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The problem of designing novel process systems for deployment in extreme and hostile environments is addressed. Spe-
cifically, the process system of interest is a subsea production facility for ultra deepwater oil and gas production. The
costs associated with operational failures in deepwater environments are prohibitively high and, therefore, warrant the
application of worst-case design strategies. That is, prior to the construction and deployment of a process, a certificate
of robust feasibility is obtained for the proposed design. The concept of worst-case design is addressed by formulating
the design feasibility problem as a semi-infinite optimization problem with implicit functions embedded. A basic model
of a subsea production facility is presented for a case study of rigorous performance and safety verification. Relying on
recent advances in global optimization of implicit functions and semi-infinite programming, the design feasibility prob-
lem is solved, demonstrating that this approach is effective in addressing the problem of worst-case design of novel pro-
cess systems. VC 2014 American Institute of Chemical Engineers AIChE J, 60: 2513–2524, 2014
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Introduction

As oil and gas reserves continue to be depleted from tradi-
tional on-land and shallow-water fields, there has been a sig-
nificant effort made toward production from increasingly
more hostile environments such as those in the ultra deep-
water—greater than 7500 ft depths—of the Gulf of Mexico.
In 2004, a vast deposit of petroleum, known as the “lower ter-
tiary trend,” containing 3–15 billion barrels of petroleum, was
discovered by Chevron geologists.1 However, as was demon-
strated by BP in 2010 when it suffered a catastrophic failure
of its leased ultra deepwater drilling platform—in only about
5000 ft of water—resulting in 11 lives lost and an estimated
$30 billion in expenses and five million barrels spilled2,3 with
significant ecological damage, pursuing oil reserves in deep-
water environments comes with inherently high risk magni-
fied by a lack of sufficient technology. In this environment,
the costs associated with operational failures far outweigh the
costs associated with “overdesigning” the process, and so the
goal must be to avoid them altogether.

Industry engineers have suggested that the application of
traditional floating platforms to ultra deepwater production is
too risky. Instead, novel remote compact subsea production
facilities are considered a key enabling technology for ultra
deepwater oil and gas production. Due to imprecise data and
incomplete knowledge of the extreme subsea conditions,
among various other factors, it is apparent that uncertainty
must be accounted for. Thus, the task of designing such a
process system is far from trivial.

As field conditions are extreme, they are difficult and
expensive to recreate in the laboratory, and as building phys-
ical pilot plant systems for testing at field conditions is
implausible, model-based design must support and comple-
ment empirical studies. Furthermore, it is worth mentioning
that even if building and deploying pilot systems were a
cost-effective approach, they can only be tested under a
finite number of conditions, and therefore, no rigorous guar-
antee of worst-case performance/safety can be verified.

Stuber and Barton4 previously stated that for these types of
systems, the first question a design engineer must address is:

Given a process model, and taking into account the uncertainty

in the model and disturbances to the inputs of the system, do

there exist control settings such that, at steady state, the physical

system will always meet performance/safety specifications?

This question will be formulated mathematically later and
its application to subsea production facilities will be the pri-
mary focus of this article. In the following section, the sub-
sea process system model will be presented and the case
study will be set up.

Model and Case Study

The subsea separator is considered to be at the heart of
subsea production facilities because it is the key process
system for performing upstream phase separation as mate-
rial is being produced from the wellhead. In the steady-
state model presented here, it is considered that a three-
phase mixture of oil/water/gas is being sufficiently sepa-
rated to allow for reinjection of the water back into the
environment and the production of separate oil and gas
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streams. It is assumed that sand has been separated from
this stream prior to being fed to this separator. Figure 1
shows the process flow diagram of the subsea separator
with some modeling details. The system consists of a gas–
liquid separator (GLS), a liquid–liquid separator (LLS),
two control valves, and a gas mixer.

Assumptions

Because the model is intended to illustrate the basic
approach, there is a list of simplifying assumptions. How-
ever, as various levels of complexity may be added to this
basic model, certain assumptions may be eliminated in the
future. For the purposes of the basic model, the following
assumptions are made:

1. Ideal homogeneous mixtures in multiphase streams and
the GLS.

2. No liquid entrainment in the gas phase.
3. Perfect oil–water phase separation in the LLS.
4. Unrestricted flow from the LLS implying constant

phase volumes.
5. Horizontal separator vessels are horizontal cylinders

with flat end-caps.
6. Oil and water phases remain in a homogeneous emul-

sion with only the gas phase separating in the GLS.

Input parameters

The various physical properties of the system are specified
by the user as input parameters. Tables A1–A4 in Appendix
contain the parameters that are specified by the user. Table
A5 in Appendix contains a description of the relevant sym-
bols used herein.

The following calculation for the specific gravity of oil is
used

SGO5
141:5

131:51API

The specific gravity of the mixture at the wellhead is

SGmix 5ðnG1=SGG1nW1=SGW1nO1=SGOÞ21

where nji is the mass fraction of material j (O 5 oil, G 5 gas,
W 5 water) in stream i.

Of course, the following constraint on the composition of
the mixture at the wellhead must hold

nG11nW11nO151

Control valve V-1

The variables associated with V-1 are

_m1; _m2;P1;P2; nG1; nO1; nW1; nG2; nO2; nW2

where _mi is the mass flow rate of Stream i in kg/s, Pi is the
pressure of Stream i in Pa. For simplicity, the vector of mass
fractions can be expressed as ni5ðnGi; nWi; nOiÞ.

The model equations are

P15Pwell

which is specified by the wellhead

P25PGLS

which is the design pressure of the GLS, and

n15n2

which is specified as the source of disturbance uncertainty.
The mass flow rate through the valve is given by

_m15 _m25u1Cv1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P12P2

SGmix

r
(1)

where u1 is the control setting.

Gas–liquid separator

The variables associated with the GLS are

_m2; _m3; _m4;P2;P3;P4;HGLS ; q4;VGLS ; n2; n3; n4

where HGLS is the liquid level in the GLS in m; q4 is the
density of the mixture in Stream 4 in kg/m3, VGLS is the liq-
uid volume in the GLS in m3, and ni is the vector of mass
fractions corresponding to Stream i. The associated model
equations are given below.

