
Evaluation of Process Systems Operating

Envelopes

by

Matthew David Stuber

B.Ch.E., University of Minnesota - Twin Cities (2007)

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

c⃝ Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Chemical Engineering

November 14, 2012

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Paul I. Barton

Lammot du Pont Professor of Chemical Engineering
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Patrick S. Doyle

Professor of Chemical Engineering
Chairman of the Committee for Graduate Students



2



Evaluation of Process Systems Operating Envelopes

by

Matthew David Stuber

Submitted to the Department of Chemical Engineering
on November 14, 2012, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

This thesis addresses the problem of worst-case steady-state design of process systems
under uncertainty, also known as robust design. Designing for the worst case is of
great importance when considering systems for deployment in extreme and hostile
environments, where operational failures cannot be risked due to extraordinarily high
economic and/or environmental expense. For this unique scenario, the cost of “over-
designing” the process far outweighs the cost associated with operational failure.
Hence, it must be guaranteed that the process is sufficiently robust in order to avoid
operational failures.

Many engineering, economic, and operations research applications are concerned
with worst-case scenarios. Classically, these problems give rise to a type of leader-
follower game, or Stackelberg game, commonly known as the “minimax” problem, or
more precisely as a max-min or min-max optimization problem. However, since the
application here is to steady-state design, the problem formulation results in a more
general nonconvex equality-constrained min-max program, for which no previously
available algorithm can solve effectively. Under certain assumptions, the equality
constraints, which correspond to the steady-state model, can be eliminated from the
problem by solving them for the state variables as implicit functions of the control
variables and uncertainty parameters. This approach eliminates explicit functional
dependence on the state variables, and in turn reduces the dimensionality of the
original problem. However, this embeds implicit functions in the program, which have
no explicit algebraic form and can only be approximated using numerical methods.
By doing this, the max-min program can be reformulated as a more computationally
tractable semi-infinite program, with the caveat that there are embedded implicit
functions.

Semi-infinite programming with embedded implicit functions is a new approach
to modeling worst-case design problems. Furthermore, modeling process systems—
especially those associated with chemical engineering—often results in highly non-
convex functions. The primary contribution of this thesis is a mathematical tool for
solving implicit semi-infinite programs and assessing robust feasibility of process sys-
tems using a rigorous model-based approach. This tool has the ability to determine,

3



with mathematical certainty, whether or not a physical process system based on the
proposed design will fail in the worst case by taking into account uncertainty in the
model parameters and uncertainty in the environment.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering

4



To My Family



6



Acknowledgments

I only get one opportunity to write the acknowledgments section of my doctoral thesis.
I’ve always been a very social person who deeply values his relationships and so it is
my intention to thank everyone who has made a contribution to getting me where I
am today. The reader should take this as a warning; this section is long and maybe
a bit rambling as I reflect on the past. There are so many important people who I
owe thanks for their contributions in one way or another. Please don’t take offense if
I don’t mention you specifically. It in no way reflects a lack of gratitude but simply
that at this point, my brain is fried.

First, I would like to thank my thesis advisor, Professor Paul Barton. Not because
its obligatory, but because of him, I rather enjoyed my experience as a graduate stu-
dent at MIT. The amount of personal attention he was able to devote, as well as the
level of patience he was able to exhibit with regards to my education and research is
astounding. His attention to detail, albeit annoying at times, gave me confidence that
the final product would be of the highest standard of quality. His strong emphasis
on exposure within the scientific community enabled me to be able to travel often
and have some of my most cherished experiences while being a graduate student,
such as white knuckled driving through the Schwarzwald (Black Forest) in the early
morning mist and drag limiting a rental car on the Autobahn to München to gorge
on Käsekrautspätzle and Laugenbrezel larger than my head at Oktoberfest...and of
course present my research to the community. I am forever grateful of his understand-
ing nature and sensitivity with regards to personal issues and life outside of the lab.
In particular, there was a six-month period where he was incredibly flexible (with
deadlines etc.) so that I could act as the primary caregiver for my wife while she was
undergoing chemotherapy. Because of his flexibility and sensitivity, he helped reduce
a lot of stress which enabled me to stay rather productive and develop what is likely
the largest contribution of this thesis. Overall, he fosters a great environment for
success and I am proud to have had the opportunity to work for him, be mentored
by him, and call him my friend.

I would also like to thank my thesis committee members Professor William Green
and Professor Alexander Mitsos. Their advice and wisdom did not fall on deaf ears
and helped structure this project into something I am proud to have worked on. I owe
a special thanks to Professor Mitsos for providing me with the algorithm framework
for Chapter 7. I also owe a special thanks to Dr. Benoit Chachuat for being so respon-
sive to emails regarding bugfixes and implementing new features into his MC++ code,
which I relied upon heavily. I am also indebted to my PSE lab brethren for without
them, this thesis would not be possible. In particular, I owe Dr. Joe Scott many
thanks for the discussions regarding everything from our current research problems
to general maths and sciences all the way to deeper discussions of society, politics,
and religion. Furthermore, I am grateful for the countless hours spent helping me
clarify and refine my ideas into presentable and high quality contributions, especially
regarding the material in Chapter 4. I would like to thank Achim Wechsung for al-
ways being open and willing to help solve my programming problems and eliminate

7



bugs. Furthermore, I’d like to acknowledge his contributions to Chapter 8 where his
awesome coding on the constraint propagation tool played a pivotal role in solving
the subsea separator problem. I owe Dr. Arul Sundaramoorthy and Achim Wechsung
many thanks for contributing the constraint propagation material to Chapter 8. I owe
Spencer Schaber many thanks for his help with the kinetic mechanism example in
Chapter 4. I’d like to thank the other PSE labmates I haven’t mentioned specifically
for making the lab a place that I enjoyed coming to day after day and an enjoyable
and stimulating place to work.

I am forever grateful to my wife Whitney Bogosian. Besides listening to count-
less presentation rehearsals and incessant complaining about my work and being a
grad student, I am grateful for her unconditional love and constant support while
accompanying me on this endeavor that accounts for almost 20% of my life. Before
our paths converged that day in E51, I was just an unhappy “first year” struggling
with the anxiety of failure brought on by the weight and stress of being a new PhD
student at MIT. She not only made life in Boston bearable, she made it comfortable
and bright; an environment I could succeed in. This thesis has been the primary
reason for our almost entirely uneventful summer and the excuse for not taking her
on the vacation she well deserves.

I’d like to thank all of my friends for supporting me on this adventure in one
way or another. My Twin Cities friends deserve to know how grateful I am for their
friendship and support and how much I value how close we’ve remained in spite of my
absence. Specifically, I’d like to mention my best man Nathan Bond, Bill Foley, Scott
Elmgren, Lindsey Jader, Brian and Tammy Blechinger, Tim and Mandy Carroll, Dan
and Steffanie Corning, and Paul and Emily Morrison, for various rides to and from
the airport, visiting me in Boston, hosting/attending parties while I was in town, or
simply calling me to catch up because I’ve been MIA. Paul Morrison was especially
awesome at calling me and keeping in touch. I’d like to mention my closest Boston
friends (besides my wife) Dr. Christopher Pritchard, Eric Holihan, Adam Serafin,
and John Martin. Having these guys around to share hobbies with was invaluable to
my happiness and sanity in grad school. Our 3 hour lunches of intense intellectual
conversation, skiing/snowboarding, shredding tires racing cars, and consuming large
portions of lentils at Haveli and Punjabi Dhaba were invaluable to my success. I
was lucky to have my dear friend Dr. Torren Carlson (Torrey) working on his PhD
at Amherst while I was here at MIT. Although two hours apart, we still managed
to carry on with our favorite past times such as going to hardcore shows, including
driving to NJ for a reunion show of The Movielife. Watching him defend his thesis
gave me the much needed motivation to stay productive in my final two years.

I am lucky to have such an amazing family who, without their unconditional sup-
port, I could not have succeeded this far. First, I owe so much to my grandma Victoria
(Vicki) Stuber, for being such a positive role model and for playing the foundational
role in the family. She embodies “Minnesota Nice” as a loving, compassionate, and
tolerant woman who is always going out of her way to help others. She is one of
my greatest sources of inspiration. Every day I try to follow her example and better
myself by living a positive lifestyle, seeking out knowledge, and maintaining an open
mind; which has surely helped me succeed in the diverse environment of academia. I

8



also want to acknowledge my grandpa Marvin Stuber who is never shy to convey how
proud he is of “his grandson at MIT.” It is an honor to make him proud. I owe many
thanks to my parents Nikki Black and Dave and Renee Stuber. Besides the various
forms of financial support and emotional support they gave me throughout the years,
perhaps what I am most thankful for is the freedom they granted me to discover
who I am and forge my own path. Because of this, I was able to find a discipline
to pursue that excites me and makes me truly happy. Although it meant moving
away and possibly only seeing me once per year, they supported and encouraged me
to pursue a graduate education. This helped me so much to confront my inhibitions
about moving away to another city and out of my comfort zone. It’s amazing to have
parents whose metric for success is simply my own happiness. I’d like to thank my
sister Trisha Griebenow who has helped me on this journey in so many ways. She
was always available and willing to listen to my seemingly endless rants, offer words
of advice when needed, reflect on the pursuit of knowledge and deeper philosophical
questions, and always give me perspective. I am deeply grateful to have her sup-
port and friendship and I will be forever indebted for her role in getting me to this
point and beyond. I owe many thanks to my in-laws Wayne and Sandy Bogosian for
their love and support, welcoming me warmly into their family, and always offering
their homes as getaway destinations away from the stresses of the city and work. I
am indebted to them for including me in the tropical destination vacations and the
countless Celtics and Red Sox games, and allowing me to disassemble cars in their
driveway and garage; all of which were incredibly therapeutic activities that were
much needed on this journey.

I think it’s important at this point to thank all of the teachers and instructors
in the public schools that I attended in Fridley and Chaska who survive on meager
salaries in order to educate the less-than-appreciative youth. I am truly sorry that
they had to put up with my young self. They cared more about my education and
future than I did at the time. Because of their dedication, somewhere along the way,
they awakened my deep passion for math and the sciences. A passion that, in spite
of the enormous workloads and sacrifices involved in the pursuit of knowledge, is still
present today as I am finishing this doctoral thesis. I hope someday I can make a
contribution in motivating younger generations to pursue math and science.

Lastly, I’d like to acknowledge Chevron Corporation for funding this research
through a partnership with the MIT Energy Initiative.

9



10



Thinking must never submit itself, neither to a
dogma, nor to a party, nor to a passion, nor to an
interest, nor to a preconceived idea, nor to anything
whatsoever, except to the facts themselves, because,
for it to submit to anything else would be the end of
its existence.

-Henri Poincaré



12



Contents

1 Introduction 23

1.1 Motivation: Designing for the Worst Case . . . . . . . . . . . . . . . 23

1.2 Existing Approaches to Robust Simulation and Design . . . . . . . . 27

1.2.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . 28

1.2.2 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . 29

1.2.3 Fuzzy Programming . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.4 Deterministic Approaches . . . . . . . . . . . . . . . . . . . . 31

2 Robust Simulation and Design Using Semi-Infinite Programming

with Implicit Functions 35

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The Feasibility Problem and the Operating

Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Bounding Implicit Functions Using Interval Analysis 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Interval Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 Extended Interval Arithmetic . . . . . . . . . . . . . . . . . . 54

3.3 Interval Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 General Results on Parametric Interval Methods . . . . . . . . 57

3.4 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . 58

13



3.4.1 Existence and Uniqueness of Enclosed Solutions . . . . . . . . 58

3.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Bounding All Solutions of Parameter-Dependent Nonlinear Systems of

Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Partitioning Strategies . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Implementation and Numerical Examples . . . . . . . . . . . . . . . . 71

3.6.1 Computer Implementation . . . . . . . . . . . . . . . . . . . . 72

3.6.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Global Optimization of Implicit Functions 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Fixed-Point Iterations . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 McCormick Relaxations . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Subgradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Relaxations of Implicit Functions . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Direct Relaxation of Fixed-Point Iterations . . . . . . . . . . . 89

4.3.2 Direct Relaxation of Newton-Type Iterations . . . . . . . . . . 93

4.3.3 Relaxations of Solutions of Parametric Linear Systems . . . . 95

4.3.4 Relaxations of Solutions of Parametric Nonlinear Systems . . 100

4.4 Global Optimization of Implicit Functions . . . . . . . . . . . . . . . 114

4.4.1 Upper-Bounding Problem . . . . . . . . . . . . . . . . . . . . 114

4.4.2 Lower-Bounding Problem . . . . . . . . . . . . . . . . . . . . 115

4.4.3 Global Optimization Algorithm . . . . . . . . . . . . . . . . . 115

4.4.4 Finite Convergence . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5 Global Optimization of Large Sparse Systems 137

5.1 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 139

14



5.1.1 Matrix Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.1.2 Matrix Structure . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.3 Numerical Solution Methods: Direct vs. Iterative . . . . . . . 143

5.1.4 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Direct Approach . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.2.2 Iterative Approach . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.1 Model and Objective . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.2 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . 154

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Relaxations of Implicit Functions Revisited 157

6.1 Direct Relaxation of Fixed-Point Iterations . . . . . . . . . . . . . . . 157

6.2 Relaxations of Solutions of Parametric Linear Systems . . . . . . . . 158

6.3 Relaxations of Solutions of Parametric

Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Global Optimization of Implicit Functions . . . . . . . . . . . . . . . 159

7 Semi-Infinite Optimization with Implicit Functions 161

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 Global Solution of SIPs with Implicit Functions Embedded . . . . . . 168

7.2.1 Lower-Bounding Problem . . . . . . . . . . . . . . . . . . . . 169

7.2.2 Inner Program . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.2.3 Upper-Bounding Problem . . . . . . . . . . . . . . . . . . . . 169

7.2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 Application to Max-Min and Min-Max Problems . . . . . . . . . . . . 173

7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.5 Experimental Conditions and Results . . . . . . . . . . . . . . . . . . 179

7.5.1 Example 7.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.5.2 Example 7.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

15



7.5.3 Example 7.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Robust Simulation and Design of Subsea Production Facilities 187

8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2 Robust Simulation Algorithm Implementation . . . . . . . . . . . . . 189

8.2.1 Forward-Backward Propagation of Intervals . . . . . . . . . . 190

8.2.2 SIP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.3.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.3.3 Control Valve V-1 . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.4 Gas-Liquid Separator . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.5 Control valve V-2 . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.6 Liquid-Liquid Separator . . . . . . . . . . . . . . . . . . . . . 201

8.3.7 Gas Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.8 Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.4.1 Pointwise Numerical Simulation . . . . . . . . . . . . . . . . . 203

8.4.2 Robust Simulation . . . . . . . . . . . . . . . . . . . . . . . . 208

8.4.3 Algorithm Performance . . . . . . . . . . . . . . . . . . . . . . 215

8.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

9 Conclusions, Future Work and Opportunities 219

9.1 Interval Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9.2 Relaxations of Implicit Functions . . . . . . . . . . . . . . . . . . . . 220

9.3 Global Optimization of Large Sparse Systems . . . . . . . . . . . . . 221

9.4 Robust Simulation and Design . . . . . . . . . . . . . . . . . . . . . . 222

A A Note on Selective Branching 223

B A Note on Solving Explicit SIPs 225

16



C Kinetic Mechanism Experimental Data 227

17



18



List of Figures

1-1 The outer continental shelf oil field . . . . . . . . . . . . . . . . . . . 24

1-2 A subsea production system . . . . . . . . . . . . . . . . . . . . . . . 25

2-1 Steady-state process systems model representation . . . . . . . . . . . 36

2-2 Depiction of robust simulation and the operating envelope . . . . . . 40

2-3 Depiction of the operating envelope bounded by an interval . . . . . . 41

3-1 Candidate partitions of X . . . . . . . . . . . . . . . . . . . . . . . . 67

3-2 X cannot be partitioned without first partitioning P . . . . . . . . . 68

3-3 Interval cover for Ex. 3.6.4 . . . . . . . . . . . . . . . . . . . . . . . . 75

3-4 Interval cover for Ex. 3.6.4 with a bifurcation point . . . . . . . . . . 76

4-1 Relaxations of a simple implicit function . . . . . . . . . . . . . . . . 112

4-2 Global optimization of implicit functions implementation . . . . . . . 120

4-3 Global optimization Ex. 4.5.1 objective function . . . . . . . . . . . . 123

4-4 Global optimization Ex. 4.5.1 objective function with relaxations . . 124

4-5 Process flow diagram for global optimization PSE example . . . . . . 125

4-6 Sparsity pattern for the kinetics example . . . . . . . . . . . . . . . . 130

4-7 The optimal “best fit” of the kinetic data . . . . . . . . . . . . . . . . 132

4-8 Algorithm performance for the kinetic mechanism example . . . . . . 133

5-1 Two chemical reactors with the results of a CFD simulation . . . . . 138

5-2 A banded matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5-3 A sparse matrix before and after reordering . . . . . . . . . . . . . . 142

5-4 An exploded view of a packaged CPU . . . . . . . . . . . . . . . . . . 149

19



5-5 An illustration of the packaged CPU model . . . . . . . . . . . . . . . 150

5-6 CPU temperature sensor placement . . . . . . . . . . . . . . . . . . . 153

5-7 Scaling of function evaluations of large sparse systems . . . . . . . . . 155

7-1 Simple example SIP objective function and constraint . . . . . . . . . 175

7-2 Robust design constraint function . . . . . . . . . . . . . . . . . . . . 177

7-3 Continuous-stirred tank reactor . . . . . . . . . . . . . . . . . . . . . 178

7-4 SIP Example 2 computational effort . . . . . . . . . . . . . . . . . . . 181

7-5 SIP Example 3 computational effort . . . . . . . . . . . . . . . . . . . 182

8-1 The simplified flowchart for the main robust simulation algorithm . . 194

8-2 Global optimization of implicit functions implementation . . . . . . . 195

8-3 An illustration of the subsea separator model . . . . . . . . . . . . . . 196

8-4 Subsea separator computational graph . . . . . . . . . . . . . . . . . 204

8-5 Subsea separator model occurrence matrix . . . . . . . . . . . . . . . 205

8-6 A coarse-grain numerical simulation of the subsea separator . . . . . 206

8-7 The feasible operating envelope of the subsea separator according to

the numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 207

8-8 Relaxations of x on part of P . . . . . . . . . . . . . . . . . . . . . . . 211

20



List of Tables

3.1 Performance of parameterized generalized bisection algorithm . . . . 73

3.2 Performance of parameterized generalized bisection algorithm . . . . 73

3.3 Performance of parameterized generalized bisection algorithm . . . . 73

4.1 Constants for global optimization illustrative example . . . . . . . . . 121

4.2 The initial intervals for the reactor-separator-recycle example. . . . . 125

4.3 Constants for global optimization PSE example . . . . . . . . . . . . 127

4.4 Suboptimal solutions for the kinetics example . . . . . . . . . . . . . 131

5.1 The physical design specifications for the CPU packaging problem. . . 152

5.2 The experimental temperature data for CPU design problem. . . . . . 154

7.1 Antoine coefficients for the ternary flash separation . . . . . . . . . . 176

8.1 The fluid properties used in the subsea separator model. . . . . . . . 197

8.2 The physical design specifications of the subsea separator model. . . . 198

8.3 The input conditions for the subsea separator model. . . . . . . . . . 198

8.4 The control settings for the subsea separator model. . . . . . . . . . . 198

8.5 Comparison of FB constraint propagation and interval-Newton . . . . 212

8.6 Deepwater case study algorithm performance . . . . . . . . . . . . . . 215

C.1 Experimental data for the kinetic mechanism example. . . . . . . . . 228

21



22



Chapter 1

Introduction

1.1 Motivation: Designing for the Worst Case

Engineering design has long been practiced as a trade-off between economics and relia-

bility/safety. Probabilities of destructive environmental events as well as probabilities

of operational failures are typically studied along with their impact on production and

safety, in order to assess risk associated with a proposed design.1 It is in the best

interest of the design engineer to minimize risk while also minimizing the cost of the

design, in order to make it more economically feasible. For instance, it would be

economically unwise to invest extra money to increase the seismic performance of a

skyscraper that is to be constructed in a region having a 0% chance of a destructive

earthquake. Such a design would be overly conservative. Alternatively, if that same

skyscraper were to be constructed in a region with a significantly higher probability

of a destructive earthquake occurring, the cost associated with increasing the struc-

ture’s seismic performance will be outweighed by the cost of structural damage or

even collapse in the event of seismic activity.

Chemical process systems, especially those related to energy products such as

liquid fuels, are often considered to be inherently risky. This is because although

reliability and safety records may be impeccable (in many cases they are not), the

1Here, the standard definition of risk is being used: risk ≡ (probability of failure)×(impact of
failure).

23



Figure 1-1: The active oil field on the outer continental shelf of the Gulf of Mexico
as of 2009. (Photo credit: [103])

impact of an operational failure on production and safety can be extraordinarily high.

Deployment of chemical processes in extreme and hostile environments increases risk

even more by (potentially) drastically increasing the impact of operational failures,

even though the probability of such a failure may not increase. One such chemical

process system of interest is relevant to deepwater oil and gas production.

The depletion of petroleum reserves from traditional on-shore and shallow-water

off-shore fields, coupled with political pressure for reduced dependence on petroleum

from foreign sources, has motivated exploration into increasingly more extreme en-

vironments. One promising frontier is in ultra deepwater,2 where in 2004, a vast

deposit of petroleum, known as the “lower tertiary trend”, containing 3-15 billion

barrels (120-600 billion gal.) of petroleum, was discovered by Chevron geologists [81].

Figure 1-1 is a map of the “outer continental shelf”, containing the lower tertiary

trend, depicting proven wells, and their estimated volume of oil, as of 2009 [103].

However, in April 2010, BP sufficiently demonstrated that pursuing oil reserves in

ultra deepwater environments3 comes with inherently high risk exacerbated by a lack

2Defined here as depths ≥ 7500ft.
3The BP disaster actually occurred in only 5000ft of water, demonstrating that failure in ultra

deepwater will be at least as catastrophic, if not significantly more.

24



Figure 1-2: In contrast to floating platforms, subsea production facilities, shown here,
perform all upstream processing on the seabed locally near the wellhead. (Photo credit:
FMC Technologies)

of sufficient technology. In the BP incident, commonly referred to as the Deepwater

Horizon oil spill, a catastrophic failure of the leased ultra deepwater drilling platform

named Deepwater Horizon resulted in 11 human lives lost,4 an estimated $30 billion

in expenses, 5 million barrels of oil spilled, and untold ecological fallout which is still

being investigated, including the economic impact on commercial fishing and the fish

value chain [16, 21, 57, 135]. In this environment, the costs associated with oper-

ational failures far outweigh the costs associated with “over-designing” the process,

and so extreme effort must be made to avoid failures altogether.

