerical solvers rely on
pre-specified tolerances and thresholds for termination and so, numerically there is
a larger set Û enclosing the real set U within which the nonsmooth solver is likely
to converge. The convex underestimators are expected to be flat around the convex
hull of the solution set S and will be further flattened on squaring thereby making the
enclosing set Û larger. Hence, the most obvious choice of squared Euclidean norm
of f(x) as the objective function is not suitable on account of the above numerical
consideration. Out of the other two choices, the 1-norm is preferred over the infinity-
norm to make the exclusion test more effective. In the infinity-norm only one of the
functions out of fi(x), i = 1,2, . . . , n will be contributing to the optimal value of the
underestimating convex program, making it a poor choice compared to 1-norm where
all the n functions will make their contribution.

3.3 Interval Newton-type root inclusion & exclusion tests

Interval methods for bounding the solutions of systems of equations have been the
focus of much research [21–23, 25, 28], primarily because of their intrinsic ability to
guarantee whether or not a solution exists within the current interval of interest, or
box. The so-called inclusion tests check the existence and uniqueness of a solution
in a box, whereas the exclusion tests tell us when there are no solutions in the box.
Two tests, based on the interval-Newton and Krawczyk operators, are considered in
this paper. There are advantages and disadvantages of each. The Krawczyk operator
is defined in the following.

Definition 3 (Krawczyk) For an interval X ∈ IR
n, a point x ∈ X and a function

f : D → R
n continuously differentiable on the open set D ⊂ R

n with X ⊂ D, the
Krawczyk operator is defined as

K(x, f,X) ≡ x − Yf(x) + (I − YJ(f,X))(X − x), (13)

where Y ∈ R
n×n is a linear isomorphism used for preconditioning, I ∈ R

n×n is the
n × n identity matrix, and J(f,X) ∈ IR

n×n, is an interval extension of the Jacobian
matrix of f on X.

For better convergence and enclosure properties, a componentwise implementa-
tion of K is recommended [6]. That is, where each element of K is calculated se-

Exclusion test for nonlinear equations 897

quentially making use of the previously calculated elements. The componentwise
Krawczyk operator is defined as:

Definition 4 (Componentwise Krawczyk)

Kk
i := xk

i − bi +
i−1∑

j=1

Aij (X
k+1
j − xk

j) +
n∑

j=i

Aij (X
k
j − xk

j),

Xk+1
i := Kk

i ∩ Xk
i ,

(14)

with k being the current iteration or calculation, i and j denoting particular elements
of the vector or matrix, A ∈ IR

n×n as A = I − YJ(f,X), and b ∈ R
n as b = Yf(x).

The other powerful operator considered in this paper is the interval-Newton oper-
ator defined in the following.

Definition 5 (Interval-Newton) For an interval X ∈ IR
n, a point x ∈ X and a function

f : D → R
n continuously differentiable on an open set D ⊂ R

n with X ⊂ D, the
interval Newton operator is defined as

N(x, f,X) ≡ x − J(f,X)−1f(x), (15)

with J(f,X) being an interval extension of the Jacobian matrix of f on X.

It is assumed that J does not contain any singular matrices. Similar to the Kraw-
czyk operator, a componentwise sequential calculation of N offers better convergence
and enclosure properties. The componentwise implementation is known as the gener-
alized interval Gauss-Seidel (G-S) method. It is a result of arranging (15) into a linear
system A�x = −b as

J(f,X)(N(x, f,X) − x) = −f(x)

and solving for N componentwise. In [25], it is proven that N ⊂ K when N is imple-
mented with G-S. The G-S implementation is defined in the following.

Definition 6 (Interval-Newton with Gauss-Seidel)

Nk
i := xk

i −
[
bi +

i−1∑

j=1

Aij (X
k+1
j − xk+1

j) +
n∑

j=i+1

Aij (X
k
j − xk

j)

]
/Aii,

0 /∈ Aii, Xk+1
i := Nk

i ∩ Xk
i ,

(16)

where A ∈ IR
n×n as A = YJ(x, f,X), and b ∈ R

n as b = Yf(x).

It should be noted that we have again made use of a preconditioning matrix Y
in the above definition, which will help give better numerical behavior of the algo-

898 M.D. Stuber et al.

rithm. Also, it should be noted that if 0 ∈ Aii , extended interval arithmetic can be
employed, however, uniqueness of solutions cannot be guaranteed. It is assumed,
for this reason, that 0 /∈ Aii , else the inclusion test simply fails to tell us anything
about the uniqueness of solutions on the current interval, and thus must be further
refined.

Let � ∈ {N,K} be a generic interval Newton-type operator. The root inclusion
test states that if �(x, f,X) ⊂ X, then X contains a unique solution of the system of
equations f(x) = 0 [21, 22]. Furthermore, all solutions of f(x) = 0 in X, if any, are
contained in the intersection �(x, f,X) ∩ X. Immediately following is the exclusion
test, which states that if �(x, f,X) ∩ X = ∅, then no solution exists in X [21, 22].
A componentwise implementation, as previously discussed, offers one obvious im-
provement in performance since the exclusion test only requires a single element of
� to have an empty intersection to be true. Other improvements come from the ability
to generate tighter enclosures than the standard naive implementations.

For the inclusion test, an ideal preconditioner Y is the inverse of the Jacobian
matrix evaluated at the solution [8, 9, 25]. However, in the interval Newton-type
methods, the solution is not known a priori and hence Y is usually approximated by
taking the inverse of the midpoint of the interval matrix J(f,X) obtained from the
interval extension of the Jacobian [8, 9, 25]. Other effective choices for Y are also
discussed in [8, 9, 25]. In the proposed B&B algorithm, once a solution is found by a
real-valued Newton-type method, the Krawczyk or interval-Newton operator is used
only to check the uniqueness of the obtained solution in the present box X. Hence,
excellent preconditioning is achieved by using the inverted Jacobian matrix at the so-
lution, making the test quite effective. If the root inclusion test is positive the current
box can be fathomed based on the uniqueness result. Moreover, the intersection rela-
tion itself helps to fathom a good part of the search space not containing any solution.
However, for sufficiently wide intervals, the interval Jacobian may contain singular
matrices and so the inclusion test fails to tell us anything about uniqueness as well
as fails to fathom part of the search space. For the exclusion test, the inverse of the
mid-point of the interval Jacobian matrix J(f,X) is also used as the preconditioner Y.

Before proceeding to the next section which describes the steps of the proposed
branch-and-bound (B&B) algorithm, the theoretical developments made so far in this
paper will be demonstrated with the help of the following example.

Example 1 Global minima of the Himmelblau function:

f1(x1, x2) = x2
1 + x2 − 11 = 0,

f2(x1, x2) = x1 + x2
2 − 7 = 0,

(x1, x2) ∈ X = [−6,6]2.