The pressure relationships are given by

P35P2ðspecified by designÞ

P45P31q4gaHGLS

(2)

The liquid volume in the GLS is given by

VGLS 5LGLS

�
ðHGLS 2RGLS Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RGLS HGLS 2H2

GLS

q

1R2
GLS cos 21 12

HGLS

RGLS

� �� (3)

The mass balances are

Figure 1. The process flow diagram of the subsea separation process.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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_m25specified via wellhead

_m25 _m31 _m4

15nG41nW41nO4

nG2 _m25nG3 _m31nG4 _m4

nW2 _m25nW4 _m4ðwater balanceÞ

n25specified by wellhead composition

n35ð1; 0; 0Þðonly gas in Stream 3Þ

where the density of Stream 4 is given by

q45q�WðnG4=SG G1nW4=SG W1nO4=SG OÞ21
(4)

Last, a model describing the gas–liquid separation is needed.
This model can be derived rather easily by noticing that the
rate in which gas is separated from the mixture is governed by
the velocity of the bubbles traveling upward and out of the
mixture which is determined by the bubble size and the physi-
cal properties of the mixture. Here, the mean bubble size is
assumed to be determined by the internal construction of the
separator and the separator inlet conditions, and therefore, it is
assumed that a performance constant for the separator can be
assigned. Let nG be the mass fraction of gas in the separator at
any given point. Then, the rate of gas separation is

dnG

ds
52ks

where k is the separator performance constant and s is the
residence time of the mixture in the separator. Solving gives
us the GLS model which is a simple exponential decay

nG45nG2exp 2kGLS

VGLS

_m4=q4

� �
(5)

where the separator performance constant is kGLS and the
quantity VGLS =ð _m4=q4Þ is the residence time of the liquid
solution in the GLS.

Control valve V-2

The control valve V-2 is almost identical to V-1. The
associated variables are

P4;P5; _m4; _m5; n4; n5;q4

The mass-balance equations are

n45n5

_m45 _m55u2Cv2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P42P5

q4=q
�
W

r

The outlet pressure—which is specified—is given by

P55PLLS

Liquid–liquid separator

The LLS is very similar to the GLS. One key difference is

the liquid level in the LLS is specified assuming no restric-

tions on exit stream flow rates. The associated variables are

_m5; _m6; _m7; _m8; n5; n6; n7; n8;P8;VLLS ;Voil ;HLLS ;q7

where q7 is the density of the solution in Stream 7 in kg/m3,

VLLS is the total liquid volume in the LLS in m3, HLLS is the

total liquid level in the LLS in m, and Voil is the volume of

just the oil/gas mixture in the LLS.

The liquid volume in the LLS is given by

VLLS 5LLLS

�
ðHLLS 2RLLS Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RLLS HLLS 2H2

LLS

q

1R2
LLS cos 21 12

HLLS

RLLS

� �� (6)

where the liquid height HLLS is specified. The volume of the
oil/gas mixture phase in the separator is given by the follow-
ing relationship assuming an ideal mixture

Voil 5VLLS

_m7

q7

q5

_m5

� �
(7)

The quantity _m7q5=q7 _m5 is the volume fraction of the
combined oil and gas exiting in Stream 7 with respect to the
total solution incoming in Stream 5. The product with VLLS

is, therefore, the volume of the oil/gas solution for which
further gas–liquid separation is taking place.

The mass-balance equations are

n85ð1; 0; 0Þðonly gas in Stream 8Þ

n65ð0; 1; 0Þðonly water in Stream 6Þ

15nG71nO7ðonly gas and oil in Stream 7Þ

_m55 _m61 _m71 _m8

nG5 _m55nG8 _m81nG7 _m7 ðgas balanceÞ

nW5 _m55nW6 _m6 ðwater balanceÞ

nW750 ðno water in Stream 7Þ
Further gas–liquid separation is again being modeled as a

simple exponential decay

nG75nG5exp 2kLLS

Voil

_m7=q7

� �
(8)

where, again, kLLS is a separator performance constant, and
the quantity Voil = _m7q7 is a residence time of the gas/oil mix-
ture in the separator.

The density of the oil/gas mixture stream is given by

q75q
�

WðnG7=SG G1nO7=SG OÞ21

Since the liquid outlet streams have no restrictions to
flow, their flow-pressure relationships can be ignored. The
pressure in the gas Stream 8 is specified

P85PLLS

Gas mixer

The gas mixer is simply a junction of two pure gas
streams. The associated variables are

n8; n3; n9; _m3; _m8; _m9;P3;P8;P9

The associated equations are

n35n9

_m95 _m31 _m8

P95min fP3;P8g

Pointwise numerical simulation

Pointwise numerical simulation was performed using a
Windows 7 machine with Intel Core2 Quad Q9450 CPU to
study the behavior of the model over a range of uncertainty
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parameter and control values using the JACOBIANVR process
simulator.5 It should be noted that the min operator appear-
ing in the gas mixer model is nonsmooth. This does not
introduce any problems for the JACOBIAN solver, which
can handle nonsmoothness.

Performing pointwise simulation of the subsea separator sys-
tem resulted in a very coarse-grain view of the system under
varying input conditions and control actions. For this study, the
mass fractions of the gas (nG1) and water (nW1) in the input
stream were treated as uncertain while the oil fraction (nO1) was
held constant. This may be interpreted as a gas bubble being
produced from the wellhead. The gas fractions of 0.35, 0.4,
0.45, and 0.5 were studied while the oil fraction was set to 0.4.
The dimensions of the GLS were such that RGLS 5 0.6 m and
LGLS 5 5 m. The control values were varied between 30% open
and fully opened positions in 5% increments. A constraint was
imposed that the gas carry-under (GCU)—which is the fraction
of gas that is entrained in the oil product stream—must be less
than, or equal to, 5%. There was also an inherent physical con-
straint regarding the liquid volume in the GLS such that it could
not be greater than the total volume of the vessel.

In Figure 2, the coarse-grain view of the feasible region at
each fixed uncertainty realization of the gas fraction of the
incoming stream is shown. Each contour plot is the result of
running 196 steady-state simulations, taking a total time of
approximately 45 s for each gas fraction. As can be seen
from Figure 2, for the four realizations of uncertainty simu-

lated, there exists a fairly large set of controls that ensure
feasible operation of the process. The contours do not neces-
sarily have any specific relevance for the purposes of this
article as the concern is simply on whether the performance
constraint is satisfied. However, for completeness, the con-
tours are included and they correspond with the level at
which the constraint on the GCU is satisfied. The outer bor-
ders correspond with the constraint on the GCU just being
satisfied, whereas the inner-most contour corresponds with
the least amount of GCU. The region in the upper-left corner
of the plots corresponds with the region where the GCU is
too high (and the performance constraint is not satisfied).
The region in the lower-right corner of the plots corresponds
with the regime in which the GLS is flooded. The reader
will also notice that the contours appear to be piecewise
affine, however, this is simply an artifact of discretization.
At the expense of increased computational effort, a finer dis-
cretization would produce contours that appear smoother.