Industry engineers have suggested that the application of traditional floating plat-

forms to ultra deepwater production is too risky. They propose that novel remote

compact subsea production facilities, as depicted in Figure 1-2, are the key enabling

technology for ultra deepwater oil and gas production. Thus posing the question:

How can one design a novel process system that is guaranteed to be ro-

4The 11 lives mentioned were lost during the accident on the Deepwater Horizon alone. This
doesn’t include lives lost as an indirect result of the spill such as health effects of long-term exposure,
etc.

25



bust to operational failures given the high level of uncertainty in extreme

and hostile environments which cannot be accurately reproduced in the

laboratory?

Since field conditions cannot be successfully recreated in the laboratory, and similarly

since pilot plant systems can only be tested under a finite number of conditions,

experimental approaches to addressing this question are inadequate. In order to

successfully address this question, a mathematically rigorous model-based approach—

taking into account uncertainty in the environment as well as uncertainty that is

inherent to the model5—must be taken and the system must be designed for the

worst-case realization of uncertainty. Thus, however improbable, the novel process

system design will be robust to operational failures in the face of the worst-case

scenario(s). Since a deterministic approach must be taken, an implicit result is that

all uncertain events are considered to be independent of one another. Therefore, the

worst case may be the realization of cascading events.

One common example of the worst case being the realization of cascading events

is nuclear reactor meltdowns, such as the most recent incident at the Fukushima Dai-

ichi reactor in 2011. In the case of Fukushima, a magnitude 9 earthquake triggered a

plant-wide reactor shutdown, forcing the cooling system to be powered by emergency

generators [45]. A subsequent 14-meter tsunami wiped out the emergency generators,

which were designed to withstand a 5.7-meter tsunami [45]. By design, the cooling

system had redundant emergency power supplies in the event of a failure of the

emergency generators. Eventual failure of the redundant (battery) supply proved to

be catastrophic, overheating the reactor and causing a meltdown. A robust design

of the system would have included a reactor that could never produce a runaway

scenario, even under the condition of zero coolant flow, and/or a backup power system

that could withstand all sizable tsunamis. These are the type of reactors being

designed most recently and are commonly referred to as “inherently safe.” Of course,

this discussion is only to illustrate when and why worst-case design strategies are

necessary. In the case of a tsunami, the larger it is, the greater impact on the process

5Uncertainty in the model must be known or estimated here.

26



it will have, and so the worst case is simply the largest tsunami imaginable. In this

case, the worst-case strategy would be to design the process that would be unaffected

by any tsunami.

In summary, worst-case design strategies should be applied when:

1. there are extraordinarily high costs associated with operational failures,6

2. there is a high level of uncertainty associated with the environment and/or the

technology, or

3. there are requirements for technology qualification such as rigorous performance

and safety verification.

The problem of design under uncertainty has stimulated a large effort in research, es-

pecially within the chemical engineering community. In the next section, the previous

research and the existing approaches are discussed.

1.2 Existing Approaches to Robust Simulation and

Design

Since the widespread adoption of modern computers, engineers have been design-

ing and simulating more advanced and complex process systems. With continuous

advancements in mathematics and development and improvement of numerical meth-

ods, engineers have been able to address a wide variety of concerns from performance

to controllability of novel systems. Going back to the design trade-off mentioned pre-

viously, design engineers have been able to address how to design a complex process

that maximizes performance and safety while minimizing cost, by taking more rig-

orous mathematical approaches, as opposed to the heuristic approaches of the early

design engineers. It is because of this that mathematical programming, or optimiza-

tion, has become the mathematical workhorse for engineering design.

6These can be in the form of environmental damage, economic losses, loss of life, loss of confidence
in an entire technology, etc.

27



The existence of uncertainty in the environment as well as uncertainty introduced

by inaccurate models of real-world systems, has motivated engineers to address design

in the presence of uncertainty, using a variety of optimization approaches.

1.2.1 Stochastic Programming

In [122], an extensive overview and summary of stochastic programming approaches

to optimization under uncertainty is given. Stochastic programming is commonly

implemented as a two-stage (or multistage) decision problem where the first-stage

decision is made before the realization of the uncertainty parameters and the second

stage problem, or recourse problem, is solved after the random events have been

presented [17, 67]. In stochastic programming, uncertainty as a family of events is

modeled through probability measures in either a discrete or continuous manner [17,

67, 122]. Therefore, for any particular event from a family of events, the probability

of that event occurring is known and thus the probability of an uncertain parameter

taking any particular value is known [17, 67].

One example where stochastic programming was applied to optimal design of

chemical processes under uncertainty was given in [84]. In this case, the authors

motivation was to eliminate “excessive overdesign” [84]. The primary objective is

then to produce a design that is flexible enough to “allow adjustment for the most

important uncertainties” [84]. To do this, they formulated a two-stage stochastic

program with the first stage corresponding to the design stage, where decisions are

made regarding the actual equipment sizing, and the second stage as the operating

stage, where operating conditions are subsequently adjusted for optimal performance

following the uncertainty realization [84]. The uncertain variables were considered as

random with associated probability distributions, and corresponded to things such as

the yield prediction or kinetic rate constants [84]. The authors then considered six

different design formulations for comparison.

The idea of robust (stochastic) optimization was introduced in [95] to address real-

world operations research problems in which “noisy, erroneous, or incomplete data”

are inherent. The robust optimization approach produces a series of solutions that are

28



progressively less sensitive, and therefore more robust, to realizations of uncertainty

[95]. The authors of [95] define two types of robustness: solution robust and model

robust. Solution robust means that the optimal solution of the optimization problem

is robust with respect to optimality in the sense that it will remain close to optimal

for any realization of uncertainty [95]. Model robust means that the optimal solution

of the optimization problem is robust with respect to feasibility in the sense that it

will remain almost feasible for any realization of uncertainty [95]. The authors make

an explicit claim that their robust optimization formalism is superior to deterministic

worst-case strategies because they yield “very conservative and potentially expensive

solutions” [95]. However, when designing processes under uncertainty classified as

begin extraordinarily risky, robustness with respect to the worst-case must be ver-

ified rigorously, with absolute certainty. For such systems, the conservativeness of

deterministic worst-case strategies is precisely what is desired.

In order for stochastic approaches to give accurate results, probability distribu-

tions must be known with high accuracy for each uncertain variable. Furthermore,

stochastic methods fail to capture improbable events sufficiently—even though such

events may have an extraordinarily large impact on the performance and safety of a

design—and thus for a highly improbable worst-case scenario, robustness with respect

to uncertainty cannot be guaranteed with certainty. By characterizing uncertainty

by known or estimated intervals, all possible realizations are treated equally, elimi-

nating the need for probability distributions and stochastic programming altogether.

Because of this, stochastic programming approaches to design under uncertainty are

not applicable to robust simulation and design problems, and will not be considered

further.

1.2.2 Dynamic Programming

Dynamic programming is a term introduced by Bellman [8] to describe a mathe-

matical program that focuses on multi-stage decision making [8, 122], which has

most commonly been applied using a stochastic approach to characterize uncertainty

[27, 64, 71, 122, 131, 142]. Dynamic programming is essentially the same idea as

29



stochastic programming described previously, except instead of a two-stage formula-

tion, dynamic programming resolves multi-stage decision problems. For some current

state of the system, there is an associated probability distribution of uncertain pa-

rameters for which an uncertain value is chosen and an allowable control chosen from

subsequent knowledge of the state of the system. This hierarchy of decision-making

is always carried out so as to minimize the expected cost over all states [8].

Dynamic programming is largely applicable to finite-time systems, such as de-

signing batch processes or planning problems with varying operational and/or mar-

ket conditions [30]. For instance, in [9], a discrete-time ballistic trajectory control

application is discussed. The main idea is to ensure that the optimal design or opti-

mal operating policy is implemented throughout the project lifetime as environment

evolves [30]. Steady-state process design can be handled using a dynamic program-

ming approach, for instance, if varying realizations of uncertainty present themselves

during operation. In this case, the design objective is for the process to be robust

with respect to uncertainty.

Similar to stochastic programming, since uncertainty is handled stochastically,

this approach is inadequate for worst-case design strategies. Recalling the discussion

in Section 1.1, the worst-case realization of uncertainty may be that associated with

cascading events. Without the ability to enumerate an infinite number of uncertainty

realizations, capturing the worst-case behavior is impossible. In addition, due to their

complexity, solving dynamic programming formulations can be very computationally

intensive and are often intractable for relatively simple nonlinear problems [122].

Because of this, dynamic programming cannot be applied to robust simulation and

design problems with the intent of providing a rigorous certificate of feasibility.

1.2.3 Fuzzy Programming

Fuzzy programming is similar to stochastic (and dynamic) programming except that

uncertainty is modeled using fuzzy numbers instead of probability measures and per-

formance and safety constraints are treated as fuzzy sets [10]. A fuzzy set has no

sharp boundaries and has an associated membership function that defines the “de-

30



gree of membership” of, in this case, a number [10]. Since constraints are handled in

this way, there are no hard guarantees of satisfaction and feasibility; only a “degree

of satisfaction” [10]. Fuzzy numbers are a special case of fuzzy set whose member-

ship function equals 1 at precisely one value. Fuzzy intervals are then a fuzzy set

containing an interval of numbers whose membership function equals 1. Again, there

is a degree of membership associated with these sets and so modeling uncertainty in

engineering systems using fuzzy numbers or fuzzy intervals may be inadequate since

values outside of certain intervals may be nonphysical, and therefore may lead to

nonphysical solutions. In light of this, fuzzy programming is incapable of giving hard

guarantees of robustness and will not be considered as a viable approach to design

under uncertainty in the context of this thesis.

1.2.4 Deterministic Approaches

One of the earliest deterministic attempts at the robust design problem focused on

optimal process design under uncerainty [102]. In optimal design under uncertainty,

the system must be designed such that it performs optimally while satisfying all

performance and safety specifications for every possible realization of uncertainty.

In [102], the authors focus was to design a process that performed optimally while

being robust to the worst-case realization of uncertainty. The authors formulate

the equality-constrained min-max program with the model equations exhibiting an

explicit relationship between the process inputs and outputs [102]. They required

that their uncertainty set is a bounded finite set and the functions involved are twice

continuously differentiable. The authors solve this problem locally using an iterative

gradient-based technique.

In [78], Kwak and Haug addressed optimal design with a more general optimization

formulation. The application that is given in [78] is a military missile system that

must operate optimally for every temperature within a given interval. The authors

[78] formulated this problem as a bilevel program that minimizes some relevant design

objective varying design parameters subject to an inner program that attempts to

find the worst-case realization of environmental parameters subject to some steady-

31



state model of the design parameters, environmental parameters, and state variables.

This formulation is intractable and extremely difficult to solve in the general case,

however. In [78], the authors solve an approximate problem by considering only

first-order (affine) approximations of the objective function and constraints. Another

important contribution is the discussion of the relationship between the more general

bilevel formulation and the worst-case “minimax” formulation [78].

Grossmann and Sargent [51] present a bilevel formulation that is a slight modifi-

cation of [78] and the special case in [102]. Their approach treats the design variables

as having the ability to be partitioned into a fixed design variable and a control

variable that can be chosen during operation according to realizations of uncertainty

[51]. Their focus is to determine the optimal design variables, minimizing an eco-

nomic objective, so that there exists a control setting such that for any realization

of uncertainty, the design meets all performance and safety specifications [51]. They

conclude by discussing special cases for which solutions to their formulation can be

obtained using previously developed optimization theory [51].

Halemane and Grossmann [52] extended the ideas of [51] and offered a more

general optimization formulation for optimal design under uncertainty and what is

called the feasibility problem, or the problem of verifying feasible operation in the

face of the worst-case realization of uncertainty. In light of uncertainty in model

parameters as well as disturbances to the process, the authors state that “it is clearly

very important to consider at the design stage the effect that uncertain parameters can

have on both the optimality and feasibility of operation of the plant” [52]. The authors

solve the model equations as implicit functions of the controls, design variables, and

uncertainty parameters and then formulate the problem as a reduced-dimension semi-

infinite program (SIP). They analyze the problem and offer two solution methods that

rely on convexity, amongst other assumptions [52].

The SIP problem formulation presented in [52] is then used in [136] to assess the

performance of a process system in terms of flexibility, which is stated as “the ability

to operate over a range of conditions while satisfying performance specifications”.

Swaney and Grossmann then describe a quantitative index of flexibility [136]. The

32



flexibility problem is then solved in [137] under certain quasiconvexity assumptions

on the feasible set. However, barring satisfaction of the quasiconvexity assumption

or the optimal solution lying on a vertex of the hyperrectangle of feasible parameter

values, global optimality cannot be guaranteed [136].

Deterministic robust optimization is surveyed in [11]. As mentioned in Section

1.2.1, solutions to these problems are conservative in that they are guaranteed to

be feasible/optimal for all realizations of uncertainty. The authors formulate the

problem as an SIP equivalent to the worst-case min-max problem [11]. Robust opti-

mization of linear programs (LP), semi-definite programs (SDP), and conic quadratic

problems—all of which are convex with explicit constraints—were considered [11].

Robust optimization of convex least-squares problems with explicit constraints was

considered in [37]. Since the considered problems were all explicitly constrained con-

vex programs, their methodology is inadequate for solving robust simulation and

design problems.

In [43], a method is presented that provides a rigorous approach to the design

under uncertainty and flexibility problems, without relying on convexity assumptions.

The authors rely on the assumption that the performance constraints and model

equations are twice-differentiable [43]. Contrasting [52, 136, 137], Floudas et al. do

not eliminate the model equations from the formulation and therefore must solve the

full-space constrained “max-min problem” [43]. However, even for relatively simple

examples, their bilevel formulation can be computationally intractable.

In Chapter 2, the robust design problem will be formulated mathematically as

the (implicit) SIP presented in [52]. The rest of this thesis will focus on solving this

SIP in the general case, using a rigorous approach, without relying on convexity as-

sumptions. The method for solving this problem relies on: (1) the ability to bound

implicit functions, discussed in Chapter 3, and (2) the ability to solve nonconvex

nonlinear programs, having embedded implicit functions, to global optimality, dis-

cussed in Chapter 4. In Chapter 7, these developments are put together within an

SIP algorithm to solve the robust design problem. Finally, the application to ultra

deepwater subsea production facilities is covered in Chapter 8 with a model and case

33



study.

34



Chapter 2

Robust Simulation and Design

Using Semi-Infinite Programming

with Implicit Functions

2.1 Problem Formulation

Process systems operating at steady state can be modeled in general as the following

system of (nonlinear) algebraic equations:

h(z,u,d,π) = 0, h : Dx ×Du ×Dd ×Dπ → Rnx (2.1)

with Dx ⊂ Rnx , Du ⊂ Rnu , Dd ⊂ Rnd , Dπ ⊂ Rnπ as open sets. The variables z ∈

X ⊂ Dx represent the process state variables, u ∈ U ⊂ Du are the control variables,

d ∈ D ⊂ Dd represent the disturbance uncertainty, and π ∈ Π ⊂ Dπ as the model

uncertainty, as depicted in Figure 2-1.

Model uncertainty will be characterized in the usual manner as the discrepancy

between the model and the physical system. Two types of model uncertainty can be

characterized: parametric uncertainty and structural uncertainty [29, 33]. Parametric

uncertainty is the uncertainty in the model parameters that arise from statistical

errors in measurements and the propagation through calculations such as regression

35



Model

Controls: U∈u

Disturbances: D∈d

Outputs: O∈o

Controller

( , , , ) ,
d

dt
π π= ∀ Π= ∈

z
h z u d 0π π

Figure 2-1: Steady-state process systems model representation.

or parameter estimation. Structural uncertainty arises from the inability of the model

equations to represent the physical system accurately. In other words, the model

cannot sufficiently capture the physics of the system. Structural uncertainty cannot

be handled in this framework except to the extent to which it can be characterized

as parametric uncertainty. Throughout this thesis, model uncertainty will refer to

parametric model uncertainty.

For simplicity of notation, disturbance and model uncertainty will be represented

as the uncertain parameters:

p ≡ (d,π), p ∈ P ⊂ Dp ≡ Dd ×Dπ.

The uncertain parameters can take any realization from the uncertainty set, which,

using physical knowledge of the system, can be represented as a connected compact

set1:

P ≡ {p ∈ Rnp : pL ≤ p ≤ pU},

with pL,pU ∈ Rnp known a priori. Furthermore, since control actions are bounded,2

the control set will also be represented as a connected compact set:

U ≡ {u ∈ Rnu : uL ≤ u ≤ uU},

1In practice, each uncertain parameter will not take values from arbitrarily large intervals.
2Controls can only take values within the interval corresponding to, for example, fully-opened

and fully-closed control valves.

36



with uL,uU ∈ Rnu . The design question that must be addressed is [134]:

Given a process model, and taking into account uncertainty in the model

and disturbances to the inputs of the system, do there exist control set-

tings such that, at steady state, the physical system will always meet the

performance and/or safety specification?

Letting g : Dx ×Du ×Dp → R be the performance and/or safety specification, this

question can be stated formally as the feasibility problem3:

∀p ∈ P,∃u ∈ U : g(z,u,p) ≤ 0,h(z,u,p) = 0.

In order to formulate this problem mathematically, consider for the moment a single

realization of uncertainty. The question that must be addressed is whether or not

there exists a control setting such that the performance/safety specification is satis-

fied, for that particular realization of uncertainty. This problem can be formulated

mathematically as the following nonlinear program (NLP):

ψ(p) = min
z∈X,u∈U

g(z,u,p) (2.2)

s.t. h(z,u,p) = 0.

Upon solving (2.2), if ψ(p) ≤ 0, this establishes (with mathematical certainty) that

there exists a control such that the performance/safety specification (and the model

equations) are satisfied, for that particular realization of uncertainty. In other words,

ψ(p) can be thought of as a measure of feasibility (or infeasibility) of the design with

respect to a particular realization of uncertainty p [52]. Of course, the next step is

to consider every realization of uncertainty; in particular, the worst-case realization

3Satisfying this constraint will also be referred to as meeting robust feasibility.

37



of uncertainty. This amounts to solving the constrained max-min program4:

η∗ = max
p∈P,η∈R

η

s.t. η ≤ min
z∈X,u∈U

g(z,u,p) (2.3)

s.t. h(z,u,p) = 0,

by introducing the auxiliary variable η ∈ R. In a similar fashion to the interpretation

of ψ, upon solving (2.3), if η∗ ≤ 0, this establishes robust feasibility of the design

(i.e. for the worst-case realization of uncertainty, there exists a control such that the

performance/safety specification is not violated). In other words, η∗ can be thought

of as a measure of robust feasibility (or infeasibility) of the design.

From here on, it will be assumed that the model function, h, is continuously

differentiable on Dx. Conditions under which this assumption may not be necessary

will be discussed in later chapters. If for some U and P , unique z ∈ X exist that

satisfy h(z,u,p) = 0 at each (u,p) ∈ U ×P , then they define an implicit function of

the controls and uncertainty parameters, that will be expressed as x : U × P → X,

by asserting the Implicit Function Theorem. Details of this will be discussed more

thoroughly in Chapters 3 and 4. The significance of the set X will be discussed in the

next section. By representing the state variables as implicit functions of the controls

and uncertainty parameters, explicit dependence on them is eliminated and there is a

potentially significant reduction in the number of optimization variables as compared

to (2.3). The following optimization problem, equivalent to (2.3) and the original

feasibility problem, results:

η∗ = max
p∈P,η∈R

η

s.t. η ≤ min
u∈U

g(x(u,p),u,p).

4Program (2.3) is referred to as a constrained max-min program since it is equivalent to:
η∗ = max

p∈P
min

u∈U,z∈X
{g(z,u,p) : h(z,u,p) = 0}.

38



Furthermore, the inner-minimization constraint can be expressed as

η ≤ min
u∈U

g(x(u,p),u,p)⇔ η ≤ g(x(u,p),u,p), ∀u ∈ U. (2.4)

The following optimization problem can then be formulated:

η∗ = max
p∈P,η∈R

η (2.5)

s.t. η ≤ g(x(u,p),u,p), ∀u ∈ U,

which is an SIP since it has a finite number of decision variables, p, and an infinite

number of constraints5 indexed by the set U . The SIP (2.5) will be referred to as the

robust simulation SIP which will in turn be referred to as an implicit SIP since it has

implicit functions embedded. The solution of the robust simulation SIP will be the

primary focus of this work. In the next section, an intuitive picture of the operational

envelope and how it relates to the feasibility problem and the implicit SIP will be

discussed.

2.2 The Feasibility Problem and the Operating

Envelope

The operating envelope is an important concept to design engineers. In the context of

this work, the operating envelope is simply the region in which the steady-state pro-

cess operates given all realizations of uncertainty and controls.6 Figure 2-2 depicts the

operating envelope of a process for a single control setting. The design corresponding

to the operating envelope in the figure is said to be feasible since for every realization

of uncertainty, there exists a control setting such the operating envelope does not

5There is a constraint corresponding to each control realization u, for which there are infinitely
many realizations from the interval U .

6The concept of flexibility, mentioned earlier, is related to the concept of the operating envelope.
Again, the index of flexibility is a measure of the size of the uncertainty interval P for which there
exists a control setting such that the operating envelope doesn’t violate the performance/safety
constraint (i.e. the plant operates within the feasible region and the design is said to be feasible).

39



Uncertainty Parameter Space State Space 

( , , ) ( , )= ⇒ =h z u p 0 z x u p
1p

2p

Operating 

EnvelopeP

1z

2z

, , )( 0g ≤z u p

Figure 2-2: The uncertainty parameters are mapped through the model equations to
state space, defining the operating envelope, which in this case, is within the region
satisfying the performance/safety constraint.

violate the performance/safety specification. With reference to the robust simulation

SIP (2.5), this corresponds to an optimal solution value η∗ ≤ 0. In short, solving the

feasibility problem requires a rigorous evaluation of the operating envelope.

Since the explicit enumeration of uncertainty parameters and controls is an in-

adequate procedure for evaluating the operating envelope (there are infinitely many

points), global information is required. This can be interpreted as needing rigor-

ous and conservative bounds on the operating envelope, or more precisely, on the

implicit function x. Figure 2-3 shows such bounds, depicted as the interval X. In

essence, evaluating the operating envelope boils down to the ability to calculate rigor-

ous bounds on the image of the control and uncertainty sets under the mapping of the

implicit function x. Stated more precisely, rigorous bounds on the image set x(U, P )

are required. In Figure 2-3, rigorous interval bounds on the operating envelope are

depicted such that they do not violate the performance/safety specification. This

illustrates how robust feasibility of a design can be determined using only the global

bounding information. However, it also illustrates how overly-conservative bounds

on the operating envelope can generate a situation where the bounds violate the per-

40



( , , ) ( , )= ⇒ =h z u p 0 z x u p

X

State Space 

Operating 

Envelope

1z

2z

, , )( 0g ≤z u p

Figure 2-3: The operating envelope enclosed by the interval X.

formance/safety specification when the operating envelope is actually feasible. Of

course, in order to determine robust feasibility of a design, there must be a procedure

for reconciling the latter situation.