The Himmelblau function is defined as the squared-Euclidean norm of the above sys-
tem of equations and hence is nonnegative. Thus, the global minima of the Himmel-
blau function are equivalent to the roots of the above system of equations. In order to
construct the McCormick’s convex relaxation of the 1-norm of f it is observed that the
natural interval extensions of both f1 and f2 over X contain 0 and hence the infimum

Exclusion test for nonlinear equations 899

of the outer absolute value function |· | is attained at 0. The following intermediate
steps can also be easily verified:

cu
1(x1, x2) = x2

1 + x2 − 11,

co
1(x1, x2) = x2 + 25,

u1(x1, x2) = |mid{x2
1 + x2 − 11, x2 + 25,0}|,

cu
2(x1, x2) = x1 + x2

2 − 7,

co
2(x1, x2) = x1 + 29,

u2(x1, x2) = |mid{x1 + x2
2 − 7, x1 + 29,0}|.

Hence the McCormick’s convex relaxation u of ‖f(·)‖1 on X is given by

u(x1, x2) = |mid{x2
1 + x2 − 11, x2 + 25,0}| + |mid{x1 + x2

2 − 7, x1 + 29,0}|.

Figure 1 shows the plot of ‖f(·)‖1 and its McCormick’s convex relaxation u. There
are four points at which ‖f(·)‖1 touches the z = 0 plane marking the four roots
of the system of equations in Example 1. The convex relaxation constructed using
McCormick’s procedure is nonnegative on X and is flat on the convex hull defined by
the four roots. The convex hull of the solution set S for the above system of equations
and the solution set U of the associated McCormick convex program are shown in
Fig. 2. U contains conv(S) with a close overlap as stated in Theorem 3. The automat-
ically generated starting point (AGIG) (−3,3) obtained by solving the nonsmooth
convex program is quite close to one of the solutions (−3.77931,−3.283185) and
RMT based damped-Newton iterations starting from the former easily converges to

Fig. 1 Plot of ‖f(x)‖1 (left) of Example 1 and its McCormick convex relaxation (right)

900 M.D. Stuber et al.

Fig. 2 Plot of conv (S) and set U corresponding to the system of equations in Example 1

the latter. All four roots of this problem were found in 45 iterations of the B&B
algorithm with the componentwise Krawczyk operator implemented, and 39 itera-
tions of the B&B algorithm with the interval-Newton with Gauss-Seidel implemen-
tation.

4 Branch-and-bound algorithm

The intuitive idea of the branch-and-bound algorithm is to search X ∈ IR
n (defined

by the variable bounds) exhaustively for solutions of (1) using a bisection strategy
and to fathom portions of X based on certain criteria.

The algorithm starts with a stack N of nodes initialized to the given box X (in
which the solutions of (1) are sought), the solution set S which is initially empty and
the iteration counter k set to 1. Each node Xi ∈ N will have two associated attributes,
namely, the solution field Xi .s and the solution flag Xi .f . By default, Xi .s will be set
to a point lying inside the node Xi (usually the mid point) and Xi .f is set to zero. If
a solution has been found in the box Xi ∈ N it will be stored in its solution field Xi .s
when its solution flag Xi .f is set to one, indicating that a solution has been found in
this node. The algorithm requires two tolerance parameters as input, namely (1) the
size tolerance εsize and (2) the feasibility tolerance εf . The size tolerance εsize limits
the smallest size of box to be examined, which essentially means that this algorithm
can distinguish solutions which are εsize apart in R

n in terms of the distance metric
chosen to define the box size. Also, the nonsmooth solver will terminate at a certain
tolerance and hence may not locate the exact zero value of the convex program even

Exclusion test for nonlinear equations 901

if it exists. The feasibility tolerance εf limits the highest optimal value of the convex
program below which the node will not be fathomed based on the root exclusion
test.

At each iteration, a node is popped off the stack. Since the stack is a “last in, first
out” (LIFO) container, the popped node will be the last one to be pushed in. If its size
is smaller than εsize, it is fathomed. Now, there are various ways of measuring the
box size. The simplest one is the length of diagonal given by

d(X) = ‖xU − xL‖2.

Another approach suggested in [28] is to use the scaled diameter of the box as a size
metric defined as

d(X) = max
1≤i≤n

{(xU
i − xL

i)/max(|xU
i |, |xL

i |,1)}. (17)

Using this size metric the algorithm may not be able to distinguish between roots
which are εsize apart in some dimension. One may decide based on the problem
which size metric to choose.

If a node is not fathomed due to small size its solution flag is checked. If a solu-
tion has been found, the interval Newton-type root inclusion test is applied to check
the uniqueness of the contained solution. If the inclusion test is positive the current
box is fathomed. Otherwise, the box is bisected along a suitably chosen coordinate
into two disjoint sub-boxes, such that the solution lies exactly in one of them (i.e.,
not on the boundary of the division). If the solution happens to lie on the bisection
boundary, the bisecting plane is shifted either upwards or downwards along the bi-
sected coordinate by a suitable amount (usually by a small chosen fraction of the
interval width along the bisection coordinate of the box) to ensure that the solution is
contained in exactly one of the sub-boxes. When a box X = (X1,X2,X3, . . . ,Xn)

is bisected, the resulting sub-boxes are XL = (X1,X2, . . . , [xL
q , xq], . . . ,Xn) and

XU = (X1,X2, . . . , [xq, xU
q], . . . ,Xn), where Xq = [xL

q , xU
q], xq is the mid-point of

the interval Xq and q is the coordinate chosen for bisection. The bisection coordinate
can be chosen in two ways. A simpler and more intuitive way is to choose the coor-
dinate with the widest interval. Another approach is to choose the direction having
largest scaled diameter [28] such that q satisfies d(Xq) = d(X), where d(X) is de-
fined according to (17). The latter scheme performs better (especially when the initial
box widths vary widely in different coordinates) and has been used in the proposed
algorithm.

To facilitate the branching of nodes, the algorithm uses a subroutine Divide. This
subroutine takes as input a parent node X and returns two disjoint child nodes XL and
XU obtained by division (usually bisection) of X such that the point in its solution
field X.s is contained in exactly one of them. It also sets the solution field and flag of
the child nodes to their default values. The subroutine Maxdim returns the bisection
coordinate of the parent interval vector X in q using a user defined size metric. In the
pseudo code that follows it is assumed that equating any two nodes Y and X using
Y = X copies information stored in all the fields of X to the respective fields of Y.
Using these notations and those discussed at the beginning of this section, a pseudo

902 M.D. Stuber et al.

code for the subroutine Divide can be written as:

[XL,XU] = Divide(X){
XL = X, XU = X, q = Maxdim(X)

xq = (xL
q + xU

q)/2

XL(q) = [xL
q , xq], XU(q) = [xq, xU

q]
if (x(q) = xq)

η = 0.1(xU
q − xL

q)

XL(q) = [xL
q , xq + η], XU(q) = [xq + η,xU

q]
XU .s = mid(XU), XU .f = 0

end if

}
As per the above pseudo code, the point in the solution field of the parent node is
contained in the lower sub-box XL. However, the choice of lower or upper sub-box
for this purpose is arbitrary and one may choose either of the two sub-boxes to inherit
the solution field of its parent.

Once bisected, the sub-box not containing the solution is pushed first, followed by
the one which contains the solution and the iteration counter is increased by two to
account for the newly generated two nodes. This ensures that in the next iteration the
node containing the solution is again popped and this process will continue unless
the solution containing node is fathomed either based on the inclusion test or the size
metric. With the decreasing box size due to bisection at each iteration, the inclusion
test will become more effective in the subsequent iterations and eventually the solu-
tion containing node will be fathomed based on the root inclusion test. Otherwise,
even in the worst case it cannot escape the size-based fathoming, though after a much
larger number of iterations.