By analyzing the results of the pointwise numerical simu-
lation, it becomes apparent that it is insufficient in address-
ing the original question posed in the Introduction. First,
identifying feasible control settings for a particular uncer-
tainty realization may actually depend on the resolution of
the discretization mesh applied to the control space for the
simulation. Second, and much more importantly, there are
infinitely many realizations of uncertainty in the given uncer-
tainty interval. Therefore, pointwise numerical simulation is

Figure 2. The results of the coarse-grained numerical simulation of the subsea separator model.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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incapable of identifying the worst-case realization with any
sort of guarantee. In this case, only a rigorous optimization-
based approach can be taken. In the next section, this worst-
case design problem is formulated mathematically as an opti-
mization problem which, on solving, has the ability to deter-
mine with mathematical certainty whether or not the process
is robustly feasible (i.e., there exists at least one control set-
ting such that the performance constraints may be satisfied
in the face of the worst-case realization of uncertainty).

Problem Formulation

The steady-state design question presented in the introduc-
tion section, and discussed in the previous section, can be
stated equivalently as the logical feasibility statement6

8p 2 P; 9u 2 U : gðz;u;pÞ � 0; hðz;u; pÞ50 (9)

Here, h : X3U3P! Rnx represents the steady-state pro-
cess model equations presented in the previous section. The
performance/safety specification or constraint will be repre-
sented by g : X3U3P! R which, in the previous section,
was the performance specification on the GCU. The variables
z 2 X � Rnx ; u 2 U � Rnu ; p 2 P � Rnp will be the process
state variables, controls, and uncertainty parameters, respec-
tively. The set X will represent rigorous bounds on the process
state variables which oftentimes initially come from physical
information (e.g., density is nonnegative and has a reasonable
upper-bound for solids and liquids, etc.). The set U will repre-
sent rigorous bounds on the control actions (e.g., control
valves can only position themselves between fully opened and
fully closed positions). Last, the set P will represent the uncer-
tainty set (e.g., the mass fraction of gas in the feed which
takes values between bounds). Thus, in words Eq. 9 reads:

For all values of the uncertain parameters, there exists a
feasible control action such that the process model and the
safety specification are satisfied.

Now, suppose unique z 2 X exist that satisfy hðz; u; pÞ50

at each ðu;pÞ 2 U3P, with U and P as intervals, then they
define an implicit function of u and p that will be expressed
as xðu; pÞ. It will be assumed that there exists a unique con-
tinuously differentiable implicit function x : U3P! X such
that hðxðu; pÞ;u;pÞ50 holds for every ðu;pÞ 2 U3P. Condi-
tions which satisfy this assumption are stated in the litera-
ture,4,7,8 (Stuber et al., Submitted). In the previous section, a
pointwise numerical simulation was used to evaluate x at
given values of u and p.

In the articles by Halemane and Grossman6 and by Swaney
and Grossman,9 the authors take the same steps presented
here to eliminate the model equations by introducing an
implicit function of the controls and uncertainty parameters.
However, in the mentioned articles, it is unclear if it is
required that the model equations lead to implicit functions
that have known closed forms. It seems that this must be the
case as certain convexity properties of g are required.6,9 How-
ever, in the general case, x does not have a known closed
form and can only be approximated using iterative techniques.
Furthermore, convexity of g cannot be assumed for the gen-
eral case as the required properties of x cannot necessarily be
guaranteed. In any case, the authors formulate the feasibility
statement (9) as a max-min problem, which they mention is
“very difficult to solve”6,9; in the general case it is NP-hard.
Ostrovsky et al.10 presented a method for bounding the solu-
tion of the feasibility problem of Halemane and Grossman6

and Swaney and Grossman9 that amounts to solving a

sequence of nonlinear programming subproblems. However,
the same convexity requirements are maintained.10

Stuber and Barton4 presented the nonconvex max-min prob-
lem discussed previously.6,9 They reformulate the problem as
a semi-infinite program (SIP) and solve it using an algorithm
developed from the work of Bhattacharjee et al.11 For more
complicated models, this algorithm proves to be ineffective.
One major drawback of that algorithm is that the number of
constraints used to formulate the lower-bounding problem
(LBP) grows exponentially with the depth in the branch-and-
bound tree. Furthermore, because the effectiveness of the LBP
relies primarily on the relative tightness of the interval bounds
on the semi-infinite constraint, the algorithm often creates a
branch-and-bound tree with significant depth.11 For this rea-
son, a heuristic for discarding irrelevant constraints was devel-
oped by Bhattacharjee et al.11 However, the authors mention
that the heuristic does not accelerate convergence; it only
reduces the computational storage requirement.11 For these
reasons, the algorithm presented by Stuber and Barton4 will
be inefficient and potentially inadequate to address the feasi-
bility of complex process systems examples, such as subsea
production facilities. Falk and Hoffman12 presented a robust
design problem formulated as a nonconvex max-min problem,
which they reformulate as a nonconvex SIP and solve using
the algorithm developed by Blankenship and Falk.13 A refine-
ment of the same technique14 will be applied in this work.

The feasibility statement (9) can be written equivalently
as the following SIP4

g�5 max
p2P;g2R

g

s:t: g � gðxðu;pÞ;u;pÞ; 8u 2 U
(10)

which is referred to as an implicit SIP because the semi-infinite
constraint g is an implicit function of the controls and uncer-
tainty parameters. Solving (10) pertaining to the subsea produc-
tion facility model will verify performance/safety in the face of
the worst-case realization of uncertainty. If g� � 0, the design
is feasible and worst-case performance/safety has been verified.
Alternatively, if g� > 0, the design is said to be infeasible.

Mitsos14 recently refined the cutting-plane algorithm of

Blankenship and Falk.13 In particular, a novel upper-bounding

procedure (for SIPs formulated as minimization problems)

was added to guarantee—under some relatively mild assump-

tions—that the algorithm can produce an SIP-feasible point

after finitely many iterations.14 In effect, this guarantees that

the global extremum value can be bounded rigorously and the

SIP can be solved to �-optimality in finitely many iterations

of the algorithm.14 For the upper-bounding problem (UBP), a

restriction parameter �g > 0 was introduced, effectively

restricting the SIP-feasible set.14 Another parameter r> 1 was

introduced that effectively relaxes the restricted feasible set at

certain stages in the SIP cutting-plane algorithm, effectively

increasing the size of the originally restricted SIP-feasible set.

All other details of the UBP are identical to the LBP (e.g.,

how cutting planes are chosen, etc.).
Stuber15 adapted the SIP cutting-plane algorithm14 to

solve SIPs with implicit functions embedded. The applica-
tion to max-min and min-max problems is also considered
by explicitly reformulating them as SIPs with implicit func-
tions embedded.15 Two chemical engineering design exam-
ples were also given which demonstrate the effectiveness of
this algorithm. In the next section, the application of this
algorithm to the worst-case design problem is addressed.
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Solution Method

SIP algorithm

In the previous section, it was stated that the SIP algorithm of
Stuber,15 which is an adaptation of the SIP cutting-plane algo-
rithm14 to implicit SIPs, will be utilized in this article to solve
the problem of worst-case design of subsea production facilities.
In the previous works,15 various features and behaviors of the
implicit SIP algorithm were explored using relatively simple
examples. In this work, the implicit SIP algorithm will be dem-
onstrated on a more complicated process model, which poses
many numerical difficulties, motivated by a current challenge to
engineers in the oil and gas sector. The numerical experiments
will demonstrate that the implicit SIP algorithm is not only
applicable to more complicated models but also that it is effec-
tive in providing a rigorous answer in relatively little time.