2.2.1 Objectives

Since a design engineer actually only cares about the worst-case realization of uncer-

tainty, most of the uncertainty set does not need to be considered. Therefore, the

operating envelope that needs to be evaluated may be considerably smaller than that

corresponding to the entire uncertainty set. In turn, this pruning of the uncertainty

set may lead to the ability to calculate much tighter and less conservative bounds

on the operating envelope, which in turn leads to the better chances of guaranteeing

robust feasibility of the design. However, in the general case, the operating envelope

is nonconvex since process systems models often exhibit complex nonlinear behavior.

In this case, simply ensuring feasibility for a single realization of uncertainty requires

solving an NLP with embedded implicit functions to global optimality. This leads to

the following objectives of this thesis:

41



1. develop a method to calculate rigorous and convergent global bounding infor-

mation on implicit functions over a range of parameter values,

2. develop a method to solve NLPs with embedded implicit functions to global

optimality, and

3. apply these developments to solve SIPs with embedded implicit functions—the

so-called robust feasibility problem—to global optimality.

In Chapter 3, a method for bounding implicit functions using interval analysis

is developed. In Chapter 4, the interval bounds are used to calculate convex un-

derestimating and concave overestimating functions of implicit functions which are

potentially refinements on the interval bounds. In the same chapter, these convex

and concave bounding functions are used within the global optimization of implicit

functions algorithm. These chapters essentially accomplish objectives (1) and (2)

above. In Chapter 7, the global solution of SIPs with embedded implicit functions is

presented, accomplishing objective (3).

42



Chapter 3

Bounding Implicit Functions Using

Interval Analysis

In this chapter the global root-finding problem is considered for systems of parameter-

dependent nonlinear algebraic equations. Solutions of such systems are implicit func-

tions of the parameters and therefore this problem amounts to finding real function

branches, rather than solution points. In this chapter, a bisection algorithm is pre-

sented that relies on (parametric) interval Newton-type methods to calculate interval

boxes that are guaranteed to each enclose a locally unique solution branch. A test for

existence and uniqueness of enclosed solution branches is presented that is sharper

than the classical tests from interval-Newton methods applied to parametric systems.

Furthermore, a method for partitioning the parameter space is presented that intel-

ligently searches for a partition that leads to subinterval boxes that are more likely

to pass the existence and uniqueness tests. A number of numerical examples are

presented with results illustrating the effectiveness of the algorithm.

3.1 Introduction

Enclosing the locally unique solutions of systems of nonlinear equations of the form

h(z) = 0, h : Dx ⊂ Rnx → Rnx , (3.1)

43



with Dx open, using interval analysis, has been addressed extensively in the past.

However, it is common that variable coefficients are parameter-dependent, giving rise

to parametric nonlinear systems of equations. The form of these equations is:

h(z,p) = 0, h : Dx ×Dp → Rnx , (3.2)

with Dp ⊂ Rnp open. Parametric dependence of coefficients commonly arises when

the equations model real-world systems and therefore are inherently inaccurate and

uncertain. Model formulations such as (3.2) are therefore applicable across a wide

variety of disciplines. In this case, the problem one wishes to solve can be formulated

as finding a nontrivial Ξ ⊂ Rnx such that

∀p ∈ P, ∃z ∈ Ξ : h(z,p) = 0, (3.3)

with P ⊂ Dp a compact interval. If there exist such z satisfying (3.3), then they

define an implicit function x : P → Ξ ⊂ Dx. Such an x may not be unique on P ,

in which case, if there are a finite number of solutions, each xi is called a solution

branch. If xi is continuous on P , its image xi(P ) is a connected compact set. Thus,

Ξ encloses the union of a collection of connected compact sets that are the image sets

of the locally unique solutions. Under appropriate assumptions, continuity of xi is

guaranteed by the Implicit Function Theorem.

The new applications in this thesis, in the realms of Robust Simulation and Global

Optimization, require efficient calculations of valid, tight, and convergent enclosures

of the solutions of parameter-dependent nonlinear equations. That is, algorithms are

required that can efficiently calculate rigorous and tight interval enclosures that are

guaranteed to each contain a solution branch that is locally unique on an interval

P l ⊂ P , where the parameter interval P is known or chosen a priori, and P l has

nontrivial width.

In [99], Neumaier describes the “covering method” in which the parametric so-

lution set of polynomial systems in the form of (3.2) is covered with interval boxes

which then are refined. The application [99] considered for this method is in the

44



realm of computer-aided geometric design. Thus, the accuracy of the algorithm is

simply the accuracy it takes to represent the solution set as an image on a computer

screen [99]. He uses the enclosure property of inclusion monotonic interval extensions

to test whether a current interval may enclose a solution of (3.2). Together with a

generalized bisection approach, an interval will be refined or discarded, where bisec-

tions are made in the coordinate with the largest width (in both the z direction and

p direction). The so-called covering method makes use of an interval-Newton method

for refining intervals which may contain parts of a solution branch and excluding re-

gions guaranteed not to contain any part of a solution branch. However, the method

cannot actually use the inclusion tests that are inherent to interval-Newton methods

and therefore, existence and uniqueness of enclosed solutions cannot be guaranteed

except in the limit of infinite partitioning. Due to the scope of its application, the

covering method is simply not applicable to the problem which this chapter intends

to address.

Bounding the solution branch of parameter-dependent linear systems, of the form

A(p)z = b(p), has been discussed previously in the literature. In [106], the solution

of parameterized linear systems is discussed which makes use of “Rump’s fixed-point

iteration method for bounding the hull of the solution set [119].” This technique makes

it essentially an interval version of the fixed-point method for solving linear systems

that relies on inner-approximations of the hull as well as outer-approximations. In

[107, 108], the method’s key results and implementation as packages for commercially

available software are discussed.

The parametric linear system methods have specific importance when solving sen-

sitivity analysis problems. Applications of (3.3) to sensitivity analysis have been con-

sidered in [46, 47, 75, 100, 118, 119]. The problem (3.3) is referred to as the perturbed

problem. In [100], linearizations of (3.2) were considered to calculate rigorous bounds

on the solution(s), with [118] offering some improvements. The authors of [100, 118]

present rigorous methods using linear interval enclosures of the nonlinear parametric

solution. These methods reduce to solving a linear interval system of equations. In

[75], the authors make use of rigorous affine interval enclosures, introduced in [74], to

45



calculate (outer) bounds on the interval hull of the image set. The problem in (3.3)

then reduces to solving a linear interval system of equations as well. Although, in

theory, the methods produce rigorous enclosures of a locally unique solution to (3.2)

over P , they still rely on linear approximations to the nonlinear system, whereas the

classic interval Newton-type methods do not.

The interval Newton-type methods provide inherent tests for the existence of

solutions in a given interval. In [46], Gay makes use of the parametric extensions of

two common “existence tests”: the Krawczyk [76] test and the Kioustelidis and Moore

[93] test based on Miranda [86]. He claims that “it is easy to generalize such existence

tests to account for problems in the form of (3.2)” [46]. He also states the “the

results of Moore [91] extend immediately to (3.2)” [46]. Although Gay’s generalizing

statement is true, because he is only interested in verifying the existence of (not

necessarily unique) solutions of (3.3), he never discusses the non-triviality associated

with making the parametric extension of the interval-method based uniqueness tests.

In [77], Krawczyk uses the formulation introduced in [46], and considers bound-

ing the parameterized function with a so-called function strip. The function strip

approach uses an interval-valued function that takes the real vector-valued argument

z, and outputs an interval enclosure of h evaluated at z valid for all p ∈ P . The

problem he then wishes to solve is to find a valid enclosure of the locally unique so-

lution x on P . The Krawczyk operator and the interval-Newton operator were then

generalized for the use with function strips. The idea of a function strip is analogous

in many ways to what how the interval methods will be used in this chapter, except

no modifications to the already well understood interval Newton-type operators will

be made, except to incorporate parameter dependence.

In [56], Hansen and Walster briefly discuss some theory and application of the

interval Newton method to parametric nonlinear problems, including some analysis.

A one-dimensional parametric example is presented in [56, 54] in which a modified

parametric interval-Newton method is applied to calculate tight bounds on the locally

unique solution branch. The presented approach calculates the parametric interval-

Newton operator from multiple points of expansion, as opposed to just one, in which

46



the standard parametric extension to the interval-Newton operator is calculated. In

[54], they also generalize the approach to multi-dimensional cases noting its inherent

inefficiency. However, the discussion in [56] and [54] is incomplete as they fail to

address thoroughly the many important results concerning the parametric extension

of interval Newton-type methods. A more thorough analysis of interval methods for

parameter-dependent nonlinear systems of equations is given in [101].

Interval arithmetic and (non-parametric) interval Newton-type methods have been

applied within various algorithms for bounding all solutions of systems of equations,

such as (3.1), that exist within a large initial box. In [68], the authors propose applying

generalized bisection to the solve global root-finding problem. Coupled with interval

methods, in which tests for existence and uniqueness of solutions in a given box are

inherent, all real solutions of (3.1) can be found. In [70] this exact strategy was applied

to bound all solutions of (3.1). In [53], extended interval arithmetic was developed

and applied in a similar manner to reduce the initial space into subintervals, known

to enclose solutions, in which the interval Jacobian matrix is nonsingular, providing

uniqueness of enclosed solutions. This technique is rather appealing because even

without bisection, new information may be calculated that allows for regions of the

original box to be excluded.

An extension of generalized bisection [68] to parametric nonlinear systems, as in

(3.2) will be proposed in this work. The objective of such an algorithm is to generate

boxes X l×P l ⊂ X×P , with P l having substantial width, such that X l is guaranteed

to enclose a locally-unique solution branch on all of P l. One subtle difference in

the parameterized generalized bisection procedure is the processing of interval boxes

taking into account the idea of partial enclosures. In other words, simply applying

generalized bisection to a parameterized problem and blindly bisecting in X (and not

P ) is prone to produce boxes that enclose a solution branch for some, but not all p ∈

P . The parameterized generalized bisection algorithm will apply the standard theory

developed for interval methods as well as incorporate some new results to, first and

foremost, avoid partial enclosures while bisecting X. Similarly, if no “safe” bisection

of X can be guaranteed, the algorithm applies a procedure for partitioning the P

47



interval box. Since it is desired that this algorithm bounds solution branches for all

p ∈ P l ⊂ P , with sufficiently wide P l, passing the classical existence/uniqueness tests

of the interval Newton-type methods becomes an issue. Since the classical existence

and uniqueness tests are often too strong to pass for parameter-dependent problems,

the parameterized generalized bisection algorithm relies on a sharper existence and

uniqueness test, developed in Section 3.4.

Alternatively, homotopy continuation [4, 129] has been applied to find all solution

branches of the system (3.2). In particular, it has commonly been applied to (small)

polynomial systems of a single parameter [94]. This is done by tracing a parametric

solution curve starting at the lowest value of the parameter and continuously solving

the system of equations successively for increasing parameter values. Various appli-

cations to systems with multiple parameters has been discussed [113, 114, 115, 129].

However, as discussed, homotopy continuation can only handle a single parameter.

Extensions to multiple parameter problems requires a reformulation into a single pa-

rameter problem. Equivalence of the reduced problem to the higher dimension prob-

lem is then guaranteed only on a given path on the solution surface to the multiple

parameter problem [114]. Thus, multiple parameter problems are not only inefficient

to solve, but generating accurate pictures of multidimensional solution surfaces from a

one-dimensional approach is inherently problematic [114]. Furthermore, continuation

does not offer the ability to enclose solutions branches rigorously, only approximate

their critical boundaries [113] to finite precision.

In Section 3.2, the mathematical notation and nomenclature used throughout this

chapter and beyond, is presented. Section 3.3 presents two classical interval methods,

discusses the idea of interval iteration, and presents the standard, well-established

results regarding existence and uniqueness of enclosed solutions. In Section 3.4, some

theoretical results regarding partial enclosures are given as well as a stronger ex-

istence and uniqueness result that provides a sharper test than the classical tests.

Furthermore, in Section 3.4, the convergence properties of interval enclosures un-

der partitioning the parameter interval is discussed. These results have important

implications when using the interval enclosures as bounding information in global

48



optimization applications. In Section 3.5, the parameterized generalized bisection

algorithm is formalized and the heuristic cutting strategies are discussed. In Sec-

tion 3.6, the computer implementation is discussed and some numerical examples are

given that illustrate the performance of the algorithm. Finally, in Section 3.7, some

concluding remarks are given.

3.2 Background

This section provides the reader with the background mathematical concepts, results,

and nomenclature, with respect to interval analysis, used throughout this thesis.

Assumption 3.2.1. Unless otherwise stated, there exists at least one implicit func-

tion x : P ⊂ Dp → Dx such that h(x(p),p) = 0 holds for every p ∈ P .

Remark 3.2.2. If the closed convex hull of the Jacobian matrix of h with respect to

z (denoted Jz) on the set X × P ⊂ Dx ×Dp does not contain any singular matrices,

an implicit function satisfying Assumption 3.2.1 is unique in X and it is continuous

on P . This is a consequence of Proposition 5.1.4 in [101] and the semilocal implicit

function Theorem 5.1.3 in [101].

3.2.1 Interval Analysis

The notation and some concepts from interval analysis are presented in this section.

The reader is directed to [92, 101] for a more complete background on the concepts

of interval analysis.

Definition 3.2.3. An interval Z ⊂ Rm is defined as the nonempty connected compact

set:

Z = {z ∈ Rm : zL ≤ z ≤ zU},

with zL ∈ Rm and zU ∈ Rm as the lower and upper bounds of the interval Z,

respectively. The ith component of Z will be denoted Zi.

49



Definition 3.2.4. The interior of an interval Z ⊂ Rm is defined as the connected

open (possibly empty) set:

int(Z) = {z ∈ Rm : zL < z < zU}.

Definition 3.2.5. The set of interval subsets of R is denoted IR.

Definition 3.2.6. Let Z ⊂ Rm. The set {Y ∈ IRm : Y ⊂ Z} is denoted as IZ.

With this definition, it is clear that IZ ⊂ IRm.

Definition 3.2.7 (Midpoint). The midpoint or median, of an interval Z ∈ IR is

defined as:

m(Z) ≡ zL + zU

2
, i = 1, . . . ,m. (3.4)

For Z ∈ IRm, the midpoint will be a real vector m(Z) whose ith component is m(Zi).

Similarly, for Z ∈ IRm×n, the midpoint will be a real matrix m(Z) whose (i, j)th

element is m(Zij).

Definition 3.2.8 (Image). The image of the set Z ∈ IRm under the mapping f : A ⊂

Rm → Rn, with Z ∈ IA is denoted as f̂(Z).

Note that the image is not necessarily an interval.

Definition 3.2.9 (Interval Hull). Let A ⊂ Rm be bounded. �A ∈ IRm is called the

interval hull of A if A ⊂ �A and for any Z ∈ IRm such that A ⊂ Z, �A ⊂ Z.

Definition 3.2.10. The interval hull of the image of Z ∈ IA under f : A ⊂ Rm → Rn

is denoted as �f̂(Z) =
[
f̂L(Z), f̂U(Z)

]
.

Definition 3.2.11. An interval-valued function F : IA → IRn, evaluated at any

Z ∈ IA ⊂ IRm, is denoted as F (Z).

Definition 3.2.12 (Interval Extension). Let Z ⊂ Rm. An interval-valued function

F : IZ → IRn is called an interval extension of the real-valued function f : Z → Rn

on Z, if

f(z) = y = [y,y] = F ([z, z]), ∀z ∈ Z.

50



It should be noted that this definition of an interval extension is the same as that

in [92]. It is more general than the definition of an interval extension in [101] which

also requires that F is an inclusion function of f , which is defined below. For the

purposes of this thesis the more general definition of an interval extension is used.

Definition 3.2.13. An interval extension, F (Z), of the function f : A ⊂ Rm → Rn,

at Z ∈ IA, is called exact at Z ∈ IA if F (Z) = �f̂(Z).

Definition 3.2.14 (Inclusion Monotonic [92, 101]). Let Z ⊂ Rm. An interval-valued

function F : IZ → IRn is called inclusion monotonic on Z if for every A,B ∈ IZ,

B ⊂ A⇒ F (B) ⊂ F (A). (3.5)

Definition 3.2.15 (Inclusion Function). An interval-valued function F : IZ → IRn

is called an inclusion function of f : Z → Rn on Z if

f̂(A) ⊂ F (A), ∀A ∈ IZ.

Theorem 3.2.16 ([92, 101]). Let Z ⊂ Rm. and let F : IZ → IRn be an inclusion

monotonic interval extension of f : Z → Rn on Z. Then F is an inclusion function

of f on Z.

Proof. Proof can be found in [92] page 21.

This so-called inclusion property is also known as The Fundamental Theorem of

Interval Analysis.

Definition 3.2.17 (Nested Sequences). A sequence of intervals {Zk}, with Zk ∈ IRm

is said to be nested if Zk+1 ⊂ Zk for every k.

Theorem 3.2.18 (Finite Convergence [92]).

1. Every nested sequence of intervals is convergent and has the limit

Z∗ =
∞∩
k=1

Zk.

51



2. For some real vector z such that z ∈ Zk for all k, the sequence of intervals {Y k}

defined by Y 1 = Z1 and Y k+1 = Zk+1 ∩ Y k for k = 1, 2, . . . is a nested sequence

with limit Y ∗ and

z ∈ Y ∗ ⊂ Y k.

3. Using outward-rounded interval arithmetic, there exists a K ∈ N such that

Y k = Y K for k ≥ K and the sequence {Y k} is said to converge in K steps.

Proof. The proof can be found in [92] on page 36.

Definition 3.2.19 (Interval Width). The width of an interval Z ∈ IR is defined as

the distance between its upper and lower bounds:

w(Z) = zU − zL.

Definition 3.2.20 (Interval Vector Width). The width of an interval vector Z ∈ IRm

is the vector, w(Z), whose ith component is w(Zi).

Note that this definition is consistent with that of [3] and differs from that of [92].

Definition 3.2.21 (Radius). Let A ∈ IR. The radius of A is defined as one-half its

width:

rad(A) = w(A)/2.

For A ∈ IRm×n, rad(A) is the m × n-dimensional real-valued matrix whose (i, j)th

element is given by rad(Aij).

The metric used in interval analysis is the Hausdorff metric.

Definition 3.2.22 (Hausdorff Metric [92, 101, 109]). Distances in the Hausdorff

metric are defined as

dH(Z, Y ) = max
i
{|zLi − yLi |, |zUi − yUi |} (3.6)

with Z, Y ∈ IRm.

52



Note that the Hausdorff metric induces the max-norm || · ||∞ [109].

Theorem 3.2.23 (Completeness, [3]). The space IRm equipped with the Hausdorff

metric is a complete metric space.

Proof. Proof can be found in [3].

Definition 3.2.24. An inclusion monotonic interval extension of the partial deriva-

tive of the continuously-differentiable function fi : A ⊂ Rm → R with respect to zj

evaluated at Z ∈ IA is denoted as

∂Fi
∂zj

(Z).

Definition 3.2.25. An inclusion monotonic interval extension of the Jacobian ma-

trix, of a vector-valued function f : A ⊂ Rm → Rn, evaluated at Z ∈ IA is denoted

as

Jz (Z) ≡


∂F1

∂z1
(Z) · · · ∂F1

∂zm
(Z)

...
. . .

...

∂Fn
∂z1

(Z) · · · ∂Fn
∂zm

(Z)

 . (3.7)

The subscript z becomes essential when dealing with parameter dependent func-

tions. For instance, given a function f : Dx×Dp → Rnx , the notation Jx refers to the

matrix of partial derivatives with respect to the first vector of arguments (in Dx).

Definition 3.2.26 (Singularity). Let A ∈ IRn×n. A is said to be singular if there

exists a singular matrix A ∈ Rn×n such that A ∈ A. Similarly, A is said to be

nonsingular if no such A exists.

In [101], Neumaier introduces a more general concept applicable to rectangular

interval matrices A ∈ IRm×n. A matrix A is said to be regular if every A ∈ A has

rank n. Thus, when m = n, the notions of non-singular and regular are equivalent.

Definition 3.2.27. Let A ∈ IRn×n be nonsingular. Then

A−1 ≡ �{A−1 : A ∈ A}

53



is the inverse of an interval matrix.

Theorem 3.2.28. Let A ∈ IRnx×nx, m(A) be nonsingular, and define Z ≡ |m(A)−1| rad(A),

where |m(A)−1| is the elementwise absolute value of m(A)−1. Let λmax = maxi{|λi|}

be the magnitude of the extremal eigenvalue(s) of Z. If λmax < 1, then A is nonsin-

gular.

Proof. Follows from Proposition 4.1.1 and Corollary 4.1.3 in [101].

3.2.2 Extended Interval Arithmetic

Extended interval arithmetic is an interval arithmetic that, for the concerns of this

thesis, defines division by intervals enclosing 0. Such cases may arise when applying

parametric interval Newton-type iterations to bound parametric solutions of (3.2).

For example, when an interval Jacobian matrix is calculated that encloses a singular

matrix, an interval division by zero may be encountered and no new information can

be obtained using standard interval division. However, applying extended interval

arithmetic to the parametric interval Newton-type iteration may provide a way to

calculate new information and circumvent the interval divide by zero scenario. It is

apparent that if multiple solutions exist in a box the interval Jacobian matrix will be

singular. Similarly, if an interval Jacobian matrix is singular, then uniqueness of en-

closed solutions cannot be verified. The application of extended interval arithmetic to

parametric systems is analogous to non-parametric systems. Divisions with intervals

containing zero are defined in the following.

Definition 3.2.29. Let A ∈ IR such that 0 ∈ A = [aL, aU ]. Then

1

A
=


[
1/aU ,+∞

)
if aL = 0,(

−∞, 1/aL
]

if aU = 0,(
−∞, 1/aL

]
∪
[
1/aU ,+∞

)
otherwise.

Thus, extended interval arithmetic returns either an unbounded interval or the

union of two disjoint unbounded intervals. If the division by an interval containing

54



zero results in the union of two disjoint intervals, each interval in the union is then

separately returned to the parametric interval Newton-type iteration for refinement

and/or the application of the inclusion/exclusion tests.