If the current node does not contain a known solution, a simple interval-based
root exclusion test is performed which is positive if the natural interval extension F

of f over the current node Xi does not contain 0 and the node is fathomed. Other-
wise, the interval Newton-type operator based interval root exclusion test, discussed
in Sect. 3.3, is applied and if positive the current node is fathomed. If both these tests
fail to fathom the current node Xi , then the McCormick convex relaxation of ‖f(·)‖1
is constructed over Xi and the lower bounding convex program is solved using any
nonsmooth solver (viz. PVARS [16]) and the obtained optimal point x∗ is stored in
its solution field. If the optimal value of the convex program is positive the current
node is fathomed based on the nonsmooth root exclusion test. If the optimal value of
the nonsmooth convex program is zero, then starting from x∗ RMT based damped-
Newton iterations are applied. The RMT solver is set to a convergence tolerance of
εNewton and will converge if ‖f(xj)‖2 < εNewton in a given maximum number of iter-
ations. The RMT solver is said to fail if it does not converge to a solution in the given

Exclusion test for nonlinear equations 903

maximum number of iterations, or the sequence of iterates crosses the box bounds
before converging. If a solution is found the bisection process explained in the pre-
vious paragraph for a solution containing node is performed. Otherwise, the node
is bisected by calling the subroutine Divide with the current node such that the au-
tomatically generated starting point x∗ lies in exactly one of the two nodes obtained
after the bisection. The resulting nodes are pushed onto the stack N with the one con-
taining x∗ being the last node to be pushed in and the iteration counter is increased
by two.

This heuristic ensures that at any iteration of the algorithm, there will be only
one, if any, solution containing node which lies at the top of the stack. Also, due to
the bisection of nodes at each iteration, the McCormick convex relaxations become
tighter and even “closer” starting points are obtained, resulting in quick convergence
of the RMT based damped Newton method. As stated earlier, except for some of
the test problems, a solution is obtained at the very first iteration of the algorithm
and partial, if not full, credit to this does go to the generation of good starting points.
Algorithm 1 formalizes the steps of the proposed branch-and-bound (B&B) algorithm
for finding all real solutions of nonlinear system of equations.

Algorithm 1 (B&B algorithm for solving systems of nonlinear equations)

1. (Initialization): Set X.f := 0,X.s = mid(X),N = {X}, S = ∅, k = 1.

2. (Termination): If (N = ∅) then print the solution set S. Terminate.

3. (Node Selection): Pop and delete the node Xi from the top of stack N .

4. (Fathoming Based on Size): If (d(Xi) < εsize) then goto 2.

5. (Root Inclusion Test): If (Xi .f = 1) then [Xi contains a known solution]

– x̄∗ := Xi .s. Compute componentwise �(j)(x̄∗, f,Xi (j)), where
�(j) ∈ {N(j),K(j)}.

– If (�(j)(x̄∗, f,Xi (j)) �⊂ Xi (j)), set flag ⇒ no inclusion. Increment j .
– Xi (j) = �(j)(x̄∗, f,Xi (j)) ∩ Xi (j).
– If j < n (size of system), repeat previous steps, else check inclusion flag.

If no flag has been set for each j go to 2.
– [Xk , Xk+1] = Divide(Xi).
– If (x̄∗ ∈ Xk) then

– Push Xk+1 followed by Xk onto the stack N .
– Else

– Push Xk followed by Xk+1 onto the stack N .
– k = k + 2. Goto 2.

6. (Root Exclusion Test): Compute the natural interval extension F(Xi) of
f over Xi .

– If (0 /∈ F(Xi)) then goto 2 [Xi does not contain a solution].
– Else

– x̄∗ := Xi .s. Compute componentwise �(j)(x̄∗, f,Xi (j)), with
�(j) ∈ {N(j),K(j)}.

904 M.D. Stuber et al.

– If (�(j)(x̄∗, f,Xi (j)) ∩ Xi (j) = ∅) then goto 2. [Xi does not contain a so-
lution].

– Xi (j) = �(j)(x̄∗, f,Xi (j)) ∩ Xi (j), increment j and repeat previous 2
steps.

– Set Xi .s = mid(Xi).

7. (Automatic Starting Point Generation): Construct the McCormick convex re-
laxation u of ‖f(·)‖1 over Xi and solve the resulting nonsmooth convex program
using any nonsmooth solver. Let,

– x∗ ∈ arg minx∈Xi
u(x).

– Set Xi .s = x∗.

8. (Nonsmooth Root Exclusion Test): If (u(x∗) > εf) then goto 2 [Xi does not
contain a solution].

9. (RMT Based Damped-Newton Iterations): Apply a maximum of maxiter RMT
iterations (NWTSLV) starting from x∗ ∈ Xi . Let niter (≤ maxiter) be the number
of iterations taken by NWTSLV so that ‖f(x̄∗)‖2 ≤ εNewton where, x̄∗ stores the
resulting solution.
[x̄∗,niter] = NWTSLV(x∗, f,Xi ,maxiter, εNewton).
If (niter ≤ maxiter) [NWTSLV Converged] then set Xi .f = 1 and Xi .s = x̄∗,
S = S ∪ {x̄∗}, goto 5.

10. (Branching):

– [Xk , Xk+1] = Divide(Xi).
– If (x∗ ∈ Xk) then

– First push Xk+1 followed by Xk onto the stack N .
– Else

– First push Xk followed by Xk+1 onto the stack N .
– k = k + 2. Goto 2.

5 Computational results

In this section, a number of test problems from the literature are addressed to mea-
sure the efficacy of the proposed branch-and-bound algorithm in finding all solu-
tions of systems of nonlinear equations. The computational times reported are on an
Intel Core2 Quad (2.66 GHz) processor, allocating a single core and 512 MB of
memory to the experiments. A size-tolerance of 10−4 and feasibility tolerance of
10−6 were used. For the RMT code NWTSLV parameters maxiter and εNewton were
set to 20 and 10−8 respectively. For the nonsmooth solver (PVARS) the default toler-
ances were used [17]. The default tolerance on the decision variables and the function
value is 10−8. The performance of the algorithm is judged on the basis of the perfor-
mance parameters shown in Table 1. The test problems from various sources are
tabulated and explained in Table 2 and the performance of the algorithm on them is
reported in Tables 3 and 4. A number of test problems (e.g., 3, 5, 8, 9, 12, 15, 30) con-
tain transcendental functions. Some of the test problems (e.g., 27, 28, 29, etc.) can
be decomposed into smaller blocks and can be very easily solved block-by-block.