The reader should note that in the SIP literature,14,15 the
algorithm was written with respect to solving minimization
problems, whereas the standard worst-case problem formula-
tion is a maximization problem. The maximization SIP (10)
can be transformed into a minimization problem by simply
distributing minus signs appropriately. Then, one just needs
to take care and notice that the UBP of the previous
works,14,15 which may provide SIP-feasible points and in
turn a rigorous upper bound for the minimization problem,
actually provides a rigorous upper bound on –g (i.e., its neg-
ative is a rigorous lower bound on g). Similarly, the LBP of
the previous works14,15 will provide a rigorous lower bound
on –g (i.e., its negative is a rigorous upper bound on g). The
three subproblems are stated explicitly as follows.

The LBP is based on a simple relaxation technique
whereby the original SIP is reduced to an implicit nonlinear
program (NLP) by only considering finitely many constraints
corresponding to realizations of u 2 ULBP with ULBP � U as
a finite set. The LBP is formulated as

f LBP 5 min
p2P;g2R

2g

s:t: g2gðxðu;pÞ; u; pÞ � 0;8u 2 ULBP

(11)

To guarantee that f LBP is a valid bound, (11) must be
solved to global optimality.

The inner problem is equivalent to the semi-infinite constraint
and defines the SIP feasible region. Given a candidate ðp; �gÞ,
feasibility can be determined by solving the inner problem

�cðp; �gÞ5 max
u2U
½�g2gðxðu; pÞ;u; pÞ� (12)

If �cðp; �gÞ � 0, then ðp; �gÞ is an SIP-feasible point. In gen-
eral, (12) must be solved to global optimality.

Similar to the LBP, for the UBP the original SIP is
reduced to an implicit NLP by only considering finitely
many constraints corresponding to realizations of u 2 UUBP

with UUBP � U as a finite set. Furthermore, the restriction
parameter �g;k > 0 is introduced that bounds the semi-infinite
constraint away from zero. The UBP is formulated as

f UBP 5 min
p2P;g2R

2g

s:t: g2gðxðu; pÞ;u;pÞ � 2�g;k;8u 2 UUBP

(13)

In order for the algorithm to solve the SIP to global opti-
mality, (13) must be solved to global optimality. However,
solving (13) locally will yield a valid bound on the solution.

It should also be noted that, since the worst-case design
problem is a feasibility problem, it is only necessary to

obtain a rigorous guarantee of feasibility or infeasibility.
That is, it is unnecessary to solve (10) to global optimality if
an SIP-feasible point can be found that provides a rigorous
lower bound (LBD) on the objective function g such that
LBD> 0; implying g� > 0. In this case, the algorithm can
terminate with a guarantee of infeasibility. Similarly, if a rig-
orous upper bound (UBD) on the objective function can be
obtained such that UBD � 0, this implies g� � 0. In which
case, the algorithm can terminate with a guarantee of robust
feasibility. With regards to the optimization algorithm sub-
problems (11) and (13), the relationship is

LBD 52f UBP � g� � 2f LBP 5UBD

These two additional termination criteria make the algo-
rithm drastically more efficient since solving the SIP to
global optimality is quite expensive. However, to guarantee
that the algorithm terminates after finitely many iterations,
the standard �-optimality termination criterion remains pres-
ent. If, however, the algorithm terminates with �-optimality,
further investigation is required to determine robust feasibil-
ity of the design with mathematical rigor. These termination
criteria are identical to those of the algorithm in Stuber and
Barton,4 labeled 3(d) and 4(d), respectively, which was writ-
ten with reference to solving the maximization problem.

As the SIP algorithm by Stuber15 is to be applied here, it is

required that global optimization subproblems, with embedded

implicit functions, can be solved. Currently, the only algo-

rithm available for doing so, in the general case, is that of

Stuber et al. (Submitted).15 The algorithm of Stuber et al.

(Submitted)15 uses the conventional branch-and-bound16

(B&B) framework for global optimization. To summarize, the

B&B algorithm iteratively subdivides the search space and

sequentially solves UBP and LBP on each subdivision. The

LBP is formulated by convexifying the original problem (say

by McCormick relaxations,17 aBB,18 etc.) and solving the

convex problem with a local optimization algorithm, such as

sequential-quadratic programming.19 The upper bound can

either be obtained by simply evaluating the objective function

at a candidate point located within the current subdivision or

by solving the original nonconvex optimization problem using

a local solver. By comparing the bounds calculated on each

subdivision, regions of the search space can be discarded as

they are guaranteed not to contain a global optimal solution

(if any exist). The iterative procedure continues until the

upper and lower bounds are sufficiently close at which time

the algorithm is said to have converged.
Since the problems being solved here involve implicit

functions, new methods for constructing convex and concave
relaxations (and subgradients) were developed (Stuber et al.,
Submitted) (i.e., xc convex and xC concave such that
xcðu;pÞ � xðu; pÞ � xCðu;pÞ;8ðu;pÞ 2 U3P). These meth-
ods are analogous in many ways to parametric interval-
Newton-type methods8 for constructing interval bounds on
implicit functions; however, they make use of generalized
McCormick Relaxations20 to construct convex and concave
relaxations of these functions. First, interval bounds are cal-
culated, say by interval-Newton-type methods. Then, the
relaxation technique iteratively refines these bounds yielding
convex lower-bounding and concave upper-bounding func-
tions. Since convex and concave relaxations of implicit func-
tions can be calculated, they can be composed with g using
generalized McCormick relaxations20 and the traditional
lower-bounding subproblem of the B&B framework can be
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solved, using a local NLP solver, which supplies the B&B
global optimization algorithm with a valid lower bound. The
B&B algorithm simply treats (11) and (13) as constrained
nonconvex NLPs and (12) as an unconstrained nonconvex
NLP. The hierarchy for the information flow of the algo-
rithm for global optimization of implicit functions, used to
solve Eqs. 11–13, is shown in Figure 3.

The algorithm for solving implicit SIPs was implemented
using C11 in a manner analogous to Stuber15 with the addi-
tional stopping criteria added to the algorithm. The flowchart
for the algorithm is shown in Figure 4. All other details of the
algorithm are identical to the previous works.15 In particular,
the global optimization subproblems are solved using the
global optimization of implicit functions algorithm (Stuber
et al., Submitted)15 previously discussed. PBUNS and
PBUNL21 are again used to solve nonsmooth convex problems
for the global optimization of implicit functions algorithm.
Similar to the previous works,15 to circumvent the limitations
imposed by PBUNL (i.e., only accepting affine inequality con-
straints), affine relaxations of convex nonlinear inequality con-
straints with respect to multiple reference points are used.