3.3 Interval Methods

The interval methods presented in this section have been studied extensively in the

past. For a more thorough analysis, the reader is directed to [101]. This section will

simply establish the parameterized notation and state the generalized inclusion results

and the existence/uniqueness tests for each parametric interval method considered.

The following assumptions must be made.

Assumption 3.3.1.

(a) The function h : Dx ×Dp → Rnx is continuously differentiable on Dx ×Dp.

(b) The functions h and Jx have inclusion monotonic interval extensions, H and Jx.

Remark 3.3.2. Continuous differentiability is only required for the interval methods

as they are presented in this thesis. However, strictly speaking, this assumption is

not necessary since generalized derivative information may be used so long as h is

Lipschitz.

The parametric extension to the interval-Newton method has been discussed in

[56, 101] and a slightly modified form in [77]. The parametric interval-Newton oper-

ator is defined, in its Gauss-Seidel form, in the following.

Definition 3.3.3. Let Xk ∈ IRnx , P ∈ IRnp , xk ∈ Xk, and Yk ∈ Rnx×nx . Define

Ak ∈ IRnx×nx and Bk ∈ IRnx as Ak ≡ YkJx(X
k, P ) and Bk ≡ YkH(xk, P ), respec-

tively. the parametric interval-Newton operator N : Rnx × IRnx × IRnp → IRnx is

55



defined as

for i = 1, . . . , nx do

Ni(x
k, Xk, P ) := xki −

[
Bk
i +

i−1∑
j=1

Akij
(
Xk+1
j − xk+1

j

)
+

nx∑
j=i+1

Akij
(
Xk
j − xkj

)]
/Akii

(3.8)

Xk+1
i := Nk

i (x
k, Xk, P ) ∩Xk

i

end.

A common preconditioning matrix is themidpoint inverse: Yk = [m(Jx(X
k, P ))]−1,

and thus Yk = Yk(Xk, P ). Note that by preconditioning with Yk, the case in which

0 ∈ Akii is more likely to be avoided than without preconditioning. However, if 0 ∈ Akii,

extended interval arithmetic may be employed. The next operator avoids interval di-

vision altogether.

Definition 3.3.4. For Xk ∈ IRnx , P ∈ IRnp , xk ∈ Xk, and Yk ∈ Rnx×nx , the

parametric interval Krawczyk operator K : Rnx × IRnx × IRnp → IRnx is defined as

K(xk, Xk, P ) ≡ xk −YkH(xk, P ) + (I−YkJx(X
k, P ))(Xk − xk), (3.9)

where I is the nx × nx-dimensional identity matrix.

A more efficient and practical calculation of the parametric Krawczyk operator can

be done by using a sequential, componentwise strategy, analogous to the parametric

interval-Newton operator.

Definition 3.3.5. Let Xk ∈ IRnx , P ∈ IRnp , xk ∈ Xk, and Yk ∈ Rnx×nx . Define

Ak ∈ IRnx×nx and Bk ∈ IRnx as Ak ≡ I − YkJx(X
k, P ) and Bk ≡ YkH(xk, P ),

56



respectively. The parametric Krawczyk operator is defined as

for i = 1, . . . , nx do

Ki(x
k, Xk, P ) := xki −Bk

i +
i−1∑
j=1

Akij
(
Xk+1
j − xkj

)
+

nx∑
j=i

Akij
(
Xk
j − xkj

)
(3.10)

Xk+1
i := Ki(x

k, Xk, P ) ∩Xk
i

end.

Definition 3.3.6 (Parametric Interval Method). Let X0 ∈ IDx, P ∈ IDp, x
0 ∈ X0,

and Y0 ∈ Rnx×nx . Then, the iteration

Xk+1 := Φ(xk, Xk, P ), k ∈ N (3.11)

with Φ ∈ {N,K} defined as in Definitions 3.3.3 or 3.3.5 will be referred to as a

parametric interval method.

The sequence of intervals produced by the iteration (3.11) will, by construction,

be a nested sequence of intervals. By Theorem 3.2.18, these sequences are convergent.

3.3.1 General Results on Parametric Interval Methods

The results presented in this section are simply statements of the results in [101]

formalized for parameter-dependent systems.

Theorem 3.3.7 (Exclusion). Let X0 ∈ IDx, P ∈ IDp, and x0 ∈ X0. Let {Xk} be a

nested sequence of intervals generated by a parametric interval method (3.11) starting

from X0. If for some k ∈ N, and for some component i, Φi(x
k, Xk, P ) ∩ Xk

i = ∅,

then there are no solutions of (3.2) in X0 (or Xk) for any p ∈ P .

Theorem 3.3.8 (Interval Enclosure). Let X0 ∈ IDx, P ∈ IDp, and x0 ∈ X0. Let

{Xk} be a nested sequence of intervals generated by a parametric interval method

(3.11) starting from X0. Suppose x : P → Rnx is a continuous solution branch of

(3.2). If x̂(P ) ⊂ X0. Then:

57



1. x̂(P ) ⊂ Xk, ∀k ∈ N,

2. x̂(P ) ⊂ Φ(xk, Xk, P ), ∀k ∈ N.

Corollary 3.3.9. Let X0 ∈ IDx, P ∈ IDp, and x0 ∈ X0. Let {Xk} be a nested

sequence of intervals generated by a parametric interval method (3.11) starting from

X0. Suppose x : P → Rnx is a continuous solution branch of (3.2). Then the

following holds:

1. x(p) ∈ X0 ⇒ x(p) ∈ Xk, ∀k ∈ N,

2. x(p) /∈ X0 ⇒ x(p) /∈ Xk, ∀k ∈ N.

Theorem 3.3.10 (Existence and Uniqueness). Let X ∈ IDx, P ∈ IDp, z ∈ int(X),

and Φ ∈ {N,K} with N and K defined as in Definitions 3.3.3 and 3.3.5, respectively.

If Φ(z, X, P ) ⊂ int(X), then Jx(X,P ) is nonsingular and there exists a solution

branch x : P → Dx of (3.2) in X and it is unique.

Although applying the existence and uniqueness test of Theorem 3.3.10 is triv-

ial computationally, due to the width of the parameter interval P , overestimation

becomes an issue, potentially causing the test to be rather difficult to pass.

3.4 Theoretical Development

3.4.1 Existence and Uniqueness of Enclosed Solutions

In this section, useful results for verifying existence and uniqueness of enclosed so-

lutions are presented. The first result is simply a generalization of the converse of

Miranda’s theorem (Cor. 5.3.8 in [101]) for existence of enclosed solutions.

Theorem 3.4.1. Let X ∈ IDx and P ∈ IDp. Let H ≡ [hL,hU ] be an inclusion

function, and an interval extension, of h on X × P . For some i, choose x̃i ∈ Xi and

set Zi := [x̃i, x̃i] and Zj := Xj for j ̸= i. If for some l, hLl (Z, P )h
U
l (Z, P ) > 0 holds,

then there does not exist a solution z to h(z,p) = 0 in Z for any p ∈ P .

58



Proof. Suppose not. Then there exists a solution z to h(z,p) = 0 in Z for some

p ∈ P . Since Zi = x̃i, the point x = [x1, x2, . . . , x̃i, . . . , xnx ]
T must satisfy h(x,p) = 0

for some (x1, . . . , xi−1, xi+1, . . . , xnx ,p) ∈ X1× . . .×Xi−1×Xi+1× . . .×Xnx×P , since

H is an inclusion function and an interval extension of h. This implies 0 ∈ H(Z, P )

which implies hLl (Z, P )h
U
l (Z, P ) ≤ 0 for every l = 1, 2, . . . , nx, a contradiction.

The previous result offers an efficient way to rule out a partial enclosure scenario.

For instance, if a partial enclosure is suspected in dimension i, then it is expected

that xi crosses a boundary of Xi; either its upper bound x
U
i , lower bound x

L
i , or both.

Therefore, setting x̃i := xLi or x̃i := xUi in Theorem 3.4.1 allows one to verify if xi does

not leave the lower or upper bound of Xi, respectively. Of course, in order to verify

this for all i = 1, 2, . . . , nx, Theorem 3.4.1 must be applied 2nx times. A simpler way

to exclude the possibility of a partial enclosure is given in the next result.

Theorem 3.4.2. Let X0 ∈ IDx, P ∈ IDp and {Xk} be a sequence of intervals gener-

ated by a parametric interval method (3.11), starting at X0. Suppose that a continuous

solution branch x : P → Dx of (3.2) exists. Then the quantities referred to exist and

for k ∈ N:

x̂Ui (P ) ≥ x0,Li ≥ x̂Li (P )⇒ xk,Li = x0,Li , i = 1, 2, . . . , nx.

Proof. The minimum and maximum of a continuous function on a compact set exist

and define the image set. By hypothesis x̂Ui (P ) ≥ x0,Li ≥ x̂Li (P ) so that by continuity

of the solution, x0,Li forms part of a solution for some p̂ ∈ P . Also, x0,Li ∈ X0
i

by definition. Hence, applying Theorem 3.3.8 on [p̂, p̂] yields x0,Li ∈ Xk
i , ∀k and

thus xk,Li ≤ x0,Li , ∀k must hold. However, by construction xk,Li ≥ x0,Li , ∀k. Thus

xk,Li = x0,Li , ∀k for i = 1, 2, . . . , nx.

Corollary 3.4.3. Suppose the hypotheses of Theorem 3.4.2 are satisfied. Then for

k ∈ N:

1. xk,Li > x0,Li ⇒ xi(p) ̸= x0,Li , ∀p ∈ P,

2. xk,Ui < x0,Ui ⇒ xi(p) ̸= x0,Ui , ∀p ∈ P

59



hold for i = 1, 2, . . . , nx.

The practical application of this result is that when applying a parametric inter-

val Newton-type method, if any improvement is observed on any of the bounds, it

is known that a solution curve does not cross that bound. Thus, if it is not known

whether X0 is a partial enclosure of a solution curve, one can apply a parametric in-

terval Newton-type method and potentially guarantee no partial enclosure. As we will

see in Section 3.5, Theorem 3.4.1 and Corollary 3.4.3 will be applied within Algorithm

3.1 to find a position to bisect the current interval so as to avoid a partial enclosure

situation altogether. The following result provides a much sharper, computationally

verifiable test for existence and uniqueness of enclosed solutions as compared to the

standard test of Theorem 3.3.10.

Theorem 3.4.4 (Existence and Uniqueness). Let Z ∈ IDx, P ∈ IDp, and z ∈

Z. Suppose Y−1 ≡ m(Jx(Z, P )) is nonsingular. Let Φ ∈ {N,K} be defined as in

Definitions 3.3.3 or 3.3.5. Let A = |Y|rad(Jx(Z, P )). Let λmax = maxi{|λi|} be

the magnitude of the extremal eigenvalue(s) of A. Suppose it is guaranteed (say by

Theorem 3.4.1 or Corollary 3.4.3) that no solution branch intersects the bounds of Z.

If λmax < 1, Φ(z, Z, p̄) ⊂ int(Z), z ∈ int(Z), and p̄ ∈ P , then there exists a unique

solution branch in Z for every p ∈ P .

Proof. From the hypotheses, the following hold:

1. if solution branches exist in Z, they are contained in its interior,

2. since Φ(z, Z, p̄) ⊂ int(Z), a unique solution exists in Z at p̄

3. since λmax < 1, by Theorem 3.2.28 it follows that Jx(Z, P ) is nonsingular.

Therefore, the hypotheses of Proposition 5.1.4 and Theorem 5.1.3 in [101] are satisfied.

It follows that there exists a unique solution branch in Z.

Remark 3.4.5. Guaranteeing that no solution branch intersects the bounds of Z can

be done by either applying Theorem 3.4.1 2nx times (at each bound) or by applying a

parametric interval method and verifying Z∗ ⊂ Z0 strictly, where Z∗ is the converged

interval and Z0 is the initial interval; a result of Corollary 3.4.3.

60



3.4.2 Convergence

An important property of enclosures of locally unique solution branches of (3.2) gener-

ated by parametric interval methods, is their convergence behavior under partitioning

P . The results in this section have important implications when using this bounding

information within global optimization applications such as in the next chapter and

in [128, 134]. The reader should be aware that the results presented in this section

may be not entirely complete and are the topic of future research. The following

result will be important in later continuity arguments.

Lemma 3.4.6. Let A ∈ IRn×n with m(A) nonsingular. If m(A)−1A is nonsingular,

then for B ∈ IA, m(B)−1B is nonsingular and has diagonal elements that do not

contain zero.

Proof. By Corollary 4.1.3 in [101], since m(A)−1A is nonsingular, m(B)−1B is non-

singular. By Theorem 4.1.1 in [101], diagonal elements of m(B)−1B do not contain

0.

Lemma 3.4.7. Let m[Jx(X
0, P )] be nonsingular for some (X0, P ) ∈ IDx × IDp.

Suppose Y0Jx(X
0, P ) is nonsingular with =m[Jx(X

0, P )]−1, then the interval-valued

functions N,K : Dx × IDx × IDp → IRnx, defined in Definitions 3.3.3, 3.3.4, and

3.3.5, are continuous on their domains.

Proof. By continuous differentiability of h on Dx × Dp, h and Jx are continuous.

By Lemma 3.4.6, if Y0Jx(X
0, P ) is nonsingular for some (X0, P ) ∈ IDx × IDp, and

Y0 = m[Jx(X
0), P ]−1, then YkJx(X

k, P ) is nonsingular for every k and its diagonal

elements do not enclose 0. By Theorem 2.1.1 in [101], K : Dx× IDx× IDp as in Def.

3.3.4 and Def. 3.3.5 and N : Dx × IDx × IDp as in Def. 3.3.3 are continuous.

Theorem 3.4.8. Let X0 ∈ IDx be such that there exists a locally unique solution

x(p) ∈ X0 for every p ∈ P 1 ∈ IDp with Jx(X
0, P 1) nonsingular. Let {P l} ∈

IP 1 define a nested sequence of parameter intervals such that ∩∞
l=1P

l = [p̂, p̂]. Let

{Xk} be the nested sequence of intervals generated by the parametric interval method,

61



Def. 3.3.6, with Φ = N as in Definition 3.3.3, using finite-precision rounded in-

terval arithmetic starting at the initial interval X0. Then lim
l→∞

lim
k→∞

Φ(xk, Xk, P l) =

lim
k→∞

lim
l→∞

Φ(xk, Xk, P l) = [x(p̂),x(p̂)].

Proof. Let Gk(P l) = Xk = Φ(xk−1, Xk−1, P l) and let ϵtol be the precision to which

intervals are rounded. Consider lim
k→∞

lim
l→∞

Gk(P l). Since Jx(X
0, P ) is nonsingular,

m(Jx(X
0, P )) is nonsingular. Therefore m(Jx(X

k, P ))−1Jx(X
k, P ) is nonsingular for

every k from Lemma 3.4.6. Furthermore, from the same Lemma, the diagonal el-

ements of m(Jx(X
k, P ))−1Jx(X

k, P ) do not contain 0. From Lemma 3.4.7, N is

continuous. It is clear from continuity of N(xk, Xk, · ) on IDp that lim
k→∞

lim
l→∞

Gk(P l) =

lim
k→∞

Gk(p̂), which is a simple reduction of the parametric case to the non-parametric

case. Since Jx(X
0, p̂) is nonsingular, we have m(Jx(X

k, p̂))−1Jx(X
k, p̂) nonsingular

and its diagonals do not contain 0. Then, from Theorem 5.2.6 in [101], Gk(p̂) →

G∗(p̂) = Φ(x∗, X∗(p̂), p̂) = X∗(p̂) = [x(p̂),x(p̂)] = x(p̂). By Theorem 3.2.18, since

{Gk(P l)} is a nested sequence of intervals, it is convergent. Since IRnx is a complete

metric space by Theorem 3.2.23, {Gk(P l)} is a Cauchy sequence in IRnx . Thus, for

every ϵtol > 0, there exists an M such that for every n,m ≥ M , P l ∈ IDp we have

dH(G
n(P l), Gm(P l)) < ϵtol. Therefore, by Theorem 7.8 in [117], {Gk(P l)} converges

uniformly on IDx. It follows directly that lim
l→∞

lim
k→∞

Gk(P l) = lim
k→∞

lim
l→∞

Gk(P l) =

x(p̂).

An analogous result holds for the parametric interval method using the K opera-

tor.

Theorem 3.4.9. Let X0 ∈ IDx be such that there exists unique solution x(p) ∈ X0

for every p ∈ P 1 ∈ IDp. Let {P l} ∈ IP define a nested sequence of parameter inter-

vals such that ∩∞
l=1P

l = [p̂, p̂]. Let {Xk} be the nested sequence of intervals generated

by the parametric interval method, Def. 3.3.6 with Φ = K as in Definition 3.3.5, using

finite-precision rounded interval arithmetic with xk = m(Xk). Let λmax = maxi{|λi|}

be the magnitude of the extremal eigenvalue(s) of the matrix |Y0Jx(X
0, P ) − I|. If

λmax < 1, then lim
l→∞

lim
k→∞

Φ(xk, Xk, P l) = lim
k→∞

lim
l→∞

Φ(xk, Xk, P l) = [x(p̂),x(p̂)].

62



Proof. Let Gk(P l) = Xk = Φ(xk−1, Xk−1, P l) and let ϵtol be the precision to which in-

tervals are rounded. Similar to Theorem 3.4.8, from Lemma 3.4.6, Ak in (3.10) is non-

singular for each k and its diagonal elements do not contain 0. Therefore by Lemma

3.4.7, we have continuity of K on P . It immediately follows that lim
k→∞

lim
l→∞

Gk(P l) =

lim
k→∞

Gk(p̂), which is the reduction to the non-parametric case. Since Jx(X
0, p̂) is

nonsingular and λmax < 1, from Theorem 5.2.2 in [101], it follows that Gk(p̂) →

G∗(p̂) = K(x∗, X∗(p̂), p̂) ∩ X∗(p̂) = X∗(p̂) = [x(p̂),x(p̂)] = x(p̂). In an analogous

argument to Theorem 3.4.8, it follows that lim
l→∞

lim
k→∞

Gk(P l) = G∗(p̂) = x(p̂).

3.5 Bounding All Solutions of Parameter-Dependent

Nonlinear Systems of Equations

An algorithm for bounding all real solution branches of parameter-dependent non-

linear systems of equations is presented in this section. In order to streamline the

presentation of the algorithm, the classical existence and uniqueness test will be im-

plemented as the following subroutine.

Subroutine 3.5.1 (incTest).

incTest(Z,Φ){

for i = 1, . . . , nx do

if (Φi = ∅) then

return Iflag := −1

elseif
(
ϕLi ≤ zLi or ϕUi ≥ zUi

)
then

return Iflag := 0 endif

end

return Iflag := 1

}

For the algorithm below, the function Φ will be as in Definition 3.3.6.

63



Algorithm 3.1 (Parameterized Generalized Bisection).

1. (Initialization)

(a) Pick box (X0, P 0), initialize solution set Ξ = ∅ and stack S = {(X0, P 0)},

set l := 0.

2. (Termination)

(a) Check stack. Stack empty? (S = ∅?)

i. Yes. Algorithm terminates.

ii. No. Pop and delete a box (Z, P ) from stack S , set Iflag := 0, l := l+1.

(b) If 0 ∈ H(Z, P ), go to 4. Else, go to 2 ((Z, P ) has been fathomed).

3. (Refinement)

(a) Apply parametric interval Newton-type method iteratively with Z0 = Z.

i. If at any point in any iteration k, Φ(zk, Zk, P ) = ZL ∪ ZR with ZL ∩

ZR = ∅ (by extended interval arithmetic), place (ZL, P ) and (ZR, P )

on S . Go to 2.

ii. At every iteration k, if Φ(zk, Zk, P ) is not an unbounded interval (by

extended interval arithmetic), Iflag := incTest(Zk,Φ(zk, Zk, P )).

A. If Iflag = −1, go to 2, (Zk, P ) has been fathomed.

iii. At iteration k, if Φ(zk, Zk, P ) = Zk and Iflag = 0, go to 4. Else if

Iflag = 1 place (Zk, P ) in solution set Ξ, go to 2.

4. (New Existence and Uniqueness Test)

(a) If any bounds of Zk are not improved from Z0, apply Theorem 3.4.1 at each

of the unimproved bounds in order to verify that no solutions intersect these

bounds. If this cannot be guaranteed, go to 6.

(b) Calculate Y−1 := m(Jz(Z
k, P )). If nonsingular, continue. Else, go to 5.

64



(c) Calculate λmax, the maximum eigenvalue of |Y|rad(Jz(Zk, P )). If λmax <

1 continue. Else, go to 5.

(d) Choose p̄ ∈ P and check Φ(zk, Zk, p̄) ⊂ int(Zk). If true, set Iflag = 1,

place (Zk, P ) in solution set Ξ and go to 2. Else, go to 5.

5. (Partition Z)

(a) Partition Z using some strategy to avoid creating partial enclosures and

add resulting boxes to the stack S .

(b) If no such partition can be found, go to 6.

6. (Partition P )

(a) Partition P using some strategy. Add resulting boxes to the stack S .

The algorithm was designed such that the new existence and uniqueness test (Step

4 ) is only applied once the interval iteration converges but it is not known whether

or not the interval contains solution branches. This is because the classical exclusion

test and existence and uniqueness test is applied naturally at each iteration with no

additional computational cost. Only when the iteration can no longer improve the

interval in question and it is still not known if it encloses a solution branch, is the

sharper existence and uniqueness test called. It is expected that this strategy is more

efficient than applying the sharper test at each iteration since intuitively, it is more

likely to pass on the smaller, refined intervals.

It should be noted that Step 4(a) is required in order to apply Theorem 3.4.4

properly. In that step, it is only required to apply Theorem 3.4.1 at each of the

bounds that didn’t improve during the interval iteration, if there were any. This is

because Corollary 3.4.3 guarantees that if a bound happens to improve during the

interval iteration, no solution could have intersected it. Therefore, Corollary 3.4.3 is

applied implicitly within Algorithm 3.1.

65



3.5.1 Partitioning Strategies

Steps 5 and 6 of Algorithm 3.1 were stated generically in order to emphasize the

possibility of the user supplying any appropriate partitioning strategy. In this sec-

tion, the strategies implemented in the algorithm and used on the examples will be

discussed. First, the strategy for partitioning the X space is discussed.