Exclusion test for nonlinear equations 905

Table 1 Performance parameters of the branch-and-bound algorithm

Parameter Description

n Space dimension

|S| Cardinality of the solution set S

NIT Branch-and-bound iterations before termination of the algorithm

NITF Branch-and-bound iterations before the first solution is found

SZ Number of nodes fathomed based on node size

INCLT Number of nodes fathomed by the root inclusion test

EXT Number of nodes fathomed by the root exclusion test

NSEXT Number of nodes fathomed by nonsmooth root exclusion test

NWTF Number of times RMT based damped-Newton method failed

MSD Maximum stack depth reached prior to termination of the algorithm

CPU CPU time taken by the algorithm in seconds

However, for testing the performance of the algorithm, they were not block decom-
posed at any stage to preserve the difficulty level. Also, to force the convergence
in finite time, an upper limit of 50,000 on the maximum number of B&B iterations
is imposed. The NIT values (number of iterations) for the problems on which the
algorithm terminated without converging in 50,000 iterations are mentioned as NC
(Not Converged) in the results table. As is evident from Tables 3 and 4, the first
solution is found at the very first iteration of the algorithm for most of the test prob-
lems. This is due to the combined effect of the good starting point generation and the
increased region of convergence of the damped-Newton method through the use of
RMT with natural level function. Also, the efficacy of the proposed nonsmooth ex-
clusion test is evidenced by the fact that it successfully fathoms nodes which are left
unfathomed by the Krawczyk or interval-Newton root exclusion tests, since the for-
mer is performed only if the latter fails. The Krawczyk and interval-Newton operator
based root inclusion tests also have an important contribution in reducing the number
of B&B iterations, in lack of which, the only way to fathom the solution containing
node is based on the size metric, leading to a significant increase in the number of
iterations as well as processing time.

For problems 2, 5 and 6 the number of iterations are only a fraction of those
reported in [18] using a similar branch-and-bound procedure with the αBB convex
relaxation for generating lower bounds as against McCormick convex relaxation in
the proposed method. For a fair comparison of the results using the two approaches,
it should be noted that in the presented method, the iteration counts the actual number
of nodes visited in the B&B tree, unlike in [18] where the iterations are increased by
one (instead of two) at each bisection of the nodes.

For problem 7, the minimum value of α chosen for convex lower bounding the
only nonconvex expression using the αBB procedure [18] should be 16, as dictated
by the range of eigenvalues of the corresponding Hessian matrix. Hence, iteration
counts reported for α less than 16 in [18] are not matched by the proposed algorithm.
Nevertheless, the results are comparable with those in [18] for appropriate values
of α.

906 M.D. Stuber et al.

Table 2 Test problems

Example Brief description and sources

1 Global minima of the Himmelblau function (Example 1)

2 Stationary points of the Himmelblau function [18]

3 Multiple steady states of a CSTR reactor [11]

4 Production of synthesis gas in an adiabatic reactor [11]

5 Badly scaled system of equations [18]

6 Robot kinematic problem [18]

7 Brown’s almost linear system [18]

8 Example problem 4 from [12]

9 Example problem 5 from [12]

10 Chemical equilibrium under a stoichiometric feed condition [5]

11 Chemical equilibrium under a non-stoichiometric feed condition [5]

12 Kinetics in a stirred reactor [5]

13 Adiabatic flame temperature computation [5]

14 Calculation of gas volume using the Beattie-Bridgeman equation [5]

15 Fractional conversion in a reactor [5]

16 Flow in a smooth pipe (a = 240, b = 40 and c = 200) [5]

17 Flow in a smooth pipe (a = 46.64, b = 67.97 and c = 40) [5]

18 Batch distillation at infinite reflux [5]

19 Volume from the virial equation of state [5]

20 Volume from the Redlich-Kwong equation of state [5]

21 Sinkage depth of a sphere in water [5]

22 Rosenbrock functions [24]

23 Freudenstein and Roth function [24]

24 Beale function [24] [case A (Eqs. 1 & 2), B (Eqs. 2 & 3) & C (Eqs. 1 & 3)]

25 Powell’s singular function [24]

26 Wood’s function [24]

27 Broyden tridiagonal function [24] [case A (n = 2), B (n = 4) & C (n = 6)]

28 Broyden banded function [24] [case A (n = 2), B (n = 5) & C (n = 9)]

29 Extended Rosenbrock function [24] [case A (n = 10), B (n = 50) & C (n = 100)]

30 Circuit design problem with extraordinary sensitivities to small perturbations [18]

31 Hydrocarbon combustion process [18]

For example 30, the algorithm failed to terminate after 50,000 iterations and no
solution was found for either the Krawczyk of interval-Newton implementation. On
increasing the maxiter for RMT solver NWTSLV from 20 to 100, no solutions were
found and the method still failed to fathom the entire search space. A reason similar
to that for problem 7 explains why the proposed method failed to converge in 50,000
iterations while in [18] it is reported to converge in 1645 iterations when α = 0.1 is
used for generating its αBB convex relaxation. It can be easily deduced by computing
the natural interval extension of the Hessian of the last equation (which is the least
nonconvex among the equations in the system) that the value of α should at least

Exclusion test for nonlinear equations 907

Table 3 Performance of the Krawczyk B&B algorithm on the test problems

Ex. n |S| NIT NITF SZ INCLT EXT NSEXT NWTF MSD CPU(s)

1 2 4 45 1 2 3 15 3 3 9 0.045

2 2 9 109 1 0 9 31 15 11 9 0.113

3 2 3 43 1 0 3 7 12 4 9 0.049

4 7 1 55 1 0 1 9 18 2 26 0.233

5 2 1 17 1 0 1 5 3 2 7 0.020

6 8 16 2239 1 38 0 431 651 60 88 3.783

7 5 2 513 1 14 1 94 148 141 83 1.199

8 1 2 39 1 0 2 6 12 5 11 0.038

9 1 5 137 1 0 5 11 53 33 10 0.140

10 1 1 7 1 0 1 3 0 0 4 0.011

11 1 1 7 1 0 1 0 3 1 3 0.011

12 1 1 3 1 0 1 1 0 0 2 6.5e–3

13 1 1 3 1 0 1 1 0 0 2 5.9e–3

14 1 2 25 1 0 2 9 2 2 8 0.017

15 2 1 9 7 0 1 3 1 3 5 0.025

16 2 1 13 1 0 1 5 1 1 6 0.013

17 2 1 21 1 0 1 7 3 1 10 0.028

18 1 2 35 19 0 2 14 2 15 12 0.053

19 1 1 21 1 0 1 2 8 3 8 0.026

20 1 1 15 1 0 1 3 4 0 8 0.020

21 1 2 13 1 0 2 4 1 0 5 0.017

22 2 1 3 1 0 1 1 0 0 2 0.016

23 2 1 51 23 0 1 16 9 20 6 0.066

24A 2 1 27 17 2 0 8 4 8 14 0.062

24B 2 1 35 3 2 0 12 4 3 16 0.035

24C 2 1 29 17 2 0 11 2 9 14 0.044

25 4 1 123 1 2 0 49 11 3 59 0.120

26 4 1 9 1 0 1 3 1 0 5 0.017

27A 2 2 27 1 0 2 2 10 3 6 0.039

27B 4 2 125 9 0 2 11 50 52 9 0.273

27C 6 2 489 47 0 2 38 205 229 16 1.140

28A 2 1 13 1 0 1 4 2 1 6 0.013

28B 5 1 35 1 0 1 6 11 6 12 0.065

28C 9 1 61 1 0 1 15 15 10 21 0.383

29A 10 1 3 1 0 1 1 0 0 2 0.013

29B 50 1 3 1 0 1 1 0 0 2 0.067

29C 100 1 3 1 0 1 1 0 0 2 0.474

30 9 1 NC NC NC NC NC NC NC NC 436.5

31 5 1 NC NC NC NC NC NC NC NC 217.7

908 M.D. Stuber et al.

Table 4 Performance of the interval-Newton B&B algorithm on the test problems

Ex. n |S| NIT NITF SZ INCLT EXT NSEXT NWTF MSD CPU(s)