As a first attempt, the parametric interval-Newton method4,8

was applied to calculate the required interval bounding informa-
tion. It was determined that this was insufficient in supplying
the required bounding information for this problem due to the
behavior of the model equations. To remedy this, another inter-
val technique, which falls under the constraint propagation cate-
gory, was identified as being quite effective when used in
conjunction with the parametric interval-Newton method.

Constraint propagation techniques

In solving SIPs with implicit functions embedded, such as
(10), it is required to obtain meaningful bounding information
for the function g, which is often a limiting step in the overall
performance of the algorithm. This is because all that is known
about the state variables initially are their natural bounds, which
in turn leads to a prohibitively large initial bound on g from
which no meaningful information can be deduced. Because
interval-Newton-type methods8 often prove to be ineffective in
refining sufficiently large initial intervals, which was observed
when applied to the separator model, this poses a serious prob-
lem for the algorithm. Although interval-Newton methods are
quite effective on smaller intervals, a method that can obtain
meaningful bounds on the function g starting with large initial
intervals on the state variables efficiently is necessary for the
overall success and performance of the algorithm.

Interval analysis has been widely applied to many simula-
tion and optimization applications in chemical engineering, for

example, the work by Lin and Stadtherr22 and the work by
Balendra and Bogle.23 Lin and Stadtherr22 presented strategies
for bounding the solution of interval linear systems which
were solved in the context of the interval-Newton method. The
authors reviewed several preconditioning techniques for the
above mentioned method and proposed a new bounding
approach based on the use of linear programming (LP) strat-
egies. They demonstrated the performance of the proposed
technique on global optimization problems such as parameter
estimation and molecular modeling. Balendra and Bogle23

addressed interval-based global optimization of modular pro-
cess design. In their work, the authors explored the use of five
different interval contraction methods to improve the perform-
ance of a previous interval optimization algorithm.24 The con-
traction methods used were: consistency techniques, constraint
propagation, LP contractors, interval Gaussian elimination, and
the interval-Newton contractor. Using a set of mathematical
problems and chemical engineering flow sheet design problems
such as the Haverly pooling problem, reactor flow sheet prob-
lem, and a reactor network problem, they compared the impact
of various contraction methods on the overall performance of
the interval optimization algorithm. Their computational
experiments showed that the LP contractors performed the best
while the constraint propagation and interval Gaussian elimina-
tion methods were ineffective.

In the context of interval contraction, there exist several
methods developed by researchers outside of the process sys-
tems community. For a detailed review of such methods, see
the book by Jaulin et al.25 Schichl and Neumaier26 presented
the fundamentals of interval analysis on directed acyclic graphs

Figure 4. The flowchart for the main SIP algorithm.

Figure 3. Global optimization of implicit functions.
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(DAGs) for global optimization and constraint propagation.
The proposed framework overcomes the limitation of propagat-
ing each constraint individually by taking into account the
effects of any common subexpressions that are shared by many
constraints. Later, the above framework was extended to per-
form adaptively forward evaluations and backward projections
on only some select nodes of a DAG.27 The computational
study showed that the adaptive framework performs at least
one to two orders of magnitude faster than the other state-of-
the-art interval constraint propagation techniques.

More recently, the adaptive DAG framework of Vu
et al.27 was used in a branch-and-prune algorithm to find
multiple steady states in homogeneous azeotropic and ideal
two-product distillation problems.28 Their computational
experiments showed some promising results in the applica-
tion of constraint propagation techniques of Vu et al.27

In this work, a forward-backward constraint propagation
technique, similar to the DAG framework of Schichl and
Neumaier,26 will be discussed and exploited. The technique
is used to obtain meaningful bounds on the implicit functions
of (10). Thus, the goal is to expedite the above bounding
procedure over a given large initial box using the constraint
propagation technique, and subsequently obtain rigorous,
tight, and convergent bounds on implicit functions using the
interval-Newton method. Combining the strengths of con-
straint propagation and interval-Newton methods seem to be
a promising approach to obtaining useful bounding informa-
tion required for solving (10), and this will be the focus of
the proposed solution framework.

Forward and backward propagation of intervals

Different interval arithmetic implementations have been
developed in the past, for example, for C11.29,30 These pro-
vide a new data type and use operator and function overloading
to calculate interval extensions of arithmetic expressions. They
can be easily used for the forward interval evaluation of an
explicit factorable function. However, to enable the backward
propagation of intervals, it is necessary to keep information
about intermediate factors in memory [a similar requirement is
found in the reverse mode of automatic differentiation (AD)31].
There, a record of each operation is kept on a so-called tape
during a forward function evaluation. During the reverse pass,
the tape is read to reconstruct the operation and calculate the
derivative. The stored information includes the type of opera-
tion and the address of the operands in the tape.

Here, for the implementation of a backward interval prop-
agation, it is proposed to proceed in a slightly different fash-
ion. First, the factorable function is parsed using operator
and function overloading to construct its computational
graph. All other operations will be performed on this graph
object. In contrast to typical AD implementations, the com-
putational graph, which can be thought of as a kind of tape,
is persistent in memory and can be reused after it is con-
structed once. Basically, the graph is stored in an array
where each element, or factor, contains information about
the type of operation and the address of the operands. In
addition, for each factor, an interval is also stored. These
intervals can be accessed for the independent and dependent
variables, that is, variables and function values, respectively.
Also, it is possible to provide a priori bounds on some spe-
cific intermediate factors, if desired.

Forward Interval Evaluation. Prior to the forward inter-
val evaluation, an interval is specified for each independent

variable. Also, a priori intervals can be specified for inter-
mediate factors. Then, during the forward evaluation, the
graph can be traversed element-by-element and an inclusion
interval can be constructed for each factor according to its
operation type as each factor depends only on factors that
have been evaluated already and for which this inclusion
information is already available. If a node is an intermediate
factor for which a priori bounds have been provided, then
these bounds are intersected with the newly calculated inter-
val so as to provide potentially tighter bounds. If the inter-
section is empty, then this bound cannot be satisfied for all
possible realizations of the independent variables. Once all
factors have been calculated, the inclusion intervals of the
dependent variables, that is, the function values, are exported
from the graph object.