X Partitioning Strategies

The intuitive picture of partitioning the X space is to take a box that may include

multiple solution branches and generate new boxes that are likely to contain either

no solution branches or a single solution branch. In other words, the objective of

partitioningX is to separate solution branches into their own boxes. This is essentially

the standard bisection strategy, except with one subtlety: the X interval is cut such

that the newly generated intervals either contain solution branches on all of P or no

solution branches, excluding the partial enclosure scenario altogether. Since bisecting

X at the midpoint of the ith component will likely produce a partial enclosure scenario,

this strategy cannot be employed blindly, which is common in classical generalized

bisection algorithms. The simplest way to avoid making a cut that generates partial

enclosures is to search for a cut position that satisfies Theorem 3.4.1. The strategy

that was implemented in this thesis determines a component with the maximum width

i ∈ argmaxj w(Xj) and searches for a ν ∈ (0, 1), if one exists, such that

x̃i := ν

(
xLi +

rad(Xi)

µ

)
+ (1− ν)

(
xUi −

rad(Xi)

µ

)
(3.12)

satisfies Theorem 3.4.1, with µ ∈ {m ∈ R : m > 1}. That is, x̃i is chosen such that

it does not intersect a solution branch, guaranteed by Theorem 3.4.1, and therefore

avoiding a partial enclosure scenario. It is clear that the purpose of ν in (3.12) is to

easily evaluate many candidate values of x̃i that are the convex combination of some

relevant interval bounds. The parameter µ is included to give the user freedom over

the interval from which x̃i can be chosen. It is a parameter that determines how much

of the interior of Xi should be considered as containing a possible bisection position.

66



x

pP

X ( )m X

L
x

U
x

( )L rad X
x

µ
+

( )U rad X
x

µ
−

2µ =
x

pP

X ( )m X

L
x

U
x

( )L rad X
x

µ
+

( )U rad X
x

µ
−

3µ =

Figure 3-1: The effects of µ on the region considered for partitioning X in one di-
mension.

The value for µ can be chosen freely and tuned according to the system being bounded.

As µ gets very large, the interval of candidate cut positions approaches Xi and thus

there is a larger potential to find bisections very close to the original bounds of Xi

therefore producing a very narrow interval and a wide interval nearly the width of Xi.

Although this is conservative and poses no theoretical problems for the algorithm, it

may be quite inefficient. Alternatively, values of µ close to 1 can pose problems for

the algorithm since they limit the candidate x̃i values to very close to the midpoint

of Xi. In general, it will be very difficult to find proper partitions of Xi that avoid

partial enclosures. The effect of µ is illustrated in Figure 3-1 and the implementation

of this strategy is discussed in Section 3.6.

If a partition for Xi cannot be identified, again with i ∈ argmaxj(w(Xj)) the

strategy is to increase the µ parameter value and begin searching for a partition in

all components of X. If a partition for X still cannot be identified, it is determined

that the P interval must be partitioned. Figure 3-2(a) illustrates a scenario in which

an interval X encloses multiple solution branches but there does not exist a partition

(candidate positions represented as dashed lines) that separates them while avoiding

the partial enclosure scenario. Figure 3-2(b) illustrates how, after finding a position to

partition P , there exists partitions of X so that the solution branches are separated

and no partial enclosures are generated. The next section discusses a strategy for

67



x

pP

X

(a)
x

p

X

(b)

1
P

2
P

Figure 3-2: (a) A box X×P in which there does not exist a position to cut X (dashed
lines) such that no partial enclosures are produced. (b) After cutting P , there exists
positions to cut X avoiding partial enclosures.

cutting P .

P Partitioning Strategies

Due to the width of the parameter interval P , verifying existence and uniqueness of

enclosed solution branches may be difficult or impossible, as illustrated in Fig. 3-2,

even with the sharper existence and uniqueness test of Theorem 3.4.4. Therefore, a

strategy for partitioning P must also be considered. An efficient strategy is to simply

bisect down the middle of the widest dimension. The problem with this strategy is

that, in general, each parameter may not contribute equally to overestimation and

the inability to pass the existence and uniqueness test of Theorem 3.4.4. Therefore,

it is desirable to have a method for determining which parameter dimension has the

largest influence on the extremal eigenvalue(s) of A, as defined in Theorem 3.4.4.

With such information, the parameter interval P can be partitioned in an intelligent

manner with the objective of generating boxes that pass the existence and uniqueness

test of Theorem 3.4.4.

By treating λmax of Theorem 3.4.4 as a real-valued function of the bounds of

X and P , if one were able to calculate pseudo-derivative information of λmax with

respect to the bounds of P , the influence of the parameter interval on passing the

existence and uniqueness test of Theorem 3.4.4 presents itself. Furthermore, this

68



information can be used to provide intelligent positions to cut P that will yield boxes

that are more likely to pass the existence and uniqueness test of Theorem 3.4.4. As

was illustrated in Figure 3-2(b), how one cuts P may have a large impact on how the

X box is subsequently partitioned and on the ability to pass existence and uniqueness

tests. The following results establish how this pseudo-derivative information can be

calculated and how it is used in the partitioning strategy.

Definition 3.5.2 (Piecewise Continuous Differentiable [40]). A continuous function

g : D ⊂ Rn → Rm is said to be piecewise continuously differentiable near z ∈ D if

there exists an open neighborhood N ⊂ D of z and a finite family of continuously

differentiable functions g1,g2, . . . ,gk : N → Rm, for k ∈ N (k > 0), such that g(y) is

an element of {g1(y),g2(y), . . . ,gk(y)} for all y ∈ N .

Definition 3.5.3 ([127]). Let D ⊂ IRn×n be open and let F : D → Rn×n. F will

be called piecewise continuous differentiable on D if for every piecewise continuous

differentiable function M : E ⊂ R2nn → IRn×n, the mapping F(M(· )) : E → Rn×n is

piecewise continuous differentiable on the open set ED = {a ∈ E :M(a) ∈ D}.

Definition 3.5.4 ([127]). Let D ⊂ Rn×n be open and let f : D → R. f will

be called piecewise continuous differentiable on D if for every piecewise continuous

differentiable function M : E ⊂ Rnn → Rn×n, the mapping f(M(· )) : E → R is

piecewise continuous differentiable on the open set ED = {a ∈ E : M(a) ∈ D}.

Lemma 3.5.5. Let DA ⊂ IRn×n be open such that for every A ∈ DA, m(A) is

nonsingular. Define the real matrix-valued function Z : DA → Rn×n as Z(A) ≡

|mid(A)−1| rad(A), ∀A ∈ DA. Then Z is piecewise continuously differentiable on

DA.

Proof. By definition, rad(· ) and m(· ) are continuously differentiable on DA. Since

m(A) is nonsingular ∀A ∈ DA, m(· )−1 exists and can be expressed using only ele-

mentary arithmetic operations, and is therefore continuously differentiable onDA. By

definition, |· | is piecewise continuously differentiable on DA. It immediately follows

that Z is piecewise continuously differentiable on DA.

69



Assumption 3.5.6. Let D ⊂ Rn×n be open. Let Z and DA be as in Lemma 3.5.5

such that Z(A) ∈ D for every A ∈ DA. Let λi(Z(A)) be the ith real eigenvalue of

Z(A). It will be assumed that λi : D → R is piecewise continuously differentiable on

D.

Theorem 3.5.7. Suppose Assumption 3.5.6 holds. Define the function λmax : Rn×n →

R as λmax(Z(A)) = maxi{|λi(Z(A))|}, the magnitude of the extremal eigenvalue(s) of

Z(A), ∀A ∈ DA. Then λmax is differentiable on D at all points outside of a Lebesgue

nullset.

Proof. By Assumption 3.5.6, λi is piecewise continuously differentiable on D. There-

fore, λi is locally Lipschitz by Corollary 4.1.1 in [126]. By Proposition 4.1.2 in [126],

λmax is locally Lipschitz. From Theorem 3.1.1 in [40], λmax is differentiable on D at

all points outside of a Lebesgue nullset.

From Theorem 3.5.7, λmax is differentiable almost everywhere, provided λi is piece-

wise continuously differentiable on D. The Lipschitz result of λmax may be too re-

strictive since, in general, λmax is not Lipschitz for non-symmetric matrices. However

pseudo-derivative information may still be available since it may be possible to cal-

culate subgradient information of λmax (e.g. see [23]). Now, λmax will be defined

more precisely as a function λmax : D ⊂ Rnx×nx → R with λmax(A(X l, P l)) as the

extremal eigenvalue(s) of the matrix A(X l, P l) ≡ |m(Jx(X
l, P l))−1|rad(Jx(X l, P l))

with (X l, P l) ∈ IDx × IDp. By expressing the parameter space P as the real vector

pB = (pL1 , p
U
1 , . . . , p

L
np , p

U
np)

T, the gradient vector of λmax with respect to pB evaluated

at A(X l, P l), if it is defined, can be expressed as

∇pBλmax(A(X l, P l)) =

(
∂λmax
∂pL1

(A(X l, P l)),
∂λmax
∂pU1

(A(X l, P l)),

. . . , . . . ,
∂λmax
∂pLnp

(A(X l, P l)),
∂λmax
∂pUnp

(A(X l, P l))

)
.

Computationally, λmax can be approximated using a fixed-point iteration such as

the Arnoldi iteration or the power iteration which is how the implementation of

70



the algorithm calculates it. Furthermore, ∇pBλmax can be evaluated using forward

automatic differentiation [50], which was performed for this chapter using an in-house

C++ library. The following procedure defines the strategy for partitioning P .

Subroutine 3.5.8.

1. For a box (X l, P l) ∈ IX0 × IP 0, evaluate ∇pBλmax(A(X l, P l)).

2. Choose the component of ∇pBλmax with the largest magnitude and determine its

corresponding component of P l. Store this component as jmax. If w(P
l
jmax) < ϵP ,

P l
jmax is too narrow to be cut. Choose the component with the next largest

magnitude and repeat until a jmax is found with w(P ljmax) > ϵP . If no such

jmax exists, terminate. P cannot be partitioned further.

3. Let pjmax =
(
pl,Ljmax , p

l,U
jmax

)
and

d =
((
∇pBλmax(A(X l, P l))

)
2jmax−1

,
(
∇pBλmax(A(X l, P l))

)
2jmax

)
and take a

steepest-descent step pnewjmax := pjmax − αd with α > 0.

4. Check if (pnewjmax)1 < (pnewjmax)2 and that (pnewjmax)1 and (pnewjmax)2 are separated at least

by ϵP . If so, continue, else bisect P l
jmax down the middle and return two new

boxes to the main algorithm to be placed on the stack.

5. Set P ∗
i := Pi for i ̸= jmax and P ∗

jmax := [(pnewjmax)1, (p
new
jmax)2]. Check if

λmax(A(X l, P ∗)) < 1.5 and w(P ∗
jmax) > max{1

3
w(P l

jmax),
1
4
w(P 0

jmax). If true,

partition P l
jmax at (pnewjmax)1 and (pnewjmax)2 and return three new boxes to the main

algorithm to be placed on the stack.

6. Set P l
jmax := [(pnewjmax)1, (p

new
jmax)2] and go to step 3.

Both the standard partitioning strategy of bisection in the widest dimension as

well as that of Subroutine 3.5.8 were implemented as part of Algorithm 3.1.

3.6 Implementation and Numerical Examples

In this section, the implementation of the algorithm and its performance in solving a

number of numerical examples is discussed.

71



3.6.1 Computer Implementation

X Partitioning The strategy for partitioning X was implemented in two stages,

as described in Section 3.5.1. In the first stage, a value of µ = 4 is set and ν is

incremented from 0 to 0.5 in 20 steps until a safe bisection position in the widest

dimension is found, using Theorem 3.4.1. If no safe bisection position can be found, ν

is decremented from 1 to 0.5 until a safe bisection position is found. If no safe bisection

position can be found, the strategy enters the second stage. In the second stage, a

value of µ = 16 is set and the same strategy is followed as previously except using 80

steps of ν from 0 to 0.5 and 80 from 1 to 0.5. The idea behind this implementation

is that the first stage is a coarse, less computationally expensive procedure, while

the second stage is a much finer, more computationally expensive search for a safe

bisection position.

P Partitioning The strategy for partitioning the parameter space was implemented

as Subroutine 3.5.8. For Subroutine 3.5.8, jmax is chosen according to Step 2 such that

w(P l
jmax) > 0.2w(P 0

jmax) if such a dimension exists. Else, jmax is taken to be the widest

dimension of P l such that w(P l
jmax) > 1E − 3, if such a dimension exists. Using a

value of α = 0.9, steps 3-6 are iterated. The procedure stops at Step 5 if the following

conditions are met: λmax < 1.5 and (pnewjmax)2− (pnewjmax)1 > max{1
3
w(P l

jmax),
1
4
w(P 0

jmax).

The purpose of this is an attempt at seeking out a partition that is sufficiently close to

passing the new existence and uniqueness test while ensuring that it has substantial

width. If these conditions are not met, the procedure stops at Step 4 and P l
jmax is

simply bisected.

Algorithm 3.1 was applied to each of the following numerical examples. For

each example, the performance of the algorithm was compared between each in-

terval method (interval-Newton or Krawczyk) as well as how the parameter interval

was partitioned (standard bisection or Subroutine 3.5.8). Each variation of the algo-

rithm will be denoted AΦ-p where Φ ∈ {N,K} with N denoting the interval-Newton

method and K denoting the Krawczyk method, and p∈ {1, 2} where 1 denotes the

partitioning scheme of Subroutine 3.5.8 and 2 denotes the strategy of bisecting the

72



Algorithm Efficiency (sec.)
Ex. AN-1 AN-2 AK-1 AK-2
1 8.70E-3 8.00E-3 8.89E-3 8.04E-3
2 2.12E-3 2.13E-3 2.38E-3 2.41E-3
3 6.58E-3 6.90E-3 4.81E-1 4.83E-1
4 2.22E-2 5.95E-3 2.39E-2 7.35E-3
5 8.87E-2 1.18E-1 1.23E-1 1.53E-1

Table 3.1: The performance of the algorithm in terms of solution time for each ex-
ample.

Algorithm Efficiency (iterations)
Ex. AN-1 AN-2 AK-1 AK-2
1 141 169 130 131
2 1 1 1 1
3 55 55 329 329
4 270 270 295 295
5 1993 2392 2189 2599

Table 3.2: The performance of the algorithm in terms of the number of iterations
taken to solve each example.

widest dimension. The performance of each variation of the algorithm on solving

the examples below is summarized in Tables 3.1, 3.2, and 3.3 in terms of the overall

computation time, the number of iterations (or the number of intervals examined),

and the number of interval boxes produced that cover the solution set, respectively.

Algorithm Efficiency (box count)
Ex. AN-1 AN-2 AK-1 AK-2
1 4 5 4 3
2 1 1 1 1
3 1 1 1 1
4 15 15 15 15
5 58 80 58 80

Table 3.3: The performance of the algorithm in terms of the number of interval boxes
produced to enclose all locally unique solution branches.

73



3.6.2 Numerical Examples

Example 3.6.1. Consider

h(z,p) =

z21 + z22 + p1z1 + 4

z1 + p2z2

 = 0

with P 0 = [5, 7]2 and X0 = [−10, 10] × [−2, 2]. There are two solution branches for

this problem.

Example 3.6.2. Taken from Kolev et al. [75]:

h(z,p) =


(3.25− z1)/p1 − z3

z1/p2 − z3
z2 − z21/(1 + z21)

 = 0

with P 0 = [1800, 2200]×[900, 1100] andX0 = [−30, 30]3. There is one solution branch

for this system.

Example 3.6.3. Taken from Kolev et al. [75], this example models an electric circuit

having two resistors, a transistor, and a diode:

h(z,p) =


10−9(exp 38z1 − 1) + p1z1 − 1.6722z2 + 0.6689z3 − 8.0267

1.98× 10−9(exp 38z2 − 1) + 0.6622z1 + p2z2 + 0.6622z3 + 4.0535

10−9(exp 38z3 − 1) + z1 − z2 + p3z3 − 6

 = 0

with P 0 = [0.6020, 0.7358] × [1.2110, 1.4801] × [3.6, 4.4] and X0 = [−30, 30]3. There

is one solution branch for this system.

Example 3.6.4. Consider

h(z, p) = −z3 + pz = 0,

with P 0 = [0.25, 20] and X0 = [−10, 10]. This system has three solution branches.

Although this problem has simple analytical solutions of x(p) = 0,±√p, it illustrates

74



0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3-3: The three solutions of Ex. 3.6.4 and the interval boxes computed by
algorithm AN-1 for P 0 = [0.25, 20]. It should be noted that the red solution branch
(middle) has an interval box enclosing it but it is exact within machine precision.

the parameterized generalized bisection algorithm nicely. The result of algorithm

AN-1 is shown in Figure 3-3. In order to demonstrate how the algorithm handles

bifurcation points, the parameter interval P 0 = [0, 20] was also considered. The

result of algorithm AN-1 applied to the larger P is shown in Figure 3-4.

Example 3.6.5. This example originally appeared in [55] without parameter depen-

dence. Parameter dependence was added for the purposes of this chapter:

h(z,p) =

p1z51 − 25.2z31 + 6p1z1 − p2z2
2p2z2 − p1z1

 = 0

with P 0 = [3, 5] × [4.25, 7.75] and X0 = [−10, 10]2. There are five solution branches

for this system.

75



0 5 10 15 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3-4: The three solutions of Ex. 3.6.4 and the interval boxes computed by
algorithm AN-1 for P 0 = [0, 20]. It should be noted that the red solution branch
(middle) has an interval box enclosing it but it is exact within machine precision.

3.7 Concluding Remarks

A generalized bisection-type algorithm for bounding all real solutions of parameter-

dependent systems of equations was presented that addresses Objective (1) listed

at the end of Chapter 2. The algorithm makes use of a stronger, computation-

ally verifiable existence and uniqueness result, as compared to the classical existence

and uniqueness tests of the interval-Newton and Krawczyk methods. Unlike stan-

dard global root-finding algorithms based on the generalized bisection framework,

the search space cannot be bisected naively. While considering a partitioning strat-

egy for the X space, the idea of partial enclosures must be taken into account. That

is, X can only be partitioned in such a way that yields new intervals that are either

valid enclosures of solution branches or do not enclose any solution branches. In or-

der to do this, a separate procedure for bisecting P was developed that intelligently

seeks positions to partition P that yields new interval boxes that are more likely to

pass existence and uniqueness tests, while also maintaining that the parameter inter-

76



vals should be as wide as possible. Coupling the two partitioning strategies yields a

method for calculating valid enclosures of locally unique solution branches on entire

parameter intervals of nontrivial width. These enclosures have specific importance in

global optimization applications, such as in Chapter 4.

The performance of the algorithm was demonstrated by solving five numerical

examples; three of which have multiple solution branches. In every case, the algorithm

using the parametric interval-Newton method was the most efficient in terms of total

running time. The examples in which P was partitioned (Ex. 1, 4, 5) allow one to

compare the effectiveness of the partitioning strategy and therefore demonstrate the

trade-off between computational efficiency and algorithm sophistication.

For Example 1, the implementations in which P was partitioned using Subroutine

3.5.8 (i.e. AN-1, AK-1) completed in fewer iterations than just using the bisection

strategy (i.e. AN-2, AK-2). However, in each case, the algorithm had longer running

times, due to the higher cost-per-iteration. Furthermore, it should be noted that AN-

1 computes 4 interval boxes that are guaranteed to contain locally unique solution

branches whereas AN-2 computes 5. Unexpectedly, AK-2 computes only 3 boxes

whereas AK-1 computed 4. This demonstrates the effects of partitioning the X

interval on the partitioning strategy for P .

Example 4 demonstrated that, for some problems, a standard bisection strategy

for partitioning P can be a superior strategy as compared to Subroutine 3.5.8. In

this example, AN-1 and AN-2 completed after the same number of iterations after

computing 15 interval boxes. However, the running time of AN-1 was almost three

times longer than AN-2. A similar result was observed for AK-1 and AK-2, with

the running time of AK-1 being more than 2 times longer than that of AK-2. For

this example, Subroutine 3.5.8 never terminates at Step 5, and since there is only one

parameter dimension, each partitioning procedure yields the same partition positions.

Therefore, both partitioning strategies yield identical results in terms of the total

number of iterations taken by the algorithm and the number of boxes produced.

Therefore, it is clear why the partitioning strategy of Subroutine 3.5.8 is a poor

choice for this example.

77



Example 5 demonstrates that Subroutine 3.5.8 can be very effective and, for some

examples, be the superior partitioning strategy as compared to standard bisection.

In every metric, AN-1 outperformed AN-2, taking less time to complete, fewer iter-

ations, and computing fewer boxes. A similar result was observed for AK-1 versus

AK-2. This result suggests that although Subroutine 3.5.8 is computationally more

expensive as compared to simply bisecting P , the pseudo-derivative information that

it computes can be so useful to the algorithm that the overall computational effort

can be (drastically) reduced.

One problem area in which the proposed algorithm may have issues is in the

face of bifurcations. In this case, for some parameter value(s) the Jacobian matrix

Jx is singular. Therefore, the existence and uniqueness tests can never be passed.

In turn, the algorithm will continue to partition X and P producing boxes that

enclose the bifurcation point to some predetermined precision, or minimum width.

The implementation of Algorithm 3.1 will continue to partition X and P until P is

sufficiently narrow and no safe bisection direction in X can be found. In this case,

the algorithm labels the box as “indeterminate” and it gets deleted from the stack.

Example 4 has a bifurcation at p = 0, and hence, for the purposes of testing the

performance of the algorithm, an initial parameter interval of P 0 = [0.25, 20] was

considered. However, the interval P 0 = [0, 20] was also considered. In the case of

AN-1, with the minimum allowable width of P set to 1E-3, the algorithm completes

in 1.88E-2 seconds after 460 iterations, producing 45 boxes enclosing locally-unique

solution branches and one box Xn×P n = [−0.0252, 0.0252]× [0, 6.1E-4] enclosing the

bifurcation point and small sections of each of the three solution branches originating

from it. Similar results were observed for AN-2, AK-1, and AK-2. The question of

how to deal with bifurcations more effectively is still an active area of study.

In the next chapter, the interval bounds of implicit functions will be used to

construct convex and concave relaxations of implicit functions for use in a novel

reduced-space global optimization algorithm.

78



Chapter 4

Global Optimization of Implicit

Functions

In this chapter, an algorithm for solving nonconvex NLPs globally using a reduced-

space approach is presented. These problems are encountered when real-world mod-

els are involved as equality constraints and the decision variables include the state

variables of the system. By solving the model equations for the dependent (state)

variables as implicit functions of the independent (decision) variables, a significant

reduction in dimensionality can be obtained. As a result, the inequality constraints

and objective function themselves are implicit functions of the independent variables,

which can be estimated via a fixed-point iteration. Relying on the recently developed

ideas of generalized McCormick relaxations and McCormick-based relaxations of al-

gorithms and subgradient propagation, the development of McCormick relaxations

of implicit functions is presented. Using these ideas, the reduced space, implicit

optimization formulation can be relaxed directly. When applied within a branch-

and-bound framework, finite convergence to ϵ-optimal global solutions is guaranteed.