1 2 4 39 1 2 3 13 2 3 7 0.050

2 2 9 93 1 0 9 23 15 11 8 0.082

3 2 3 35 1 0 3 2 13 4 8 0.055

4 7 1 51 1 0 1 9 16 2 24 0.204

5 2 1 17 1 0 1 5 3 2 7 0.022

6 8 16 2113 1 32 0 381 644 45 83 3.627

7 5 2 499 1 14 1 91 144 138 83 0.755

8 1 2 25 1 0 2 4 7 2 9 0.018

9 1 5 127 1 0 5 4 55 33 9 0.135

10 1 1 3 1 0 1 1 0 0 2 4.9e–3

11 1 1 9 1 0 1 1 3 1 4 0.011

12 1 1 3 1 0 1 1 0 0 2 6.7e–3

13 1 1 3 1 0 1 1 0 0 2 5.3e–3

14 1 2 15 1 0 2 4 2 0 6 0.013

15 2 1 9 7 0 1 3 1 3 5 0.015

16 2 1 5 1 0 1 1 1 0 3 0.018

17 2 1 17 1 0 1 6 2 3 7 0.024

18 1 2 35 19 0 2 14 2 15 12 0.049

19 1 1 17 1 0 1 2 6 3 6 0.025

20 1 1 13 1 0 1 3 3 0 7 0.034

21 1 2 9 1 0 2 2 1 0 4 0.010

22 2 1 3 1 0 1 1 0 0 2 0.015

23 2 1 39 23 0 1 12 7 17 6 0.059

24A 2 1 25 17 2 0 7 4 8 13 0.038

24B 2 1 33 3 2 0 13 2 3 15 0.026

24C 2 1 27 17 2 0 10 2 9 13 0.042

25 4 1 123 1 2 0 49 11 3 59 0.118

26 4 1 9 1 0 1 3 1 0 5 0.013

27A 2 2 25 1 0 2 2 9 3 6 0.042

27B 4 2 121 9 0 2 12 47 52 9 0.252

27C 6 2 473 47 0 2 35 200 226 16 0.993

28A 2 1 11 1 0 1 3 2 1 5 0.023

28B 5 1 25 1 0 1 5 7 5 8 0.052

28C 9 1 43 1 0 1 11 10 8 14 0.305

29A 10 1 3 1 0 1 1 0 0 2 0.011

29B 50 1 3 1 0 1 1 0 0 2 0.072

29C 100 1 3 1 0 1 1 0 0 2 0.389

30 9 1 NC NC NC NC NC NC NC NC 431.9

31 5 1 NC NC NC NC NC NC NC NC 212.3

Exclusion test for nonlinear equations 909

be 0.5. Furthermore, for the more nonconvex terms involving exponentials, the mini-
mum value of α as calculated using the rigorous αBB criterion turns out to be of the
order of 107 and if used will likely take many more iterations to converge than what
has been reported. For this problem, the McCormick convex relaxation happens to be
flat over a sizable part of the domain and even when the box-size becomes small, the
relaxation does not becomes positive over the box. Because of the exponential terms
and multiple occurrences of the same variable the natural interval extensions are very
loose, resulting in the flat relaxation using McCormick’s procedure.

Multiple occurrences of the same variable causes what is known as the dependency
problem of natural interval extensions, leading to overly large bound estimation of
the function range. Hence, for such functions, convex relaxations constructed using
McCormick’s method may be flat as in example 31 on which the algorithm failed to
terminate after 50,000 B&B iterations for both the Krawczyk and interval-Newton
implementations. As in example 30, the search space in this case also could not be
fathomed fully with either implementation, primarily because of flat McCormick’s
convex relaxations on a large part of the domain.

In the proposed algorithm two root exclusion tests and one root inclusion test are
operating simultaneously to extract the largest reduction of iteration count and hence
the CPU time. However, to illustrate their individual effects, all the test problems
were solved by switching off each of these two exclusion tests and the inclusion test.
Each experiment was run utilizing a single interval Newton-type operator (Krawczyk
or interval-Newton) so that the performance of each operator could also be compared.
It should be noted that by deactivating the nonsmooth exclusion test, the classic in-
terval Newton-type methods with generalized bisection are recovered. However, the
one difference is that the solutions are found using the damped-Newton with RMT
and reported to machine precision instead of being bounded by the interval Newton-
type methods. Similarly, for comparison, the standard branch-and-bound method was
recovered by deactivating the interval Newton-type inclusion/exclusion tests simul-
taneously. B&B iterations (NIT) and the CPU times taken for all the three cases are
presented in Tables 5 and 6 respectively. In the following subsections the performance
of the algorithm in each of these cases will be analyzed in detail.

5.1 B&B with Krawczyk operator vs. interval-Newton operator

When the interval-Newton operator with Gauss-Seidel is implemented for use in the
interval Newton-type inclusion and exclusion tests, the number of nodes visited in the
branch-and-bound tree is always less than that of the componentwise Krawczyk oper-
ator, except for a few examples. This is primarily due to the fact that the intervals gen-
erated by the interval-Newton operator with Gauss-Seidel are at least as tight as the
componentwise Krawczyk, if not tighter, or in most cases, significantly tighter. For
the examples where the number of nodes visited are equal or greater than the compo-
nentwise Krawczyk implementation, the interval-Newton operator is unbounded due
to divisions by 0 (0 ∈ Aii for some i). If divisions by 0 persist, even upon further
bisecting the current box, the interval-Newton inclusion test continues to fail, requir-
ing more bisections. This is because uniqueness guarantees cannot be made when
0 ∈ Aii for some i. Likewise, since the generated intervals are unbounded, the exclu-

910 M.D. Stuber et al.

Table 5 Performance of the B&B algorithm with one of its different features switched off