Backward Interval Propagation. After a forward interval
evaluation has provided valid bounds on each factor, the inter-
vals for the dependent variables can be updated by intersecting
these with additional information such as constraints that must
be satisfied. Then, the computational graph will be traversed
in reverse order. For example, suppose that the current factor
is vk5vi1vj. Then, it also must be true that vi5vk2vj and
vj5vk2vi. Analogous rules can be constructed for other opera-
tions too, where more discussion can be found in the work by
Schichl and Neumaier.26 This provides additional bounds on
the operands vi and vj, which can be intersected with their cur-
rent bounds resulting in potentially tighter bounds. Again, ele-
ment after element is revisited until the first factor, that is not
an independent variable, is reached. If an intersection resulted
in an empty interval, then one can conclude that no possible
realizations of the independent variables on the original box
can satisfy the constraints. Otherwise, potentially tighter inter-
vals have been computed for the independent variables. Note
that the backward propagation can be done in several different
orders, each of which may generate a different result.

It is possible to perform multiple forward evaluations and
backward propagation passes consecutively as the computed
intervals do not necessarily converge to fixed point intervals
in a single iteration. The following example illustrates the
forward evaluation and backward propagation steps.

EXAMPLE 1. Consider

f ðz; pÞ5z21zp14;X05½20:8;20:3�;P05½6; 9�

A factorable representation is given by

v15z2

v25zp

v35v11v2

v45v314

Forward interval evaluation results in

V15½20:8;20:3�25½0:09; 0:64�

V25½20:8;20:3� � ½6; 9�5½27:2;21:8�

V35½0:09; 0:64�1½27:2;21:8�5½27:11;21:16�

V45½27:11;21:16�1½4; 4�5½23:11; 2:84�

Prior to the backward pass, we set V4 5 [0, 0], which corre-
sponds to f(z,p) 5 0. First, we update V3 according to
V3 : 5V3 \ ðV424Þ5½24;24�. Next, we reverse the
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assignment V35V11V2 to update V1 and V2: V1 : 5V1 \ ðV3

2V2Þ5½0:09; 0:64�;V2 : 5 V2 \ ðV32V1Þ5½24:64;24:09�.
Then, V25X � P is reversed: X : 5X0 \ ðV2=P0 Þ5½20:7734;
20:4544�;P : 5P0 \ ðV2=XÞ5½6; 9�. Last, V15X2 is reversed:
X : 5hull fX \2

ffiffiffiffiffi
V1

p
;X \

ffiffiffiffiffi
V1

p
g5½20:7734;20:4544�, which

concludes the backward interval propagation. As a result, X
5½20:7734;20:4544�;P5½6; 9� are a refinement of the origi-
nal interval X03P0 with the guarantee that any ðx; pÞ 2 X03

P0 for which f(z,p) 5 0 is also contained in X 3 P.

In some cases, it is possible that a univariate function
operating on an intermediate factor is only defined for a sub-
set of R, for example, arccos x is only defined for
x 2 ½21; 1�. In the model presented in this article, a domain
violation of the arccos function corresponds to the physical
phenomenon of flooding of the separator unit. In this case,
the model is invalid and evaluating it returns no meaningful
solution. To prevent numerical artifacts from impacting the
forward interval evaluation, the following convention will be
used. Consider the univariate function / : D � R! R. If
x 62 D, then /ðxÞ �1. Let U be an interval extension of /
and suppose X is an interval that is not fully contained in D.
In this case, it is safe to evaluate UðX \ DÞ to obtain con-
servative bounds on the image of X under /. It may be pos-
sible that X \ D51 which means that all points in X cause
domain violations and, hence, the separator floods. Other-
wise, at least one operating condition exists that does not
cause flooding and the model can be evaluated safely.

Robust Simulation Results

The robust simulation case studies were performed on the
same hardware mentioned previously operating Ubuntu
Linux 10.04. Similar to the pointwise simulation case study,
the mass fraction of gas in the feed stream from the well-
head was considered to be uncertain and the oil composition
was held constant. Relating the notation from the problem
formulation to the model, the state variables, the controls,
and uncertainty parameter are stated formally as

z5ðnG4; nW4; nO4; _m3; _m4;HGLS ; nG7; nO7; _m6; _m7; _m8Þ

u5ðu1; u2Þ

p5ðnG1Þ

The total size of the system ends up as nx 5 11, nu 5 2, and
np 5 1. Although there are many more variables, they are
associated with trivial equations and do not show up in the
implicit function calculations (i.e., they do not end up as func-
tions of u and p). The performance specification is such that,
in order to avoid damaging the pump, the GCU must be less
than or equal to some specified amount, Gmax , which will be
varied for the purpose of demonstrating the behavior of the
algorithm. Stated formally, gðz; u; pÞ5nG72Gmax � 0, where
z is the vector of all the internal state variables, such as flow
rates and compositions of each stream. As the simulation
algorithm solves the model equations for the state variables as
implicit functions of the uncertainty parameters and controls,
represented as x : U3P! X, the performance specification
can be written as the following nonlinear implicit function

gðxðu; pÞ; u; pÞ5xG7ðu; pÞ2Gmax � 0

where xG7 is the relevant component of x representing the
mass fraction of gas in the oil product stream. The robust
simulation SIP (10) can be written for this problem as

g�5 max
p2P;g2R

g

s:t:g � xG7ðu;pÞ20:05;8u 2 U

P5½0:35; 0:50�

U5½0; 1�3½0; 1�

(14)

It is clear from Figure 2 that certain control valve settings
lead to the flooding of the GLS. This phenomenon has not only
physical implications but also, more importantly, numerical
ones, which were discussed in the previous section. Since the
GLS is modeled as a horizontal cylinder, the pertaining model
equation contains the term cos 21½12H=R� which is only
defined on the compact set fH 2 R : 0 � H � 2Rg. Thus, if
the control valves are allowed to take values from fully opened
to fully closed, it is easy to produce scenarios with H> 2R, and
numerically, there is a domain violation of the cos 21 term and
the model has no solution. When this situation was encountered
in the study from the previous section, with results depicted in
Figure 2, the process simulator simply fails, as expected. Such
domain violations are the topic of current research.

In this work, the valid interval from which HGLS may take val-

ues is [0,2RGLS]. However, the model solution is an implicit func-

tion of the controls u and the uncertain variable p, and therefore,

the liquid level in the GLS is dependent on both u and p. As the

level in the GLS is limited to the interval [0,2RGLS], it is clear that

the implicit function x does not exist for every ðu;pÞ 2 U3P.