79



4.1 Introduction

Nonconvex NLPs of the form:

min
y∈Y⊂Rny

f(y)

s.t. g(y) ≤ 0 (4.1)

h(y) = 0

can be formulated to solve a wide variety of problems from diverse disciplines ranging

from operations research to engineering design. Local algorithms, such as sequential

quadratic programming (SQP) [48], are not guaranteed to find the desired global op-

tima. Thus deterministic global optimization algorithms such as branch-and-bound

(B&B) [42] and branch-and-reduce [120] have been developed. However, all currently

known deterministic global optimization algorithms suffer from worst-case exponen-

tial run time. Therefore, if the original program (4.1) can be reformulated as an

equivalent program with reduced dimensionality, there is potential for a significant

reduction in computational cost. The primary framework of the algorithm presented

in this chapter is based on the B&B algorithm.

“Selective branching” strategies (i.e., where only a subset of the variables are

branched on) have been developed due to the worst-case exponential run time for

global optimization. The works [61, 62, 98, 105] all require very special problem

structures that can be exploited to reduce the number of variables that are branched

on. A more general reduced-space B&B approach was first introduced in [38]. Their

work builds on the previous selective branching ideas. In the work of [38], the variables

y are partitioned into two sets of variables and the nonconvex functions are factored

according to which set of variables the factors are dependent upon. It is required that

all functions of the first set of variables are convex and all functions of the second set

of variables are continuous. Under some additional assumptions, convergence of the

B&B algorithm is guaranteed while only branching on the second set of variables. The

authors of [38] state that this type of factorization and partitioning is applicable to

80



most practical problems. However, the method was developed largely with inequality

constraints in mind. The authors of [38] state that equality constraints can be handled

using a pair of opposing inequality constraints. However, given the requirements of

their algorithm for selective branching, it can be shown that this restricts the equality

constraints that can be handled to parametric linear systems (i.e., (4.10)).1 Therefore,

general nonlinear systems of equations cannot be addressed. Furthermore, in [88], the

authors compared their method of relaxing implicit functions directly with selective

branching and experienced a significant performance benefit from relaxing implicit

functions directly.

Consider the equality constraints of (4.1) as the system of equations:

h(y) = 0, (4.2)

where h : Dy → Rnx is continuously differentiable, with Dy ⊂ Rny open. Here, it is

assumed that the vector y ∈ Dy can be separated into dependent and independent

variables z ∈ Rnx and p ∈ Rnp , respectively, with y = (z,p) such that h can be solved

for z in terms of p, with (z,p) ∈ Dy. Under this assumption, (4.2) can be written as:

h(z,p) = 0. (4.3)

If for some np-dimensional interval P ⊂ Rnp , such z exist that satisfy (4.3) at each

p ∈ P , then they define an implicit function of p, that will be expressed as x(p).

Such a partition of the vector y is valid for many practical “real-world” problems. For

instance, consider the original application with h as a steady-state model of a chemical

process. The variables z would again correspond to the process state variables and

p would correspond to the model parameters and/or parametric uncertainty. Unless

otherwise stated, it will be assumed that for some X ⊂ Rnx , there exists at least

one continuously differentiable implicit function x : P → X such that h(x(p),p) = 0

holds for every p ∈ P . Conditions under which x is unique in X are given by the so-

called semilocal implicit function theorem [101] discussed in Chapter 3. Continuous

1This result is illustrated in Appendix A.

81



differentiability follows from the same result.

Just as y was partitioned into (z,p), the search space of the optimization problem

(4.1) is partitioned as Y = X × P . The program (4.1) may then be reformulated as

the following program

min
p∈P

f(x(p),p) (4.4)

s.t. g(x(p),p) ≤ 0.

It can readily be deduced that if ny − nx is small (nx >> np), the formulation (4.4)

offers a significant reduction in dimensionality.

In order to solve (4.4) to global optimality with branch-and-bound, a method for

calculating convex relaxations of f(x(· ), · ) and g(x(· ), · ) on P is required. The ma-

jor complication is that x is not known explicitly and may not even have a closed

algebraic form, but can only be approximated using a fixed-point algorithm, for in-

stance. Thus, the objective function, f(x(· ), · ), and the inequality constraint(s),

g(x(· ), · ), are implicitly defined and must be evaluated with embedded fixed-point

iterations. Because of this, the involved functions no longer have a factorable rep-

resentation. Therefore relaxation techniques that rely on explicit algebraic and/or

factorable functions, such as standard McCormick relaxations [85] or αBB [2], are

no longer applicable. However, if relaxations of the implicit function x were made

available by some method, the functions f and g could be composed with them, using

a generalization of the ideas of McCormick [128], and relaxations of f and g could be

calculated.

In [88], Mitsos and coworkers laid the foundations for calculating relaxations of im-

plicit functions x evaluated by an algorithm with a fixed number of iterations known a

priori. They outline the automatic construction of McCormick convex/concave relax-

ations of factorable functions and automatic subgradient calculation. The automatic

construction of McCormick relaxations and subgradient calculation was done using

libMC, a predecessor of the currently available C++ library MC++ [26]. The types of

algorithms considered in their work, however, only included algorithms in which the

82



number of iterations is known a priori, such as Gauss elimination, thus their methods

are not applicable to problems in which x is evaluated by more general fixed-point

algorithms, such as Newton’s method.

In [128], the concept of generalized McCormick relaxations is presented. This

generalization of McCormick relaxations allows for the application of McCormick re-

laxations to a much broader class of functions [128]. One focus of that paper was

on the relaxation of the successive substitution fixed-point iteration. In relaxing the

fixed-point iteration, the authors show that relaxations of the sequence of approxi-

mations of x could be calculated [128]. However, in order to relax f and g rigorously,

valid relaxations of x are required, not of approximations of x. This will be the

primary focus of the theoretical developments contained in this chapter.

In the next section, the necessary background information will be discussed. In

Section 4.3, new ideas and results involved in relaxing implicit functions and calcu-

lating subgradients are presented, followed by the global optimization algorithm in

Section 4.4.

4.2 Background

This section contains the definitions and previously developed material from the lit-

erature required for the development of global optimization of implicit functions.

4.2.1 Fixed-Point Iterations

The term fixed-point iteration applies to a general class of iterative methods, for which

the iteration count required to satisfy a given convergence tolerance is not typically

known a priori. They are commonly employed to solve systems of equations such as

(4.2). The general ideas are introduced here. For the focus of this thesis, fixed-point

iterations will be used to evaluate the embedded implicit functions in (4.4). For a

more in-depth look at these iterative methods, the reader is directed to [104].

Definition 4.2.1 (Fixed-Point). Let f : Z ⊂ Rm → Rm. A point z ∈ Z is a fixed

83



point of f if z = f(z).

An iteration will be referred to as a fixed-point iteration if it takes the form

zk+1 := ϕ(zk), k ∈ N,

with ϕ : A ⊂ Z → Rm. The name suggests that the iteration will be used to find a

fixed-point of ϕ. However, this is ambitious in the sense that these iterations are not

guaranteed to do so except under certain conditions. One such condition is if ϕ is a

contraction mapping.

Definition 4.2.2 (Contraction Mapping [117]). Let Z be a metric space with metric

d. A function ϕ : A ⊂ Z → Z is said to be a contraction mapping or contractive on

a set B ⊂ A if ϕ(B) ⊂ B and there exists an α ∈ (0, 1) such that

d(ϕ(x),ϕ(y)) ≤ αd(x,y), ∀x,y ∈ B.

Definition 4.2.3 (Jx,∇x). Let A ⊂ Rm and B ⊂ Rn be open. Suppose h : A×B →

Rm is differentiable on A × B. Then for each b ∈ B, let Jx(z,b) denote the m ×m

Jacobian matrix of h(· ,b) evaluated at z ∈ A. Similarly, ∇xhi(z,b) denotes the

m× 1 gradient vector of hi(· ,b) evaluated at z ∈ A.

Newton-type methods for (4.2) are based on the form z := ϕ(z) = z−Y(z)h(z),

where it is not guaranteed that ϕ is contractive on any set. Taking Y(z) to be the

inverse of the (nonsingular) Jacobian matrix Jx evaluated at the current iterate zk

gives the standard Newton’s method, which under mild assumptions is guaranteed to

be contractive. Likewise, taking Y(z) to be a (nonsingular) constant matrix results

in the parallel-chord method [104]. In [104], the authors present an in-depth analysis

of the theoretical results on fixed-point iterations including conditions for guaranteed

convergence, etc. The key result on which Newton-type methods rely is the mean-

value theorem. A slightly modified form of that stated in [96] is presented here.

Theorem 4.2.4 (Mean-Value Theorem). Let A ∈ Rm be open and connected and let

f : A → R be differentiable on A. If A contains the line segment with endpoints a

84



and b, then there exists a point c = λa+ (1− λ)b with λ ∈ (0, 1) such that

f(b)− f(a) = ∇f(c)T(b− a). (4.5)

The result that we rely upon is the parametric extension of the mean-value theo-

rem.

Corollary 4.2.5 (Parametric Mean-Value Theorem). Let A ∈ Rm be open and con-

nected and let P ⊂ Rnp, and let f : A × P → R be differentiable on A for every

p ∈ P . Let v,w : P → A. Suppose that, for every p ∈ P , the set A contains the line

segment with endpoints v(p) and w(p). Then there exists y : P → A such that, for

each p ∈ P , y(p) = λ(p)v(p) + (1− λ(p))w(p) for some λ : P → (0, 1), and

f(w(p),p)− f(v(p),p) = ∇xf(y(p),p)
T(w(p)− v(p)). (4.6)

Proof. Choose a p∗ ∈ P , then (4.6) reduces to (4.5). To see this, let v(p∗) = a,

w(p∗) = b, y(p∗) = c, λ∗ = λ(p∗), and notice f(· ,p∗) : A → R. Then we have

y(p∗) = c = λ∗a + (1 − λ∗)b = λ(p∗)v(p∗) + (1− λ(p∗))w(p∗). Since the choice of

p∗ ∈ P was arbitrary, (4.6) holds for every p ∈ P .

4.2.2 McCormick Relaxations

McCormick [85] developed a novel technique for generating convex and concave re-

laxations of a given function, defined as follows.

Definition 4.2.6 (Relaxations of Functions [88]). Given a convex set Z ⊂ Rn and

a function f : Z → R, a convex function f c : Z → R is a convex relaxation (or

convex underestimator) of f on Z if f c(z) ≤ f(z) for every z ∈ Z. A concave

function fC : Z → R is a concave relaxation (or concave overestimator) of f on Z if

fC(z) ≥ f(z) for every z ∈ Z.

The relaxations of vector-valued or matrix-valued functions are defined by apply-

ing the above inequalities componentwise.

85



Definition 4.2.7 (Univariate Intrinsic Function [128]). The function u : B ⊂ R→ R

is a univariate intrinsic function if, for any A ∈ IB, the following are known and can

be evaluated computationally:

1. an interval extension of u on A that is an inclusion function of u on A,

2. a concave relaxation of u on A,

3. a convex relaxation of u on A.

In order to construct relaxations of a function using the rules outlined by Mc-

Cormick [85], the function must be factorable, defined as follows.

Definition 4.2.8 (Factorable Function [128]). A function f : Z ⊂ Rnz → R is

factorable if it can be expressed in terms of a finite number of factors v1, . . . , vm such

that, given z ∈ Z, vi = zi for i = 1, . . . , nz, and for each nz < k ≤ m, vk is defined as

either

a) vk = vi + vj, i, j < k, or

b) vk = vivj, i, j < k, or

c) vk = uk ◦ vi, i < k, where uk : Bk → R is a univariate intrinsic function,

and f(z) = vm(z). A vector-valued function f is factorable if every component fi is

factorable.

The functions f , g, and h considered in this chapter are assumed to be factorable.

Such an assumption is not very restrictive since this includes any function that can be

represented finitely on a computer. McCormick’s relaxation technique [85] computes

convex and concave relaxations of factorable functions by recursively applying simple

rules for relaxing binary addition, binary multiplication, and univariate composition

with univariate intrinsic functions.

Definition 4.2.9 (Composite Relaxations: uG ,oG ). Let D ⊂ Rnx , Z ∈ ID, and P ∈

IRnp . Let q : P → Z and G : D×P → Rnx . The functions uG ,oG : Rnx×Rnx×P →

86



Rnx are called composite relaxations of G on Z ×P if for any ψc,ψC : P → Rnx , the

functions uG (ψ
c(· ),ψC(· ), · ) and oG (ψ

c(· ),ψC(· ), · ) are, respectively, convex and

concave relaxations of G (q(· ), · ) on P , provided ψc and ψC are, respectively, convex

and concave relaxations of q on P .

Provided that G is factorable, functions uG and oG satisfying the previous defini-

tion can be computed using generalized McCormick relaxations as described in [128].

By the properties of generalized McCormick relaxations, the functions uG and oG are

continuous on Rnx × Rnx × P .

Remark 4.2.10. Strictly speaking, by the definition of generalized McCormick re-

laxations and the definition of composite relaxations given in [128], the bounding

information (i.e. Z × P in Def. 4.2.9) is required and should be taken as explicit

arguments of uG and oG . However, for notational clarity in this work, the bounding

information will not be passed as arguments of the composite relaxations and instead

will be stated explicitly wherever composite relaxations are used.

Remark 4.2.11. More generally, composite relaxations for any arbitrary function

G (v(· ),w(· ), . . . , z(· ), · ), on P , taking arbitrarily many functions as arguments, can

be constructed in an analogous manner. Also, the inner functions need not be vector

valued, but can be matrix valued, by treating each column vector of the matrix-valued

function as a vector-valued function and applying the above definition.

4.2.3 Subgradients

Since McCormick relaxations are potentially nondifferentiable, subgradients provide

useful information to a nonsmooth optimization code or can be used to compute affine

relaxations of the functions. The rules for calculating subgradients of McCormick

relaxations and corresponding affine relaxations are thoroughly discussed in [88].

Definition 4.2.12 (Subgradients). Let Z ⊂ Rn be a nonempty convex set, f c : Z →

R be convex and fC : Z → R be concave. A vector-valued function scf : Z → Rn is

called a subgradient of f c on Z if for every z̄ ∈ Z, f c(z) ≥ f c(z̄) + (scf (z̄))
T(z − z̄),

87



∀z ∈ Z. Likewise, a vector-valued function sCf : Z → Rn is called a subgradient of fC

on Z if for every z̄ ∈ Z, fC(z) ≤ fC(z̄) + (sCf (z̄))
T(z− z̄), ∀z ∈ Z.

Remark 4.2.13. Subgradients are not unique in general. The procedures in [88] com-

pute a single element of the subdifferential, therefore the subgradient functions above

are well defined. Subgradients of vector-valued functions f c, fC : Z → Rm, convex and

concave, respectively, will be matrix-valued functions denoted σcf ,σ
C
f : Z → Rn×m.

Furthermore, subgradients of matrix-valued functions Fc,FC : Z → Rm×m, convex

and concave, respectively, will be 3rd-order tensor-valued functions denoted σ̂cF, σ̂
C
F :

Z → Rn×m×m.

Definition 4.2.14 (Affine Relaxations). Let Z ⊂ Rn be a nonempty convex set and

define f : Z → Rn. The functions fa, fA : Z → Rn are called affine relaxations of f if

fa(z) ≤ f(z) ≤ fA(z) ∀z ∈ Z, and fa and fA are affine on Z.

In the same notation as the above definition, a natural choice of affine relaxations

is given by

fa(z) = f c(z̄) + (σcf (z̄))
T(z− z̄) and fA(z) = fC(z̄) + (σCf (z̄))

T(z− z̄).

Definition 4.2.15 (Composite Subgradients: SuG
,SoG

). Let D ⊂ Rnx , P ∈ IRnp ,

and Z ∈ ID. Let q : P → Z and G : D × P → Rnx . Let uG ,oG be compos-

ite relaxations of G on Z × P . The functions SuG
,SoG

: Rnx × Rnx × Rnp×nx ×

Rnp×nx × P → Rnp×nx are called composite subgradients of uG and oG on Z × P ,

respectively, if for any ψc,ψC : P → Rnx and σcψ : σCψ : P → Rnp×nx , the func-

tions SuG
(ψc(· ),ψC(· ),σcψ(· ),σCψ (· ), · ), and SoG

(ψc(· ),ψC(· ),σcψ(· ),σCψ (· ), · ) are,

respectively, subgradients of uG

(
ψc(· ),ψC(· ), ·

)
and oG

(
ψc(· ),ψC(· ), ·

)
, provided

ψc and ψC are, respectively, convex and concave relaxations of q on P and σcψ and

σCψ are, respectively, subgradients of ψc and ψC on P .

Remark 4.2.16. Similar to composite relaxations, composite subgradients of convex

and concave relaxations of any G (v(· ),q(· ), . . . , z(· ), · ) on P , taking arbitrarily many

functions as arguments, can be constructed analogously to the case considered in

88



Definition 4.2.15. Again, the inner functions need not be vector-valued, but can

be matrix-valued, by treating each column vector of the matrix-valued function as

a vector-valued function and applying the above definition. As per Remark 4.2.13,

subgradients of a matrix-valued function will be 3rd-order tensors.

4.3 Relaxations of Implicit Functions

This section contains new developments regarding relaxations of implicit functions.

Two different methods for constructing relaxations of implicit functions will be dis-

cussed. The first is to relax a fixed-point iteration for approximating the implicit

function, as in [128]. This method, along with new results is discussed in detail in

Section 4.3.1. This approach can be quite limited, however, and shortcomings of this

method are discussed in Section 4.3.2. The second method circumvents the short-

comings of the first method by relaxing solutions of parametric algebraic systems

directly, without reference to an associated fixed-point iteration, and is thus more

broadly applicable. The case of parametric linear systems is discussed in Section

4.3.3. In Section 4.3.4, the case of parametric nonlinear systems is discussed.

4.3.1 Direct Relaxation of Fixed-Point Iterations

Consider the system of equations in (4.3). Let the (factorable) function ϕ : Dx×Dp →

Rnx be an algebraic rearrangement of h such that h(z,p) = z− ϕ(z,p)⇔ z = ϕ(z,p)

andDx×Dp ⊂ Dy. For example, consider h(z, p) = z−sin(z+p) = 0⇔ z = sin(z+p)

or h(z, p) = z2 + pz + C = 0⇔ z = −(z2 + C)/p.

Assumption 4.3.1. There exists x : P → Rnx such that x(p) = ϕ(x(p),p), ∀p ∈ P,

and an interval [xL,xU ] ≡ X ∈ IRnx is known such that x(P ) ⊂ X and x(p) is unique

in X for all p ∈ P .

The parametric extension of the well-known interval-Newton method, which is

discussed in [56, 101] and developed further in Chapter 3 exhibits the theoretical

capabilities of finding an X satisfying this assumption. Finding such an X is really

89



a precursor to calculating relaxations since, for the purposes of this chapter, it is

desired to relax a single implicit function.

In [128], the authors consider the computation of relaxations of xk : P → Rnx ,

the approximations of x, defined by the fixed-point iteration:

xk+1(p) := ϕ(xk(p),p), ∀p ∈ P. (4.7)

If ϕ(· ,p) is a contraction mapping on X for every p ∈ P , then this iteration is

referred to as a successive-substitution fixed-point iteration. Under this assumption,

it can be shown that {xk} → x so that this method provides relaxations of arbitrarily

good approximations of x. However, this result is rather weak in that it does not

provide us with guaranteed valid relaxations of the implicit function x upon finite

termination. In contrast, the following result provides sequences, {xk,c} and {xk,C},

such that xk,c and xk,C are relaxations of x on P , for every k ∈ N. Moreover, this

result does not require contractivity of ϕ on X. Thus, although approximations of

the value of x may not even be available, valid relaxations of x are readily calculable.

Definition 4.3.2. Let uϕ,oϕ be composite relaxations of ϕ on X×P . The functions

ūϕ, ōϕ : Rnx × Rnx × P → Rnx will be defined as:

ūϕ(z
c, zC ,p) ≡ max{zc,uϕ(zc, zC ,p)},

ōϕ(z
c, zC ,p) ≡ min{zC ,oϕ(zc, zC ,p)},

∀(zc, zC ,p) ∈ Rnx × Rnx × P with the max/min operations applied componentwise.

Definition 4.3.3. Let uϕ,oϕ be composite relaxations of ϕ on X × P . Let Suϕ ,Soϕ
be composite subgradients of uϕ and oϕ on X × P , respectively. The functions

90



Sūϕ ,Sōϕ : Rnx × Rnx × Rnp×nx × Rnp×nx × P → Rnp×nx will be defined as

Sūϕ(zc, zC ,σcz,σCz , p̄) =

 σcz if ūϕ(z
c, zC , p̄) = zc

Suϕ(zc, zC ,σcz,σCz , p̄) otherwise

Sōϕ(zc, zC ,σcz,σCz , p̄) =

 σCz if ōϕ(z
c, zC , p̄) = zC

Soϕ(zc, zC ,σcz,σCz , p̄) otherwise

∀(zc, zC ,σcz,σCz , p̄) ∈ Rnx × Rnx × Rnp×nx × Rnp×nx × P .

It should be noted that the functions Sūϕ and Sōϕ define composite subgradients

of ūϕ and ōϕ on X × P , respectively.

Theorem 4.3.4. Let x0,c,x0,C : P → Rnx be defined by x0,c(p) = xL and x0,C(p) =

xU for all p ∈ P . Then the elements of the sequences {xk,c} and {xk,C} defined by

xk+1,c(· ) = ūϕ(x
k,c(· ),xk,C(· ), · ) and xk+1,C(· ) = ōϕ(x

k,c(· ),xk,C(· ), · ) are convex

and concave relaxations of x on P , respectively, for every k ∈ N.

Proof. x0,c and x0,C are trivially convex and concave relaxations of x on P , re-

spectively. Suppose this is true of xk,c and xk,C for some k ≥ 0. By Definition

4.2.9, uϕ(x
k,c(· ),xk,C(· ), · ) and oϕ(x

k,c(· ),xk,C(· ), · ) are also relaxations of x(· ) =

ϕ(x(· ), · ) on P . Since the maximum of two convex functions is convex and the

minimum of two concave functions is concave, xk+1,c(· ) = ūϕ(x
k,c(· ),xk,C(· ), · ) and

xk+1,C(· ) = ōϕ(x
k,c(· ),xk,C(· ), · ) are convex and concave relaxations of x(· ) =

ϕ(x(· ), · ) on P , respectively. Induction completes the proof.