Ex. NIT

Full Algorithm EXT OFF NSEXT OFF INCLT OFF Stnd B&B

Krawczyk I-Newton Krawczyk I-Newton Krawczyk I-Newton Krawczyk I-Newton

1 45 39 45 39 113 105 285 285 285

2 109 93 109 93 199 159 593 593 593

3 43 35 43 35 87 137 219 219 279

4 55 51 55 51 39333 34139 223 223 223

5 17 17 17 17 253 227 73 73 81

6 2239 2113 2239 2113 NC NC 4117 4117 4117

7 513 499 513 499 21425 30205 1269 1269 1269

8 39 25 43 25 69 65 57 49 63

9 137 127 137 127 263 965 229 229 229

10 7 3 7 3 7 3 27 27 27

11 7 9 7 9 13 19 29 29 29

12 3 3 3 3 3 3 41 41 41

13 3 3 3 3 3 3 51 51 51

14 25 15 33 15 33 21 51 51 61

15 9 9 9 9 7 7 57 57 57

16 13 5 13 5 17 7 61 61 63

17 21 17 21 17 37 27 59 59 59

18 35 35 35 35 51 51 63 63 63

19 21 17 21 17 41 69 51 51 51

20 15 13 15 13 25 21 29 29 37

21 13 9 13 9 21 11 63 63 63

22 3 3 3 3 3 3 67 67 67

23 51 39 51 39 113 103 123 123 123

24A 27 25 27 25 57 53 65 65 65

24B 35 33 35 33 51 47 69 69 69

24C 29 27 29 27 29 27 67 67 67

25 123 123 123 123 145 145 123 123 123

26 9 9 9 9 1017 1031 125 125 125

27A 27 25 27 25 61 59 135 135 135

27B 125 121 125 121 813 789 361 361 361

27C 489 473 489 473 9359 9105 843 843 843

28A 13 11 13 11 17 15 63 63 63

28B 35 25 35 25 399 187 173 173 173

28C 61 43 61 43 8349 3689 329 329 329

29A 3 3 3 3 3 3 707 707 1229

29B 3 3 3 3 3 3 NC NC NC

29C 3 3 3 3 3 3 20967 20967 NC

30 NC NC NC NC NC NC NC NC NC

31 NC NC NC NC NC NC NC NC NC

Exclusion test for nonlinear equations 911

Table 6 Performance of the B&B algorithm with one of its different features switched off

Ex. CPU (s)

Full Algorithm EXT OFF NSEXT OFF INCLT OFF Stnd B&B

Krawczyk I-Newton Krawczyk I-Newton Krawczyk I-Newton Krawczyk I-Newton

1 0.045 0.050 0.039 0.044 0.122 0.107 0.130 0.151 0.048

2 0.113 0.082 0.095 0.079 0.171 0.147 0.315 0.314 0.090

3 0.049 0.055 0.047 0.054 0.070 0.147 0.119 0.113 0.101

4 0.233 0.204 0.259 0.224 61.13 52.26 0.430 0.436 0.661

5 0.020 0.022 0.019 0.020 0.255 0.231 0.050 0.040 0.043

6 3.783 3.627 3.717 3.422 78.50 77.94 5.500 5.360 2.161

7 1.199 0.755 0.992 0.890 29.18 44.59 1.321 1.368 0.746

8 0.038 0.018 0.041 0.028 0.068 0.057 0.038 0.031 0.030

9 0.140 0.135 0.139 0.133 0.243 1.117 0.157 0.154 0.073

10 0.011 4.9e–3 6.7e–3 4.7e–3 5.9e–3 5.6e–3 0.019 0.012 6.9e–3

11 0.011 0.011 8.2e–3 0.010 0.015 0.024 0.026 0.018 9.6e–3

12 6.5e–3 6.7e–3 5.4e–3 5.3e–3 4.2e–3 4.6e–3 0.029 0.018 9.8e–3

13 5.8e–3 5.3e–3 5.0e–3 5.3e–3 5.7e–3 4.9e–3 0.020 0.034 9.3e–3

14 0.017 0.013 0.030 0.011 0.032 0.019 0.049 0.023 0.019

15 0.025 0.015 0.018 0.014 8.7e–3 9.3e–3 0.035 0.040 0.023

16 0.013 0.018 0.011 0.017 0.025 0.010 0.040 0.030 0.030

17 0.028 0.024 0.026 0.016 0.031 0.034 0.039 0.038 0.025

18 0.053 0.049 0.048 0.049 0.053 0.058 0.052 0.057 0.048

19 0.026 0.025 0.017 0.018 0.032 0.082 0.031 0.046 0.023

20 0.020 0.034 0.012 0.011 0.052 0.045 0.099 0.050 0.017

21 0.017 0.010 0.011 9.2e–3 0.019 0.012 0.035 0.036 0.013

22 0.016 0.015 8.3e–3 5.3e–3 4.4e–3 5.2e–3 0.045 0.043 0.025

23 0.066 0.059 0.063 0.053 0.117 0.109 0.111 0.111 0.092

24A 0.062 0.038 0.038 0.034 0.062 0.045 0.040 0.043 0.031

24B 0.035 0.026 0.036 0.034 0.048 0.055 0.047 0.040 0.010

24C 0.044 0.042 0.031 0.042 0.024 0.017 0.057 0.047 0.051

25 0.120 0.118 0.121 0.108 0.117 0.137 0.093 0.099 0.078

26 0.017 0.013 0.015 0.013 1.391 1.266 0.075 0.095 0.060

27A 0.039 0.042 0.038 0.041 0.063 0.051 0.105 0.080 0.040

27B 0.273 0.252 0.253 0.250 0.870 0.846 0.411 0.427 0.227

27C 1.140 0.993 1.039 0.949 12.91 12.27 1.479 1.343 0.719

28A 0.013 0.023 0.012 0.011 0.045 0.019 0.035 0.123 0.019

28B 0.065 0.052 0.064 0.048 0.478 0.232 0.145 0.129 0.103

28C 0.383 0.305 0.335 0.219 15.68 7.466 0.716 0.814 0.650

29A 0.013 0.011 0.010 0.010 7.0e–3 7.1e–3 0.949 0.951 1.856

29B 0.067 0.072 0.054 0.055 0.096 0.067 1248 1183 1795

29C 0.474 0.389 0.538 0.541 0.236 0.223 1385 1387 8970

30 436.5 431.9 394.5 388.4 213.6 208.4 482.5 477.1 199.2

31 217.7 212.3 212.5 208.8 331.7 330.1 390.8 264.0 61.47

912 M.D. Stuber et al.

sion test cannot be utilized since N and X will not be disjoint. This is the potential
situation when considering problems with multiple roots that are very close to one
another or problems that have a singular Jacobian for most of the search space as in
Example 11. Fathoming the entire search space for these types of problems requires
searching very small subsets of the entire space, thus requiring more iterations in the
branch-and-bound algorithm.

Since each considered interval Newton-type operator requires similar computa-
tional effort, it is expected that the solution times will also be lower for the interval-
Newton operator with Gauss-Seidel. This is indeed the case, again with a few excep-
tions. It can be concluded that although there are a few examples where 0 ∈ Aii for
some i for narrow Aii , the interval-Newton with Gauss-Seidel is a superior interval
Newton-type operator as compared with the componentwise Krawczyk. Likewise, it
may be useful to switch between the two methods on-the-fly when divisions by zero
are detected.

5.2 B&B without interval Newton-type root exclusion tests

When the interval Newton-type operator root exclusion test is switched off, the iter-
ation count remains the same for all of the problems except for Examples 8 and 14
with the Krawczyk operator, where it is increased only slightly. This means that most
of the nodes which were fathomed by the interval Newton-type exclusion tests are
also successfully fathomed by the proposed nonsmooth exclusion test. For the men-
tioned problems, there is only a small increase in the number of iterations because the
nonsmooth exclusion test was not positive for some of the nodes which were earlier
filtered by the Krawczyk exclusion test. Hence, subsequent bisections are required
to have a tight enough convex relaxation before successful fathoming by the non-
smooth exclusion test. Nevertheless, a small increase in the iterations indicates that
such nodes are small in number and usually the convex relaxation on the nodes was
tight enough not to require too many subsequent bisections to be fathomed by the
proposed exclusion test.