Because of this, the global optimization algorithm for solving the

implicit subproblems may encounter three situations. The first sit-

uation is one where a partition Ul3Pl � U3P is popped off the

stack in which x exists for every ðu; pÞ 2 Ul3Pl, after applying

forward-backward constraint propagation. This situation is of

course no different than if x exists on all of U 3 P. The second sit-

uation that may be encountered is one where x does not exist for

any ðu;pÞ 2 Ul3Pl. In this case, the subproblem is simply

labeled as infeasible and the partition Ul3Pl is discarded. The

third situation which may be encountered is one where x only

exists for ðu; pÞ 2 Q � Ul3Pl after applying forward-backward

constraint propagation. The question arises of how the global opti-

mization algorithm may address this situation. For the purposes

of this article, when this situation is encountered, relaxations of x

can still be constructed using the theory of (Stuber et al., Submit-

ted)15 but x does not exist on all of Ul3Pl, the functions that are

constructed are underestimators and overestimators, respectively,

of x on Q � R � Ul3Pl with R 2 IRnu 3IRnp and they are con-

vex and concave, respectively, on R. In this case, the functions

constructed do not exist for ðu;pÞ 2 fða; bÞ 2 Ul

3Pl : ða; bÞ 62 Rg. The following example illustrates the idea.

EXAMPLE 2. Consider xðpÞ5cos 21½12p=2� on P 2 ½22; 6�.
A factorable representation is given by

v15p=2

v2512v1

v35cos 21v2

Calculating the forward interval evaluation of x on P results in

V15½22; 6�=25½21; 3�

V2512½21; 3�5½22; 2�

V35cos 21ð½22; 2� \ ½21; 1�Þ

5cos 21ð½21; 1�Þ5½0;p�
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Using the theory of Stuber et al. (Submitted),15 relaxations
of x on P can be calculated. Again, these relaxations are
only guaranteed to exist for p � [0,4], as Figure 5 illus-
trates. Nevertheless, the relaxations computed are convex
and concave on their domains of definition.

If the solver requires the evaluation of a function at a
point in which it does not exist, it simply fails. In the event
that the solver fails, the algorithm is notified. If this event
occurs, the bounding information from the interval evalua-
tion is used and the algorithm continues in the normal way.
In essence, the problematic regions of the search space are
systematically discarded by the algorithm.

To get a sense of the effectiveness of each of the interval
methods on this problem, the forward-backward constraint prop-
agation technique was applied to the model (with compact
dimensions) with 100 iterations at the point p5ð0:36Þ and
u5ð0:6; 0:8Þ. The initial interval X0, which is calculated auto-
matically from a priori physical information about the problem,
is shown in the second column of Table A6. Forward-backward
constraint propagation took 0.006 s to complete and the results
are reported in the third column of Table A5. Finally, interval-
Newton with interval-Gauss–Seidel was applied iteratively to
the refined interval from the forward-backward constraint propa-
gation technique. The interval-Newton method converged after
five iterations taking 0.008 s. The result of applying interval-
Newton is shown in the last column of Table A5. It can be
seen that the forward-backward constraint propagation technique
was very effective at refining the initial interval; however, it
failed to converge to degeneracy within 100 iterations. In fact,
this technique is nearly converged at 100 iterations and no fur-
ther refinement is observed after 200 iterations. However,
interval-Newton is very effective in further refining the interval
returned from forward-backward constraint propagation converg-
ing to a degenerate interval that represents the unique solution.
This result is likely the consequence of the convergence criteria
for this interval iteration being satisfied (see Neumaier8). It
should be noted that interval-Newton, when applied to X0, fails
to make any refinement.

As previously mentioned, for this model, considerable over-
estimation was encountered using interval analysis to bound
the implicit function x, even with the forward-backward con-

straint propagation implementation. To further improve the
effectiveness of the methods and circumvent the issues that
arose due to the overestimation, the uncertainty interval P was
subdivided and (14) was solved for each subdivision of P. The
four uncertainty intervals considered are P15½0:35;
0:3875�;P25½0:3875; 0:425�;P35½0:425; 0:4625�, and P45½
0:4625; 0:50�. To demonstrate the performance and applicabil-
ity of the algorithm, four different cases were studied varying
the size of the GLS and the performance specification.

Case 1

For this study, the control interval U 5 [0.35,0.8]2 was
considered. The GLS dimensions were such that RGLS 5 0.6
m and LGLS 5 5 m. The performance specification was such
that Gmax 50:05.

The robust simulation algorithm solved the problem in a
total time of 2.83 s, with a rigorous upper bound on g* of
20.0105, implying g� � 0. That is, for all realizations of
wellhead compositions within the intervals considered, there
exists a control setting from the interval considered such that
the design meets the product purity specification that no
more than 5% of the oil product stream can be gas.

Case 2

For this study, the same control interval and GLS dimensions
from Case 1 were used and the uncertainty interval remains the
same as the previous study. The performance specification was
made much more strict although with Gmax 50:0015.

The robust simulation algorithm solved the problem in a
total time of 56.7 s, with a rigorous upper bound on g* of
21:1731023, implying g� � 0. The solution time of the
algorithm was 20 times longer for this case as compared to
Case 1, with the more relaxed performance specification.
This is likely due to the fact that the feasible region for this
problem is significantly smaller than that of Case 1.

Case 3

For this study, the GLS dimensions were such that
RGLS 5 0.4 m and LGLS 5 4 m and the control interval
remains the same as the previous studies. These new dimen-
sions result in the GLS having roughly 36% of the volume of
that in the previous two studies. The performance specifica-
tion was such that Gmax 50:05. Intuitively, the smaller GLS
dimensions will result in the new design having reduced per-
formance as compared to the larger design. Therefore, it is
expected that if this design is feasible, the feasible region of
the SIP will be much smaller than that of Case 1.

The robust simulation algorithm solved the problem in a
total time of 549.3 s with a rigorous upper bound on g* of
25:7731023. Again, this means that g� � 0, implying that
the design is feasible. The solution time of the algorithm
suggests that verifying robust feasibility of the more compact
design is much more difficult than for the original larger
design. Again, this is likely due to the significantly smaller
feasible region of the robust simulation SIP.

Case 4

The purpose of this study is to demonstrate the behavior
of the algorithm when the design is not nearly as robust as
that in the previous studies. The dimensions of the GLS are
the same as in Case 3. For this study, the control valve V-2
is stuck at 50% and the control valve V-1 will have limited

Figure 5. Convex and concave relaxations of xðpÞ5
cos 21½12p=2� on P5½22;6� which are guaran-
teed to exist only for p‰½0; 4�.
[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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movement between 30 and 35%. The performance specifica-
tion will be such that Gmax 50:05.

The robust simulation algorithm solved the problem in a
total time of 27.6 s, with a rigorous lower bound on g* of
1:4631022, implying g� > 0. As expected, this more compact
design with extremely limited control valves does not satisfy
robust feasibility. With regards to solution time, the SIP algo-
rithm performed rather favorably for this study. This seems
rather counterintuitive as guaranteeing infeasibility of the
design requires locating an SIP-feasible point that has a corre-
sponding objective function value that is greater than zero
(such a point provides a rigorous lower bound on g*). How-
ever, for this problem, to guarantee infeasibility of the design,
the algorithm simply needs to guarantee infeasibility of the
design for one of the four uncertainty intervals. Therefore,
although generating a rigorous lower bound on g* that is
greater than zero may be computationally expensive (espe-
cially for a problem with such a small SIP-feasible region),
once it is done, the algorithm can terminate without needing
to solve the remaining SIPs for the other uncertainty intervals.