Theorem 4.3.5. Let x0,c,x0,C : P → Rnx be defined by x0,c(p) = xL and x0,C(p) =

xU , for all p ∈ P . Let σ0,c
x (p) = σ0,C

x (p) = 0, for all p ∈ P . Let relaxations of x on

P be given by xk+1,c(· ) = ūϕ(x
k,c(· ),xk,C(· ), · ) and xk+1,C(· ) = ōϕ(x

k,c(· ),xk,C(· ), · ),

k ∈ N. Then the sequences {σk,cx } and {σk,Cx } defined by

σk+1,c
x (· ) :=Sūϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ),

σk+1,C
x (· ) :=Sōϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · )

are, respectively, subgradients of xk+1,c and xk+1,C on P for k ∈ N.

91



Proof. From the hypothesis, x0,c and x0,C are (constant) convex and concave relax-

ations of x on P , respectively, and σ0,c
x = σ0,C

x = 0 are subgradients of x0,c and x0,C on

P , respectively. Suppose this holds for k ∈ N. Then we have xk,c and xk,C , convex and

concave relaxations of x on P , respectively, and σk,cx (· ) and σk,Cx (· ), subgradients of

xk,c and xk,C on P , respectively. By the definition of the composite subgradient (Def.

4.2.15), subgradients of uϕ(x
k,c(· ),xk,C(· ), · ) and oϕ(x

k,c(· ),xk,C(· ), · ) on P are given

by Suϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ) and Soϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ),

respectively, and by Definition 4.3.3, Sūϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ) and

Sōϕ(xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ) are subgradients of

xk+1,c(· ) := ūϕ(x
k,c(· ),xk,C(· ), · ) = max{xk,c(· ),uϕ(xk,c(· ),xk,C(· ), · )},

xk+1,C(· ) := ōϕ(x
k,c(· ),xk,C(· ), · ) = min{xk,C(· ),oϕ(xk,c(· ),xk,C(· ), · )}

on P , respectively. Induction completes the proof.

It is of great interest to understand when this procedure for calculating relaxations

works well. Although improvement on the bounds cannot be guaranteed in general,

one can find cases when improvement is definitely not possible; thus providing a

necessary condition for improvement.

Theorem 4.3.6. Let {xk} be a sequence generated by the fixed-point iteration (4.7)

starting from x0(p) ∈ X, ∀p ∈ P . If xk(p) /∈ X for some p ∈ P , k ∈ N, then the

sequences {xk,c} and {xk,C} from Theorem 4.3.4 are such that there exists a p ∈ P

such that xk,c(p) = xL or xk,C(p) = xU for every k ∈ N.

Proof. By hypothesis, x0(p) ∈ X for every p ∈ P and x0,c = xL and x0,C = xU .

Therefore x0,c and x0,C are convex and concave relaxations of x0 on P , respectively.

Suppose this is true for (K−1) ∈ N whereK is the iteration in which xK(p̄) /∈ X such

that xK(p̄) ∈ X, ∀k < K for some p̄ ∈ P . Then by Definition 4.2.9 and Theorem

4.3.4, uϕ(x
k−1,c(p),xk−1,C(p),p) ≤ ϕ(xk−1(p),p) ≤ oϕ(x

k−1,c(p),xk−1,C(p),p) for

every p ∈ P (noting xK−1(p) ∈ X, ∀p ∈ P ). Since xK(p) = ϕ(xK−1(p),p), ∀p ∈ P ,

this implies uϕ(x
K−1,c(p),xK−1,C(p),p) ≤ xK(p) ≤ oϕ(x

K−1,c(p),xK−1,C(p),p), ∀p ∈

92



P . However, since xK(p̄) /∈ X, it follows that uϕ(x
K−1,c(p̄),xK−1,C(p̄), p̄) < xL or

oϕ(x
K−1,c(p̄),xK−1,C(p̄), p̄) > xU . Therefore ūϕ(x

K−1,c(p̄),xK−1,C(p̄), p̄) = xL or

ōϕ(x
K−1,c(p̄),xK−1,C(p̄), p̄) = xU .

4.3.2 Direct Relaxation of Newton-Type Iterations

According to Theorem 4.3.6, the property that ϕ maps X × P into X is desirable in

order to calculate relaxations that are potential improvements on the original bounds

of X. This property will be exhibited by any ϕ that is a contraction mapping.

Consider the system of equations (4.3) and now suppose that h cannot be rearranged

algebraically as in the previous section, such that (4.7) is contractive. Thus, h will

be a member of a more general class of functions. The following result guarantees

that a different form of fixed-point iteration can still be constructed from any such

system and under some other fixed-point results, may be guaranteed to be contractive.

However, as will be shown in this section, the fact that ϕ is contractive is not enough

to calculate relaxations of x that are guaranteed to be refinements on the bounds of X

using the method of Section 4.3.1. Although, this property is a necessary condition.

Proposition 4.3.7. For any function h : A ⊂ Rn → Rn, there exists ϕ : A → Rn

such that ϕ(z) = z if and only if h(z) = 0.

Proof. Let ϕ(z) = z−Yh(z) with Y ∈ Rn×n nonsingular.

By the previous proposition, the function ϕ : X × P → Rnx can be defined as

ϕ(z,p) ≡ z−Y(z,p)h(z,p) (4.8)

with Y(z,p) ∈ Rnx×nx nonsingular for all (z,p) ∈ X × P . Then

xk+1(p) := ϕ(xk(p),p) (4.9)

is a fixed-point iteration. Thus, the method of Section 4.3.1 can still, in principle, be

used to construct relaxations of x on P . However, the following result shows that the

93



relaxations of x constructed in this way cannot be tighter than the bounds xL and

xU .

Theorem 4.3.8. Let ϕ be defined as in (4.8) and suppose Assumption 4.3.1 holds.

Let x0,c,x0,C : P → Rnx be defined by x0,c(p) = xL and x0,C(p) = xU for all p ∈

P . Let uϕ and oϕ be composite relaxations of ϕ on X × P and let ūϕ and ōϕ be

defined as in Definition 4.3.2. Let xk,c,xk,C : P → X be defined by xk+1,c(· ) :=

ūϕ(x
k,c(· ),xk,C(· ), · ) and xk+1,C(· ) := ōϕ(x

k,c(· ),xk,C(· ), · ). Then xk,c(p) = xL and

xk,C(p) = xU for every p ∈ P and all k ∈ N.

Proof. Let f(z,p) = −Y(z,p)h(z,p). By the rules of McCormick relaxations [128],

uϕ and oϕ can be written as

uϕ(x
k,c(p),xk,C(p),p) = xk,c(p) + uf (x

k,c(p),xk,C(p),p),

oϕ(x
k,c(p),xk,C(p),p) = xk,C(p) + of (x

k,c(p),xk,C(p),p),

where, respectively, uf and of are composite relaxations of f on X×P . By Definition

4.2.9, uf (x
k,c(· ),xk,C(· ), · ) and of (x

k,c(· ),xk,C(· ), · ) are convex and concave relax-

ations of f(x(· ), · ) on P , respectively for every k ∈ N. By Definition, f(x(p),p) = 0,

∀p ∈ P . Thus

uf (x
k,c(p),xk,C(p),p) ≤ 0 ≤ of (x

k,c(p),xk,C(p),p)

hold for every p ∈ P for every k ≥ 0. Note that x0,c(p) = xL and x0,C(p) = xU .

Suppose the same is true of xk,c and xk,C , respectively. Then,

xk,c(p) + uf (x
k,c(p),xk,C(p),p) ≤ xk,c(p) = xL,

xk,C(p) + of (x
k,c(p),xk,C(p),p) ≥ xk,C(p) = xU .

94



By Definition 4.3.2, we have

xk+1,c(p) := max
{
xk,c,xk,c(p) + uf (x

k,c(p),xk,C(p),p)
}
= xL,

xk+1,C(p) := min
{
xk,C ,xk,C(p) + of (x

k,c(p),xk,C(p),p)
}
= xU .

Induction completes the proof.

The importance of the above theorem is that the convex and concave relaxations of

the generic Newton-type form (4.8), discussed in Proposition 4.3.7, can be no tighter

than the original bounds given by X, and will in fact be fixed at these bounds. This

result is analogous to the reason why one cannot simply take an interval extension

of the Newton iteration and expect to improve the initial bounds on a locally unique

solution.2 This result motivates the need for a different technique for calculating

valid convex and concave relaxations of x. Again, it should be noted that fixed-point

iterations of different forms, such as the successive-substitution iteration discussed

above and in [128], may not have the same problem, per Theorem 4.3.4, so long as ϕ

maps X × P into X.

The next two sections describe a different method which is capable of constructing

relaxations of x on P that are potentially refinements of the bounds given by X, when

no successive-substitution rearrangement for h exists that is a contraction mapping.

First, the method is developed for parametric linear systems in Section 4.3.3. The

extension to parametric nonlinear systems is developed in Section 4.3.4.

4.3.3 Relaxations of Solutions of Parametric Linear Systems

Consider the parametric linear system:

A(p)z = b(p), (4.10)

with A : P → Da ⊂ Rnx×nx and b : P → Db ⊂ Rnx factorable, z ∈ Rnx , and p ∈ P .

2The reader is directed back to Chap. 3 or [101] if this is unclear.

95



Assumption 4.3.9.

1. There exists δ : P → Rnx such that A(p)δ(p) = b(p), ∀p ∈ P , and an interval

[δL, δU ] ≡ ∆ ∈ IRnx is available such that δ(P ) ⊂ ∆ and δ(p) is unique in ∆

for every p ∈ P .

2. Intervals A ∈ IDa and B ∈ IDb are known such that A(P ) ⊂ A, b(P ) ⊂ B,

and 0 /∈ Aii for all i.

Since A and b are factorable, the intervals A and B are easily calculable using

interval analysis, e.g. by calculating their natural interval extensions. The set ∆ may

be computed using a parametric interval linear solver such as that in [106, 107, 119].

The assumption that 0 /∈ Aii, ∀i implies that aii(p) ̸= 0 for all p ∈ P . However, this

can be relaxed by assuming that there exists a preconditioning matrix Y ∈ Rnx×nx

such that the diagonal elements of YA do not enclose 0 and thus the product YA(p)

has nonzero diagonal elements for every p ∈ P . In [101], various results on the

relationship between Y, A, and A are discussed. The key result of this section offers

a way of calculating relaxations of solutions to parametric linear systems. To begin,

the solution δ will be characterized in semi-explicit form.

Definition 4.3.10 (f). Define the function f : Db × Da × Rnx → Rnx such that

f(b̃, Ã, δ̃) = δ̃
∗
, where the ith component of δ̃

∗
is given by the loop:

for i = 1, . . . , nx do

δ̃∗i :=

(
b̃i −

∑
j<i

ãij δ̃
∗
j −

∑
j>i

ãij δ̃j

)
/ãii (4.11)

end

where ãij is the (i, j)th element of Ã, b̃i is the ith component of b̃, and δ̃i is the ith

component of δ̃.

Lemma 4.3.11. Suppose Assumption 4.3.9 holds. Then δ(p) = f(b(p),A(p), δ(p))

for every p ∈ P , i.e., δ(p) is a fixed-point of f(b(p),A(p), · ) for every p ∈ P .

96



Proof. By hypothesis, A(p)δ(p) = b(p) holds and the ith equation can be expressed

as
nx∑
j=1

aij(p)δj(p) = bi(p), ∀p ∈ P.

Or, equivalently written

aii(p)δi(p) +
∑
j<i

aij(p)δj(p) +
∑
j>i

aij(p)δj(p) = bi(p), ∀p ∈ P.

Solving for δi:

δi(p) =

(
bi(p)−

∑
j<i

aij(p)δj(p)−
∑
j>i

aij(p)δj(p)

)
/aii(p), ∀p ∈ P.

It immediately follows that

f1(b(p),A(p), δ(p)) = δ∗1(p) =

(
b1(p)−

∑
j>1

a1j(p)δj(p)

)
/a11(p) = δ1(p).

Suppose δk = δ∗k holds for k < nx. Then

fk+1(b(p),A(p), δ(p)) =

δ∗k+1(p) =

(
bk+1(p)−

∑
j<k+1

aij(p)δ
∗
j −

∑
j>k+1

aijδij

)
/aii(p)

=

(
bk+1(p)−

∑
j<k+1

aij(p)δj −
∑
j>k+1

aij(p)δij

)
/aii(p) = δk+1(p)

Induction completes the proof.

Using the characterization of δ provided by Lemma 4.3.11, convex and concave

relaxations of δ on P can be computed by iteratively refining the bounds δL and δU .

Theorem 4.3.12 (Relaxations of Parametric Linear Systems). Let Ac,AC : P →

Rnx×nx be convex and concave relaxations of A on P , respectively, and let bc,bC :

P → Rnx be convex and concave relaxations of b on P , respectively. Let uf and of be

composite relaxations of f on B × A×∆× P . Let δ0,c, δ0,C : P → Rnx be defined by

97



δ0,c(p) = δL and δ0,C(p) = δU for all p ∈ P . Then the sequences {δk,c} and {δk,C}

defined by the iteration

δk+1,c(· ) := ūf (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

δk+1,C(· ) := ōf (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

are convex and concave relaxations of δ on P , respectively, for every k ∈ N, with

ūf , ōf defined analogously to Def. 4.3.2.

Proof. δ0,c and δ0,C are trivially convex and concave relaxations of δ on P . Suppose

this holds for k ≥ 0. Then δk,c and δk,C are relaxations of δ on P . By Definition

4.2.9

uf (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

of (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

are convex and concave relaxations of f(b(· ),A(· ), δ(· )) on P , respectively. By

Lemma 4.3.11, δ(· ) = f(b(· ),A(· ), δ(· )), and hence these are also relaxations of

δ on P . Since the maximum of two convex functions is convex and the minimum of

two concave functions is concave,

δk+1,c(· ) := ūf (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

δk+1,C(· ) := ōf (b
c(· ),bC(· ),Ac(· ),AC(· ), δk,c(· ), δk,C(· )),

are convex and concave relaxations of δ on P , respectively. Induction completes the

proof.

Remark 4.3.13. The definition of f does not have explicit dependence on p, however,

this is just a special case of the general form (4.7). Therefore uf and of are said to be

composite relaxations of f on B ×A×∆× P , which is consistent with the definition

of composite relaxations (Def. 4.2.9).

It should be noted that the functions δk,c and δk,C can be no worse than the

98



original bounds. Thus, Theorem 4.3.12 offers an efficient procedure for constructing

relaxations of solutions to parametric linear systems that may be, potentially signifi-

cant, refinements of the original bounds. It should also be mentioned that because of

how f is defined, each component i makes use of information from the previous j < i

updated components. It is said that f is evaluated in a sequential componentwise man-

ner. Similarly, relaxations of f are calculated in a sequential componentwise manner.

What this amounts to is the sequential componentwise refinement of relaxations of δj

making use of the newly calculated refinements of the previous components (i < j).

This procedure is analogous to how the Gauss-Seidel method propagates the newly

calculated (i < j) information forward to (j > i) components to get better approxi-

mations of the solution and potentially speed up convergence. Subgradients of these

relaxations can also be calculated.

Theorem 4.3.14. Let Ac,AC : P → Rnx×nx be convex and concave relaxations of A

on P , respectively, and let bc,bC : P → Rnx be convex and concave relaxations of b on

P , respectively. Let δ0,c, δ0,C : P → Rnx be defined by δ0,c(p) = δL and δ0,C(p) = δU

for all p ∈ P and σ0,c
δ (p) = σ0,C

δ (p) = 0, for all p ∈ P . Let σ̂cA, σ̂
C
A : P → Rnp×nx×nx

be subgradients of Ac,AC on P , respectively. Similarly, let σcb,σ
C
b : P → Rnp×nx be

subgradients of bc,bC on P , respectively. Let relaxations of δ, (δk,c, δk,C), be given by

Theorem 4.3.12. Let Suf
,Sof

be composite subgradients of uf and of on B×A×∆×P ,

respectively. Then the sequences {σk+1,c
δ } and {σk+1,C

δ } defined by

σk+1,c
δ (· ) :=Sūf

(bc(· ),bC(· ),σcb(· ),σCb (· ),Ac(· ),AC(· ), σ̂cA(· ), σ̂
C
A(· ),

δk,c(· ), δk,C(· ),σk,cδ (· ),σk,Cδ (· )),

σk+1,C
δ (· ) :=Sōf

(bc(· ),bC(· ),σcb(· ),σCb (· ),Ac(· ),AC(· ), σ̂cA(· ), σ̂
C
A(· ),

δk,c(· ), δk,C(· ),σk,cδ (· ),σk,Cδ (· ))

are subgradients of δk+1,c and δk+1,C on P , respectively, with Sūf
and Sōf

defined

analogously to Def. 4.3.3.

Proof. The proof is analogous to that for Theorem 4.3.5.

99



4.3.4 Relaxations of Solutions of Parametric Nonlinear Sys-

tems

As in Section 4.3.2, the general form of h will be considered such that h cannot be

rearranged algebraically as in Section 4.3.1.

Assumption 4.3.15.

1. There exists x : P → Dx such that h(x(p),p) = 0, ∀p ∈ P , and an interval

X ≡ [xL,xU ] ⊂ IDx is available such that x(P ) ⊂ X and x(p) is unique in X

for all p ∈ P .

2. Derivative information ∇xhi, i = 1, . . . , nx is available and is factorable, say by

automatic differentiation [12, 49].

3. A matrix Y ∈ Rnx×nx is known such that M ≡ YJx(X,P ) satisfies 0 /∈Mii for

all i, where Jx is an inclusion monotonic interval extension of Jx on X × P .

The matrix M can be calculated by taking natural interval extensions [92, 101].

Furthermore, parametric interval-Newton methods [54, 56, 101] offer a way to calcu-

lateX satisfying Assumption 4.3.15. The matrixY is simply a preconditioning matrix

and has been the topic of many articles. Specifically, [69] discusses the application to

interval-Newton methods. A frequently valid choice is Y = [m(Jx(X,P ))]
−1, which

is popular due to its relatively efficient computation. As in Section 4.3.3, we begin

by characterizing x in semi-explicit form.

Lemma 4.3.16. Choose any z : P → Rnx such that z(P ) ⊂ X. There exists a

matrix-valued function M : P →M such that

−Yh(z(p),p) = M(p)(x(p)− z(p)), ∀p ∈ P

with M ≡ YJx(X,P ).

Proof. From the Parametric Mean-Value Theorem 4.2.5, there exists a function yi :

100



P → X such that

hi(x(p),p)− hi(z(p),p) = ∇xhi(y
i(p),p)T(x(p)− z(p)), ∀p ∈ P

for the ith component of h. Writing the mean-value form for i = 1, . . . , nx, and

noticing that hi(x(p),p) = 0 for all i, we get

−h(z(p),p) =


∇xh1(y

1(p),p)T

∇xh2(y
2(p),p)T

...

∇xhnx(y
nx(p),p)T

 (x(p)− z(p)), ∀p ∈ P.

Multiplying both sides by Y, we get

−Yh(z(p),p) = Y


∇xh1(y

1(p),p)T

∇xh2(y
2(p),p)T

...

∇xhnx(y
nx(p),p)T

 (x(p)− z(p)), ∀p ∈ P.

Let B : X ×X × · · · ×X × P → Rnx×nx be defined so that

M(· ) = B(y1(· ),y2(· ), . . . ,ynx(· ), · ) ≡ Y


∇xh1(y

1(· ), · )T

∇xh2(y
2(· ), · )T
...

∇xhnx(y
nx(· ), · )T

 .

By Assumption 4.3.15-3, there exists a matrix Y so that M ≡ YJx(X,P ) is such

that 0 /∈ Mii. Since yi(P ) ⊂ X and the image B(X,X, · · · , X, P ) ⊂ YJx(X,P ), so

that M(P ) ⊂M .

It is important to notice that, for the purposes of this chapter and beyond, M

need not be calculated explicitly. However, it is required that convex and concave

relaxations of M on P can be calculated. This is fortuitous since it is easier to relax

101



M than calculate M explicitly.

Lemma 4.3.17. Let z, M, and B be as in Lemma 4.3.16. Let uB,oB be composite

relaxations of B on X ×X × · · · ×X ×X × P . Let xc,xC : P → Rnx be convex and

concave relaxations of x on P , respectively, such that xc(p) ≤ z(p) ≤ xC(p), ∀p ∈ P .

Then the functions

Mc(· ) ≡ uB(x
c(· ),xC(· ), . . . ,xc(· ),xC(· ), · )

MC(· ) ≡ oB(x
c(· ),xC(· ), . . . ,xc(· ),xC(· ), · ),

are convex and concave relaxations of M on P , respectively.

Proof. By Assumption 4.3.15-2, ∇xhi, i = 1, . . . , nx, is available and factorable. We

know that for each p ∈ P and all i = 1, . . . , nx and j = 1, . . . , nx, either xj(p) ≤

yij(p) ≤ zj(p) or zj(p) ≤ yij(p) ≤ xj(p). Also, we have valid relaxations such that

xc(p) ≤ z(p) ≤ xC(p), ∀p ∈ P . Thus, it is clear xc(p) ≤ yi(p) ≤ xC(p), ∀p ∈ P

and i = 1, . . . , nx. Since x
c and xC are convex and concave relaxations of yi on P for

i = 1, . . . , nx by Definition 4.2.9, and uB and oB are composite relaxations of B on

X ×X × . . .×X ×X × P , it follows directly that Mc and MC are valid convex and

concave relaxations of M on P .

Two different techniques for constructing relaxations of solutions of parametric

nonlinear systems, that rely on the above results, will now be presented along with

very general composite relaxation results. The complete results and procedures re-

garding constructing relaxations of solutions of parametric nonlinear systems will then

be presented.

Definition 4.3.18 (ψ). Let b : X × P → Rnx such that b ≡ Yh. Define the

function ψ : X ×M × X × P → Rnx such that ∀(z̃, M̃, x̃,p) ∈ X ×M × X × P ,

102



ψ(z̃, M̃, x̃,p) = x̃∗, where the ith component of x̃∗ is given by the loop:

for i = 1, . . . , nx do

x̃∗i := z̃i −

(
bi(z̃,p) +

∑
j<i

m̃ij(x̃
∗
j − z̃j) +

∑
j>i

m̃ij(x̃j − z̃j)

)
/m̃ii, (4.12)

end.

This is simply a formal definition of a single iteration of the parametric version of

the Gauss-Seidel method and is very closely related to the function f from the linear

systems section above. The following result shows that if relaxations of x are known,

they can be refined. Later, the full method, that is practical computationally, for

refining relaxations of x iteratively is presented which relies on this result.