Barring a few exceptions, the CPU times taken by the algorithm decreases on
switching off the interval Newton-type exclusion test. If the nonsmooth solver takes
a larger number of iterations to solve the lower bounding convex program it will over-
whelm the time saved in avoiding the computation of interval Newton-type operator.
As a result, the overall CPU time will increase and this increment will further de-
pend on the number of nodes on which the convex program is solved. In most of the
presented test cases, as the node count (B&B iterations) does not increase by switch-
ing off the interval Newton-type exclusion test, it can be inferred that the additional
number of nonsmooth convex program solved were nearly the same as the number
of nodes fathomed by the interval Newton-type exclusion test when it was turned on.
Hence, for most practical cases, the proposed nonsmooth exclusion test is as effective
as the Krawczyk and interval-Newton exclusion tests.

5.3 B&B without nonsmooth root exclusion test

Turning off the nonsmooth root exclusion test, on the other hand, generally leads to
a dramatic increase in the number of B&B iterations as well as the CPU time (except

Exclusion test for nonlinear equations 913

for examples 30 and 31 for which the algorithm did not converge in 50,000 iterations).
If NSEXT denotes the number of nodes fathomed by the nonsmooth exclusion test
when all features of the algorithm were turned on, then upon turning it off, the in-
crease in the B&B iterations (NIT) will tend to be at least 2×NSEXT. However, the
observed increment in NIT is much more than this for most of the test problems. This
demonstrates the prowess of the proposed nonsmooth root exclusion test as compared
to the interval Newton-type exclusion tests. The increase in NIT is especially signif-
icant in problems of higher dimension and/or those with higher cardinality of the
solution set S (e.g., 4, 5, 6, 7, 9, 27 and 28). In fact, without the nonsmooth exclusion
test, for the robot kinematic problem 6 having as many as 16 solutions in a small
volume of [−1,1]8, the whole search space could not be fathomed and the algorithm
terminated when the maximum limit of 50,000 on NIT is achieved, only fathoming
about half of the search space.

Consider those NSEXT nodes that were fathomed by the nonsmooth exclusion
test. With the latter being turned off, all these nodes will now filter down to that
stage of the B&B algorithm where RMT iterations are started, escaping the interval
Newton-type exclusion tests. As no solution is contained in those nodes the RMT
iterations will eventually fail to find a solution and will end up only in increasing
the processing time. Furthermore, since the convex lower bounding problem is no
longer solved, the starting points are also not generated automatically for the RMT
iterations. Hence, in this case, the RMT iterations are started from the mid-point of
the box which also leads to more failures of NWTSLV for some of the test problems.
These increased failure of the RMT iteration (NWTSLV), leads to a dramatic increase
in the CPU time for most of the test cases. However, for some problems (e.g., 12, 13,
22 and 29) there is no change in the iteration count because the nonsmooth exclusion
test was not performed on any of the nodes and so switching it off does not effect the
performance parameters.

With the nonsmooth exclusion test switched off, the remaining steps of the B&B
algorithm closely approximates the interval Newton-type/bisection method for solv-
ing nonlinear equations but with the difference that RMT iterations are also applied
on the boxes. Thus, even if it takes too many iterations to fathom the search space,
solutions, if any, were found robustly and rapidly. As emphasized earlier, an added
advantage of having the solution known a priori is excellent preconditioning of the
interval Newton-type operators, which makes the root inclusion test quite effective.
Moreover, the intersection relation in the interval Newton-type based exclusion and
inclusion tests leads to better refinement of the regions where the solutions are likely
to lie.

5.4 B&B without interval Newton-type root inclusion tests

When the root inclusion test is switched off, there is a significant increase in the B&B
iterations for both the Krawczyk and interval-Newton root inclusion tests. However,
the increment is fixed depending upon the dimensionality n of the problem, the car-
dinality of its solution set S and last, but not the least, on the initial box-size. If a
solution is found in a box, then with the inclusion test switched off, the box can only
be fathomed when its size becomes smaller than the threshold box-size limit (εsize)

914 M.D. Stuber et al.

by subsequent bisection. This leads to the generation of an exponential number of
nodes and so the iteration count will increase dramatically. The increase in iteration
count will also depend on how large a box the inclusion test fathomed when it was
switched on. For example, in problems 24 and 25, the nodes in which a solution was
found was fathomed based on the size metric and not by the inclusion test even when
the test was turned on. Hence, one may expect no change in the number of iterations
when the inclusion test is turned off. But, the test also helps in reducing the box size
by intersecting it with the interval Newton-type operator as discussed in Sect. 3.3
which explains the increment in NIT for these problems.

The CPU time shows an increase for all the test problems. The nodes generated by
bisection of the solution containing nodes are not easily fathomed by the exclusion
tests, especially when the solution lies near the boundary of bisection. Hence, such
nodes will experience the relatively expensive computational steps of the algorithms
such as calculation of the Krawczyk or interval-Newton operator, solution of non-
smooth convex program and even the RMT iterations (in case both these tests fail
to fathom the node). Hence, the increase in the processing time will depend on the
number of nodes generated and the amount of computationally expensive steps that
each such node undergoes. The increase in B&B iterations as well as the CPU time
is particularly significant in the solution of the extended Rosenbrock function (Exam-
ples 29 A, B and C) where the problems are relatively bigger in size and the inclusion
test, when on, was able to fathom a large volume of the search space.

From the numerical experiments outlined above, it seems that the combined effect
of all of the inclusion and exclusion tests working together is considerably better than
any of them used in isolation, both in terms of iteration counts and processing time.
Also, the obtained test results also illustrate that the proposed nonsmooth exclusion
test outperforms the interval Newton-type operator based exclusion tests when used
in isolation. However, their combined effect yields the best performance and is better
than either of the two acting independently. Furthermore, for most of the problems
from the literature, the interval-Newton with Gauss-Seidel operator was the superior
interval method as compared to the componentwise Krawczyk method, as the B&B
algorithm converged in less iterations and less time. Therefore, it should be consid-
ered first before the componentwise Krawczyk, or alternatively, automatically switch
from the interval-Newton to the Krawczyk when divisions by zero are detected.

5.5 Standard B&B

Simultaneously deactivating the interval Newton-type inclusion/exclusion tests re-
covers the standard B&B algorithm with McCormick relaxations. The standard B&B
algorithm with McCormick relaxations is a novel approach to the root-finding prob-
lem, and to our best knowledge has not been implemented previously in the literature.
In comparison to the full algorithm, the number of iterations taken to solve the test
problems is significantly higher. On the other hand, since the algorithm is not uti-
lizing the interval Newton-type inclusion/exclusion tests, there is a sizable reduction
in operations performed per iteration. Therefore, the standard B&B algorithm with
McCormick relaxations handles most of the test problems quite efficiently. For many
of the examples the solution times are comparable or slightly better than the full al-
gorithm, but with some exceptions with very long run times. On the other hand, the

Exclusion test for nonlinear equations 915

full algorithm, with all of the inclusion/exclusion tests enabled, offers near the low-
est run time for all the test problems, exhibiting the best average performance. It is
clear from this comparison that although the standard B&B algorithm is very efficient
and handles most of the test problems extremely well, the full algorithm obviously
benefits from the ability to fathom the search space efficiently by utilizing all the in-
clusion/exclusion tests available, and the increased cost per iteration is outweighed
by the best average performance over the test set.