Conclusions

In this work, the problem of rigorous worst-case design of
subsea production facilities was addressed using a semi-infinite
programming approach. A subsea separator that includes a
GLS and a LLS was modeled and studied. A pointwise numer-
ical simulation was performed, and it was identified that this
technique would be insufficient at addressing the worst-case
design question posed for subsea production facilities.

The worst-case design question was formulated as a logi-
cal feasibility constraint which was subsequently reformu-
lated as a SIP with implicit functions embedded. The main
algorithmic framework developed by Mitsos14 and extended
to implicit SIPs15 was used to solve this design problem.

As this problem was cast as a feasibility problem, it was
identified that solving the nonconvex implicit SIP to global
optimality may not be necessary. In response, two additional
criteria were implemented to terminate the implicit SIP algo-
rithm if a rigorous guarantee on feasibility/infeasibility can
be deduced prior to finding a global solution.

Due to the complex behavior of process systems models, it
was identified early on that the overestimation encountered
using interval analysis; in particular using parametric interval-
Newton methods, with these models may be detrimental to
calculating useful bounding information for implicit functions.
To combat this, an automatic forward-backward constraint
propagation technique was implemented to help refine interval
bounding information required by the algorithm. The combi-
nation of the constraint propagation with the parametric
interval-Newton method proved to be effective at calculating
rigorous and convergent bounds on the implicit functions
involved with the subsea separator model.

The worst-case design of a subsea separator was demonstrated
by considering four case studies with varying operating scenarios
and/or design choices. In each case, uncertainty in the gas com-
position of the input stream was considered along with two con-
trol valves: one on the entrance of the GLS and one on the
entrance of the LLS. Even though the forward-backward con-
straint propagation technique proved to be effective at calculating
the required bounding information when used in conjunction
with parametric interval-Newton, the uncertainty interval was
subdivided to avoid considerable overestimation which proved to
be problematic for the algorithm. Overall, the algorithm per-

formed favorably obtaining rigorous guarantees on robust feasi-
bility/infeasibility with relatively little effort for each study.
However, it should be noted that, in the general case, the compu-
tational complexity scales exponentially with the number of
parameters and controls. Similarly, overestimation of the inter-
val methods becomes more problematic not only with the width
of the uncertainty intervals but also with the number of uncer-
tainty parameters considered. Although the method presented
herein proved to be effective at addressing the worst-case design
problem of the subsea separator system, addressing the worst-
case design problem of the entire subsea oil and gas production
facility may prove to be difficult at this stage. Reducing the over-
estimation problem so that larger process systems can be
addressed is the topic of continuing research.
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Appendix A

Table A1. The Fluid Properties Used in the Subsea

Separator Model

Fluid Properties

API 35 Oil gravity (API)
SGG 0.6 Specific gravity of gas
SGW 1.0 Specific gravity of water
q�W 1000 Density of water (kg/m3)

at standard conditions

Table A2. The Physical Design Specifications of the Subsea

Separator Model

Physical Design Specifications

kGLS 0:5=60 	 8:3331023 GLS performance constant
kLLS 0:01=60 	 1:6731024 LLS performance constant
Cv1 1:0=60 	 1:6731022 V-1 sizing coefficient

(kg/Pa1=2s)
Cv2 0.1675 V-2 sizing coefficient

(kg/Pa1=2s)
LGLS 2 f4:0; 5:0g Length (m) of GLS

(varies by case)
RGLS 2 f0:4; 0:6g Radius (m) of GLS

(varies by case)
PGLS 43106 Operating pressure (Pa) of GLS
LLLS 5.0 Length (m) of LLS
RLLS 0.8 Radius (m) of LLS
PLLS 4 3 106 Operating pressure (Pa) of LLS
HLLS 0.6 Liquid level in the LLS (m)

Table A3. The Input Conditions for the Subsea Separator

Model

Input Conditions

Pwell 5.52 3 106 Wellhead pressure (Pa)
nG1 � [0,1] Mass fraction of gas, uncertain
nW1 � [0,1] Mass fraction of water, uncertain
nO1 � [0,1] Mass fraction of oil, uncertain

Table A4. The Control Settings for the Subsea Separator

Model

Control Settings

u1 � [0,1] Valve V-1 opening
u2 � [0,1] Valve V-2 opening

Table A6. Forward-Backward Constraint Propagation was

Applied with 100 Iterations to X0
Resulting in the Refined

Interval XFB
. Interval-Newton with Interval Gauss–Seidel

was then Applied to XFB
Resulting in the Refined Interval

XN
After Five Iterations.

Interval Method Comparison

X0 XFB XN

nG4 ½9:4630531023; 0:36� [0.080707,0.154937] [0.11869,0.11869]
nW4 [0.24,0.375] [0.316898,0.344735] [0.330492,0.330492]
nO4 [0.4,0.625] [0.500327,0.602395] [0.550819,0.550819]
_m3 [0,304.517] [205.261,256.99] [231.61,231.61]
_m4 [541.364,845.881] [588.891,640.62] [614.271,614.271]

HGLS [0.462165,0.7992] [0.546875,0.647172] [0.59503,0.59503]
nG7 ½8:669731023;

0:348991�
[0.0762948,0.148717] [0.113166,0.113166]

nO7 [0.651009,0.99133] [0.851283,0.923705] [0.886834,0.886834]
_m6 [203.011,203.011] [203.11,203.11] [203.11,203.11]
_m7 [338.352,642.869] [338.352,437.609] [381.528,381.528]
_m8 [0,304.517] [0,73.4416] [29.7311,29.7311]

Table A5. The Symbols Used Throughout This Article and

Their Descriptions

Other
Symbols

Cvi Valve i constant (kg/Pa1=2s)
ga Acceleration of gravity (m/s2)
Gmax Maximum allowable gas fraction

(by mass) in oil product
ki Separator i performance constant
Hj Fluid level in separator j
g Auxiliary optimization variable
Lj Length of separator j
_mi Mass flow rate in stream i (kg/s)

p Uncertainty variable
Pi Pressure of stream i (Pa)
Rj Radius of separator j
SGj Specific gravity of component j
u Control variable
U Interval bounding control variable
Vj Total liquid volume in separator j (m3)
Voil Volume of oil/gas mixture phase in LLS (m3)
x Implicit function of the controls and uncertainty
X Interval bounding the implicit function
nji Mass fraction of component j in stream i
ni (nGi,nWi,nOi) vector of mass fractions for stream i
qi Density of material in stream i (kg/m3)
z Vector of internal state variables
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