6 Conclusion and future work

McCormick’s convex relaxations seem very promising for convex lower bounding
of nonconvex programs because of their capability to produce relatively tight relax-
ations. This is particularly helpful in the solution of systems of nonlinear equations
using a global optimization approach as investigated in this paper. In this formulation,
due to the special structure of the objective function, nonnegativity of the McCormick
convex relaxation can be established leading to a root exclusion test. This nonsmooth
root exclusion test has a significant edge in performance over the interval Newton-
type root exclusion tests as demonstrated by a number of test problems discussed in
Sect. 5. Another important contribution is the set inclusion relation asserted by The-
orem 3 providing a technique for automatic generation of starting points for point
Newton-type iterations.

A distinguishing feature of the proposed algorithm is that by embedding the RMT
based Newton-type method in a branch-and-bound framework, a solution can be lo-
cated at the very first iteration for most of the test problems. This is further exploited
to fathom the search space more efficiently using the Krawczyk or interval-Newton
root inclusion test by checking the uniqueness of the known solution in the given box.

Complete global convergence is guaranteed by the design of the algorithm itself.
The bisection strategy combined with various inclusion and exclusion tests and the
allowed minimum box-size limit ensures that the algorithm will converge finitely.
However, the key question is the high computational effort required for large prob-
lems where special concerns arise for solving the nonsmooth convex program and the
amount of branching and partitioning required. The efficiency of the algorithm also
depends on the range specification of the variables. Overly large bounds on variables
not only lead to weaker interval extensions and bad relaxations, but also make the
interval based inclusion and exclusion tests ineffective until sufficient contraction on
variable bounds is achieved by successive bisection.

An important scope for future work is motivated by the convexity of the set U .
As established earlier that, for zero optimal value of the lower bounding convex pro-
gram, the solution set U is a convex set which contains all solutions of (1). Hence
it would be desirable to prevent the point Newton-type iterations from leaving the
set U . This can be done utilizing the convexity of U and using the separating hyper-
plane theorem. If the Newton-type iterate generates a point outside U then a sepa-
rating hyperplane which separates this point from U can be constructed by solving
another convex program and it can be imposed as a constraint or “cutting plane” to
further restrict the admissible domain. This will potentially cut down the iteration

916 M.D. Stuber et al.

counts for Newton-type methods significantly though at the expense of the involved
computational efforts.

Acknowledgements The authors would like to acknowledge the Chevron University Partnership Pro-
gram for supporting this work through the MIT Energy Initiative. This research was carried out as a part
of Masters’ thesis of the second author as a graduate student in the Computation for Design and Optimiza-
tion Program at MIT, USA. The second author is grateful to the Singapore-MIT Alliance for funding his
graduate studies and this project thereof at MIT.

References

1. Bock, H.G., Kostina, E., Schloder, J.P.: On the role of natural level functions to achieve global con-
vergence for damped-Newton method. In: System Modelling and Optimization: Methods, Theory and
Applications, pp. 51–74 (2000)

2. Chachuat, B.: libMC: A numeric library for McCormick relaxation of factorable functions (2007).
http://yoric.mit.edu/libMC/

3. Deuflhard, P.: A modified Newton method for the solution of ill-conditioned systems of equations
with applications to multiple shooting. Numer. Math. 22, 289–315 (1974)

4. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, Philadelphia (1987)

5. Gritton, K.S., Seader, J.D., Lin, W.J.: Global homotopy continuation procedures for seeking all roots
of a nonlinear equation. Comput. Chem. Eng. 25, 1003–1019 (2001)

6. Hansen, E., Sengupta, S.: Bounding solutions of systems of equations using interval analysis. BIT
Numer. Math. 21, 203–211 (1981)

7. Kearfott, R.B.: Abstract generalized bisection and a cost bound. Math. Comput. 49(179), 187–202
(1987)

8. Kearfott, R.B.: Preconditioners for the interval Gauss-Seidel method. SIAM J. Numer. Anal. 27(3),
804–822 (1990)

9. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic, Boston (1996)
10. Kearfott, R.B., Novoa, M.: INTBIS, a portable interval-Newton/bisection package. ACM Trans. Math.

Softw. 16, 152 (1990)
11. Kuno, M., Seader, J.D.: Computing all real solutions to systems of nonlinear equations with global

fixed-point homotopy. Ind. Eng. Chem. Res. 27, 1320–1329 (1988)
12. Liang, H., Stadtherr, M.A.: Computation of interval extensions using Berz-Taylor polynomial models.

In: AIChE Annual Meeting, Los Angeles, CA (2000)
13. Lucia, A., Feng, Y.: Global terrain methods. Comput. Chem. Eng. 26, 529–546 (2002)
14. Luksan, L., Vlcek, J.: A bundle-Newton method for nonsmooth unconstrained minimization. Math.

Program. 83(3), 373–391 (1998)
15. Luksan, L., Vlcek, J.: Globally convergent variable metric method for convex nonsmooth uncon-

strained minimization. J. Optim. Theory Appl. 102(3), 593–613 (1999)
16. Luksan, L., Vlcek, J.: Algorithm for non-differentiable optimization. ACM Trans. Math. Softw. 2(2),

193–213 (2001)
17. Makela, M.M.: Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17(1),

1–29 (2002)
18. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations.

J. Glob. Optim. 7(2), 143–182 (1995)
19. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs, part I: convex

underestimating problems. Math. Program. 10, 147–175 (1976)
20. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim.

20(2), 573–601 (2009)
21. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4),

611–615 (1977)
22. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
23. Moore, R.E., Kioustelidis, J.B.: A simple test for accuracy of approximate solutions to nonlinear (or

linear) systems. SIAM J. Numer. Anal. 17(4), 521–529 (1980)

http://yoric.mit.edu/libMC/

Exclusion test for nonlinear equations 917

24. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.
Math. Softw. 7(1), 17–41 (1981)

25. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge
(1990)

26. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta
Numer. 13, 271–369 (2004)

27. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Aca-
demic Press, San Diego (1970)

28. Schnepper, C.A., Stadtherr, M.A.: Robust process simulation using interval methods. Comput. Chem.
Eng. 20, 187–199 (1996)

29. Wilhelm, C.E., Swaney, R.E.: Robust solution of algebraic process modelling equations. Comput.
Chem. Eng. 18(6), 511–531 (1994)

	Nonsmooth exclusion test for finding all solutions of nonlinear equations
	Abstract
	Introduction
	Problem formulation
	McCormick's composition theorem
	Convex relaxations of factorable functions

	Theoretical development
	Nonsmooth root exclusion test
	Automatic starting point generation
	Interval Newton-type root inclusion & exclusion tests

	Branch-and-bound algorithm
	Computational results
	B&B with Krawczyk operator vs. interval-Newton operator
	B&B without interval Newton-type root exclusion tests
	B&B without nonsmooth root exclusion test
	B&B without interval Newton-type root inclusion tests
	Standard B&B

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