Theorem 4.3.19. Let z and M be as in Lemma 4.3.16. Let Mc,MC : P → Rnx×nx

be relaxations of M on P , let xk,c,xk,C : P → Rnx be relaxations of x on P , and let

zc, zC : P → Rnx be relaxations of z on P . Let uψ and oψ be composite relaxations of

ψ on X ×M ×X × P . Then convex and concave relaxations of x on P are given by

xk+1,c(· ) :=ūψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

xk+1,C(· ) :=ōψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

respectively, with ūψ and ōψ defined analogously to Def. 4.3.2.

Proof. Similar to the linear systems result above, we will show that x is a fixed-point

of ψ. By Lemma 4.3.16

M(p)(x(p)− z(p)) = −Yh(z(p),p), ∀p ∈ P,

103



and 0 /∈Mii ⊃ mii(P ), ∀i. Now, it is clear that, for i = 1, . . . , nx, we can write

xi(p) = zi(p)−

(
bi(z(p),p) +

∑
j<i

mij(p)(xj(p)− zj(p))

+
∑
j>i

mij(p)(xj(p)− zj(p))

)
/mii(p)

with b = Yh. It immediately follows that

ψ1(z(p),M(p),x(p),p) = x∗1(p)

= z1(p)−

(
b1(z(p),p) +

∑
j>1

m1j(p)(xj(p)− zj(p))

)
/m11(p) = x1(p).

Similar to the proof of Lemma 4.3.11, using induction, xi(p) = ψi(z(p),M(p),x(p),p) =

x∗i , ∀i. Therefore x is a fixed-point of ψ for every p ∈ P . From the hypothesis and

Definition 4.2.9, it follows that

uψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

oψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
are relaxations of ψ(z(· ),M(· ),x(· ), · ) on P that are also relaxations of

x(· ) = ψ(z(· ),M(· ),x(· ), ·) on P . It immediately follows that

xk+1,c(· ) :=ūψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

xk+1,C(· ) :=ōψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

are convex and concave relaxations of x on P , respectively.

As in Section 4.3.3, the sequential componentwise refinement of relaxations of x

enable the calculations of subsequent components (j > i) to make use of the newly

calculated refinements of the previous components (j < i).

Theorem 4.3.20. Let z and M be as in Lemma 4.3.16. Let Mc,MC : P → Rnx×nx

be relaxations of M on P , let xk,c,xk,C : P → Rnx be relaxations of x on P , and let

104



zc, zC : P → Rnx be relaxations of z on P . Let σ̂cM, σ̂
C
M : P → Rnp×nx×nx be subgra-

dients of Mc and MC on P , respectively, let σk,cx ,σk,Cx : P → Rnp×nx be subgradients

of xk,c and xk,C on P , respectively, and let σcz,σ
C
z : P → Rnp×nx be subgradients of

zc and zC on P , respectively. Let Suψ and Soψ be composite subgradients of uψ and

oψ on X ×M ×X × P , respectively. Then we have

σk+1,c
x (· ) :=Sūψ(zc(· ), zC(· ),σcz(· ),σCz (· ),

Mc(· ),MC(· ), σ̂cM(· ), σ̂CM(· ),xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · ),

σk,Cx (· ) :=Sōψ(zc(· ), zC(· ),σcz(· ),σCz (· ),

Mc(· ),MC(· ), σ̂cM(· ), σ̂CM(· ),xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), · )

are subgradients of

xk+1,c(· ) := ūψ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
xk+1,C(· ) := ōψ

(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
on P , with Sūf

and Sōf
defined analogously to Def. 4.3.3.

Proof. The proof is analogous to that for Theorem 4.3.5.

A second technique for constructing relaxations of solutions of parametric nonlin-

ear systems will now be presented.

Definition 4.3.21 (χ). The function χ : X ×M ×X × P → Rnx will be defined as

χ(z̃, M̃, x̃,p) ≡ z̃−Yh(z̃,p) + (I− M̃)(x̃− z̃), (4.13)

∀(z̃, M̃, x̃,p) ∈ X ×M ×X × P.

Theorem 4.3.22. Let z and M be as in Lemma 4.3.16. Let Mc,MC : P → Rnx×nx

be relaxations of M on P , let xk,c,xk,C : P → Rnx be relaxations of x on P , and let

zc, zC : P → Rnx be relaxations of z on P . Let uχ and oχ be composite relaxations of

105



χ on X ×M ×X × P . Then convex and concave relaxations of x on P are given by

xk+1,c(· ) :=ūχ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

xk+1,C(· ) :=ōχ
(
zc(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), ·

)
,

respectively, with ūχ and ōχ defined analogously to Def. 4.3.2.

Proof. First, we will show that x is a fixed-point of χ. By Proposition 4.3.7, we can

write ϕ(w,p) = w −Yh(w,p) so that ϕ(w,p) = w⇔ h(w,p) = 0. Now,

ϕ(x(p),p) = ϕ(x(p),p) + ϕ(z(p),p)− ϕ(z(p),p),

= x(p)−Yh(x(p),p) + z(p)−Yh(z(p),p)− z(p) +Yh(z(p),p),

= z(p)−Yh(z(p),p) + (x(p)− z(p))−Y(h(x(p),p)− h(z(p),p)),

for all p ∈ P . From the definition of M and z, Y(h(x(p),p)− h(z(p),p)) =

M(p)(x(p)− z(p)) holds. Substituting in we get

ϕ(x(p),p) = z(p)−Yh(z(p),p) + (x(p)− z(p))−M(p)(x(p)− z(p)),

= z(p)−Yh(z(p),p) + (I−M(p))(x(p)− z(p)),

= χ (z(p),M(p),x(p)) .

Thus, x(p) = ϕ(x(p),p) = χ(z(p),M(p),x(p)). From the hypothesis and by Defi-

nition 4.2.9, it follows that

uχ(z
c(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), · ),

oχ(z
c(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), · ),

are relaxations of χ(z(· ),M(· ),x(· ), · ) on P that are also relaxations of

106



x(· ) = χ(z(· ),M(· ),x(· ), ·) on P . It immediately follows that

xk+1,c(· ) :=ūχ(z
c(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), · ),

xk+1,C(· ) :=ōχ(z
c(· ), zC(· ),Mc(· ),MC(· ),xk,c(· ),xk,C(· ), · ),

are convex and concave relaxations of x on P , respectively.

Remark 4.3.23. Similar to how ψ, from above, and f from Section 4.3.3 were defined,

it is easy to rearrange χ to be calculated in a sequential componentwise fashion.

Remark 4.3.24. The subgradient result for ψ, Theorem 4.3.20, trivially holds with ψ

replaced by χ.

One hypothesis that the above results rely upon is the existence of an appropriate

function z : P → X, for which relaxations are readily available. Without such a

function, convex and concave relaxations of x that are potential improvements on the

initial bounds cannot be calculated. This issue is addressed next.

Definition 4.3.25. Let xa,xA : P → Rnx be any affine relaxations of x on P ,

respectively. For some λ ∈ [0, 1] define the function z : P → Rnx with the following

procedure:

for i = 1, . . . , nx do

ξi(· ) := λxai (· ) + (1− λ)xAi (· )

Ξi := [ξLi , ξ
U
i ] =

[
min
p∈P

ξi(p),max
p∈P

ξi(p)

]
if ξLi < xLi then

x̂ai (· ) := xLi , else x̂ai (· ) := xai (· )

if ξUi > xUi then

x̂Ai (· ) := xUi , else x̂Ai (· ) := xAi (· )

zi(· ) := λx̂ai (· ) + (1− λ)x̂Ai (· )

end

107



It should be noted that the interval Ξi =

[
min
p∈P

ξ(p),max
p∈P

ξ(p)

]
can be calculated

easily and efficiently for each i using interval analysis. Also, defining z to be affine

is important because affine functions are trivially convex and concave, so that the

calculation of valid relaxations is trivial.

Lemma 4.3.26. Suppose xa,xA : P → Rnx are any affine relaxations of x on P .

Then the function z : P → Rnx, defined in Definition 4.3.25, is affine and maps P

into X.

Proof. Consider a single i and set Ξi := [ξLi , ξ
U
i ] as in Definition 4.3.25. It should be

noted that the cases where xAi (p) ≤ xLi and/or xai (p) ≥ xUi for any p ∈ P cannot occur

since, by definition xai (p) ≤ xi(p) ≤ xAi (p), ∀p ∈ P , implying xi(p) ≤ xLi and/or

xi(p) ≥ xUi , violating Assumption 4.3.15-1. First, consider the case that xLi ≤ ξLi

and ξUi ≤ xUi . Trivially, zi(· ) := λxai (· ) + (1 − λ)xAi (· ) satisfies xLi ≤ zi(· ) ≤ xUi ,

∀p ∈ P , and thus zi maps P into Xi and since it is a convex combination of affine

functions, it is affine. Next, consider the case that ξLi < xLi and xUi < ξUi . Then

zi(· ) := λxLi +(1−λ)xUi maps P into Xi, trivially, and since it is a convex combination

of two affine (constant) functions, it is affine. Consider the case that only one bound

is violated, say ξLi < xLi and ξUi ≤ xUi . Then zi(· ) := λxLi + (1 − λ)xAi (· ) and since

xLi is affine (constant) and xAi is affine, zi is affine and xLi ≤ λxLi + (1 − λ)xAi (· ).

A similar argument can be made for the case in which the upper bound is violated:

ξUi > xUi and xLi ≤ ξLi . Therefore z is affine and maps P into X.

The if statements in Definition 4.3.25 check, for a particular choice of λ, whether

or not the hyperplanes defined by λxa(· )+ (1−λ)xA(· ) will violate the bounds on X

for some ith component. If that is the case, the hyperplane is calculated so as to not

violate the bounds on X. A convenient choice for the ith hyperplane is simply the

plane that lies in the middle corresponding to λ = 0.5. Other choices for z exist. For

instance, in one dimension, the function z can be taken to be the secant connecting

the endpoints x(pL) and x(pU). The above result together with the definition of the

composite subgradient, (Def. 4.2.15), offers an automatic way to calculate z that is

108



valid for all systems in general. In order to simplify the notation for later results, the

following procedure will be defined.

Subroutine 4.3.27 (Aff).

Aff(c,C,σc,σC, λ,X, P, p̄){

for i = 1, . . . , nx do

Xa
i := ci +

np∑
j=1

(σc
T)ij(Pj − p̄j)

XA
i := Ci +

np∑
j=1

(σC
T)ij(Pj − p̄j)

Ξi := λXa
i + (1− λ)XA

i

if ξLi < xLi then

(σc)ji := 0, ∀j = 1, . . . , np

ci := xLi endif

if ξUi > xUi then

(σC)ji := 0, ∀j = 1, . . . , np

Ci := xUi endif

end

return {c,C,σc,σC}

}

Remark 4.3.28. Note that the first three computations in Subroutine 4.3.27 are in-

terval computations performed using interval analysis.

Theorem 4.3.29. Let x0,c,x0,C : P → Rnx be defined as x0,c(p) = xL and x0,C(p) =

xU for every p ∈ P . Let σ0,c
x ,σ0,C

x : P → Rnp×nx be defined as

σ0,c
x (p),σ0,C

x (p) = 0 for every p ∈ P . Let uB,oB be composite relaxations of B on

X × . . .×X × P and ūψ, ōψ be composite relaxations of ψ on X ×M ×X × P . Let

SuB ,SoB be composite subgradients of uB,oB, respectively. Then, for any choice of

109



{p̄k}, and {λk} with p̄k ∈ P and λk ∈ [0, 1] for k ∈ N, the elements of the sequences

{xk,c} and {xk,C} defined by the iteration:

(c,C,σc,σC) := Aff(xk,c(p̄k),xk,C(p̄k),σk,cx (p̄k),σk,Cx (p̄k), λk, X, P, p̄k)

xk,a(p) := c+ (σc)
T(p− p̄k), ∀p ∈ P

xk,A(p) := C+ (σC)
T(p− p̄k), ∀p ∈ P

zk(· ) := λkxk,a(· ) + (1− λk)xk,A(· )

σkz := λkσc + (1− λk)σC

Mk,c(· ) := uB(x
k,a(· ),xk,A(· ), . . . ,xk,a(· ),xk,A(· ), · )

Mk,C(· ) := oB(x
k,a(· ),xk,A(· ), . . . ,xk,a(· ),xk,A(· ), · )

σ̂k,cM (· ) := SuB
(
xk,a(· ),xk,A(· ),σc,σC, . . . ,x

k,a(· ),xk,A(· ),σc,σC, ·
)

σ̂k,CM (· ) := SoB
(
xk,a(· ),xk,A(· ),σc,σC, . . . ,x

k,a(· ),xk,A(· ),σc,σC, ·
)

xk+1,c(· ) := ūψ
(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
xk+1,C(· ) := ōψ

(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
σk+1,c

x (· ) := Sūψ
(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

σk+1,C
x (· ) := Sōψ

(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

are convex and concave relaxations of x on P , respectively.

Proof. By definition, x0,c and x0,C are, respectively, convex and concave relaxations of

x on P . Similarly, σ0,c
x and σ0,C

x are subgradients of x0,c and x0,C on P , respectively.

Suppose this holds for arbitrary k ∈ N. Then xk,c and xk,C are, respectively, convex

and concave relaxations of x on P and σk,cx and σk,Cx are subgradients on P . Then it

follows from the definition of Subroutine 4.3.27 that xk,a and xk,A are affine relaxations

of x on P . Furthermore, zk is affine and maps into X by Lemma 4.3.26. From the

definition of zk, it is clear that xk,a(p) ≤ zk(p) ≤ xk,A(p), ∀p ∈ P , which implies that

110



Mk,c and Mk,C are relaxations of M on P by Lemma 4.3.17. Moreover, σc and σC

are subgradients of xk,a and xk,A, respectively, so that σ̂k,cM and σ̂k,CM are subgradients

of Mk,c and Mk,C on P , respectively, by Definition 4.2.15. By Theorem 4.3.19,

xk+1,c(· ) := ūψ
(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
xk+1,C(· ) := ōψ

(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
are relaxations of x on P and by Definition 4.3.3 and Theorem 4.3.20

σk+1,c
x (· ) := Sūψ

(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

σk+1,C
x (· ) := Sōψ

(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

are subgradients of xk+1,c and xk+1,C , respectively. Induction completes the proof.

Therefore, the iterations outlined in the above theorem can be regarded as methods

for potentially refining the calculated bounds on x or any other initial convex and

concave bounds on x. However, the above theorem does not guarantee that the

calculated convex and concave relaxations will in fact always be improvements on the

initial bounds. Nevertheless, the theorem is important because it does offer a way

to calculate relaxations that are no worse than the original bounds and potentially

tighter, unlike the situation discussed in Theorem 4.3.8. To illustrate relaxations

constructed using this result, the following simple example is given.

Example 4.3.30. Consider the system h(z, p) = z2 + pz + 4 with p ∈ P = [6, 9].

The two real roots are given by the quadratic formula. Using the parametric interval-

Newton method [56, 101], two conservative intervals, X1 = [−0.78,−0.4] and X2 =

[−10.0,−5.0], were calculated that are guaranteed to each contain a unique solution

x(p) such that h(x(p), p) = 0, ∀p ∈ P . Three different z functions were used, each

corresponding to a different λk = λ value, and convex and concave relaxations of x(p)

111



 

(a) (b)

-10

-9

-8

-7

-6

-5

 6  6.5  7  7.5  8  8.5  9
p

 

( )x p
0.75λ =

0.50λ =

0.25λ =

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

 6  6.5  7  7.5  8  8.5  9
p

( )x p
0.75λ =

0.50λ =

0.25λ =

Figure 4-1: Relaxations of the solution in (a) X1 and (b) X2 for the relaxations of
implicit functions simple example.

were constructed. For each λ, p̄k = p̄ was chosen to be the midpoint of P . Figure

4-1 shows the relaxations for the two solutions corresponding to each λ value after

applying two iterations of the procedure, after which, no significant refinements could

be made.

Another method for refining the bounds of an implicit function through Mc-

Cormick relaxations can be derived from Theorem 4.3.22. The following method

is the analog to the Krawczyk interval method for bounding solutions of nonlinear

systems.

Theorem 4.3.31. Let x0,c,x0,C : P → Rnx be defined as x0,c(p) = xL and x0,C(p) =

xU for every p ∈ P . Let σ0,c
x ,σ0,C

x : P → Rnp×nx be defined as σ0,c
x (p) = σ0,C

x (p) = 0

for every p ∈ P . Let uB,oB be composite relaxations of B on X × . . .×X × P and

ūχ, ōχ be composite relaxations of χ on X ×M ×X × P . Let SuB ,SoB be composite

subgradients of uB,oB, respectively. Then, for any choice of {p̄k}, and {λk} with

p̄k ∈ P and λk ∈ [0, 1] for k ∈ N, the elements of the sequences {xk,c} and {xk,C}

112



defined by the iteration:

(c,C,σc,σC) := Aff(xk,c(p̄k),xk,C(p̄k),σk,cx (p̄k),σk,Cx (p̄k), λk, X, P, p̄k)

xk,a(p) := c+ (σc)
T(p− p̄k), ∀p ∈ P

xk,A(p) := C+ (σC)
T(p− p̄k), ∀p ∈ P

zk(· ) := λkxk,a(· ) + (1− λk)xk,A(· )

σkz := λkσc + (1− λk)σC

Mk,c(· ) := uB(x
k,a(· ),xk,A(· ), . . . ,xk,a(· ),xk,A(· ), · )

Mk,C(· ) := oB(x
k,a(· ),xk,A(· ), . . . ,xk,a(· ),xk,A(· ), · )

σ̂k,cM (· ) := SuB
(
xk,a(· ),xk,A(· ),σc,σC, . . . ,x

k,a(· ),xk,A(· ),σc,σC, ·
)

σ̂k,CM (· ) := SoB
(
xk,a(· ),xk,A(· ),σc,σC, . . . ,x

k,a(· ),xk,A(· ),σc,σC, ·
)

xk+1,c(· ) := ūχ
(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
xk+1,C(· ) := ōχ

(
zk(· ), zk(· ),Mk,c(· ),Mk,C(· ),xk,c(· ),xk,C(· ), ·

)
σk+1,c

x (· ) := Sūχ
(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

σk+1,C
x (· ) := Sōχ

(
zk(· ), zk(· ),σkz,σkz,Mk,c(· ),Mk,C(· ), σ̂k,cM (· ), σ̂k,CM (· ),

xk,c(· ),xk,C(· ),σk,cx (· ),σk,Cx (· ), ·
)

are convex and concave relaxations of x on P , respectively, for k ∈ N.

Proof. The proof is analogous to the proof of Theorem 4.3.29.

Remark 4.3.32. There are many alternative implementations of the iterations in The-

orems 4.3.29 and 4.3.31. Computationally, evaluating the relaxations constructed

using the iterations in Theorems 4.3.29 and 4.3.31 can only be done at a single p.

In order to accomplish this, relaxations at p̄k must first be computed. Therefore,

one such alternative implementation is to choose a single p̄k = p̄ ∈ P and apply

one of the iterations to get affine relaxation information, and subsequently, use this

information to define the zk function. With this information calculated up front, the

first 9 instructions are no longer dependent on the iteration k.

113



4.4 Global Optimization of Implicit Functions

The continuous Branch-and-Bound (B&B) framework is a popular deterministic al-

gorithm for solving globally nonconvex NLPs as in (4.1). It is discussed in [59, 63]

thoroughly. The B&B algorithm relies on refining bounds on the global optima while

rigorously ruling out potentially large regions of the search space where global op-

tima are guaranteed not to lie, termed fathoming. The algorithm is guaranteed to

terminate in finitely many iterations when ϵ-tolerance has been reached. B&B will

be employed here to solve programs with embedded implicit functions, as in (4.4),

in a similar fashion. In fact, the B&B algorithm will be applied to (4.4) without

modifying any of its underlying features or procedures. Therefore, the only difference

between the B&B algorithm presented here and the B&B algorithm for standard form

global optimization problems, is simply how the functions involved are evaluated and

how their relaxations are calculated. Before presenting the full algorithm, the NLP

subproblems, on which it relies, will be discussed.

4.4.1 Upper-Bounding Problem

Given a subinterval, P l, of the decision space P , define the upper-bounding problem:

min
z∈X,p∈P l

f(z,p) (4.14)

s.t. g(z,p) ≤ 0.

h(z,p) = 0

This problem is solved locally to obtain a local solution (ẑl, p̂l), if one exists. Lastly, a

valid upper bound on the optimal solution value will be defined as fUBDl ≡ f(ẑl, p̂l).

114



4.4.2 Lower-Bounding Problem

Given a subinterval, P l, of the decision space P , define the lower-bounding problem:

fLBDl = min
p∈P l

f c(p) = uf (x
c(p),xC(p),p) (4.15)

s.t. gc(p) = ug(x
c(p),xC(p),p) ≤ 0,

where the composite relaxations uf and ug will be constructed by first using the

procedures outlined in Section 3 for constructing convex and concave relaxations of

the implicit function x on P l and then applying the rules of generalized McCormick

relaxations for composition. The lower-bounding problem (4.15) is convex by con-

struction and is solved to global optimality. Denote the solution found by p̌, if it

exists, and let fLBDl ≡ uf (x
c(p̌),xC(p̌), p̌).

4.4.3 Global Optimization Algorithm

Algorithm 4.1 (Global Optimization of Implicit Functions).

1. (Initialization)

(a) Set Σ = {P}.

(b) Set k := 0, ϵtol > 0, α0 = +∞, β0 = −∞.

2. (Termination)

(a) Check if Σ = ∅. If true, terminate, the instance is infeasible

(b) Check if αk − βk ≤ ϵtol. If true, terminate, f ∗ := αk is an ϵtol-optimal

estimate for the optimal objective function value and p∗ is a feasible point

at which f ∗ is attained.

(c) Delete from Σ all nodes P l with fLBDl ≥ αk and set βk := min
P l∈Σ

fLBDl .

3. (Node Selection)

(a) Pop and delete a node P l from stack Σ such that βk = fLBDl .

115



4. (Lower-Bounding Procedure)

(a) Solve convex lower-bounding problem (4.15) globally on P l.

(b) If no feasible solution exists, set fLBDl := +∞, otherwise set fLBDl :=

uf (x
c(p̌),xC(p̌), p̌) . If a feasible solution is found that is feasible in (4.4)

and f(x(p̌), p̌) < αk, set αk := f(x(p̌), p̌), and p∗ := p̌.

5. (Upper-Bounding Procedure (optional))

(a) Solve the NLP subproblem (4.14) locally on P l.

(b) If a feasible solution is found and fUBDl < αk, set αk := fUBDl , p∗ := p̂.

6. (Fathoming)

(a) Check if fLBDl = +∞ or fLBDl ≥ αk. If true, go to 2.

7. (Branching)

(a) Find j ∈ arg max
i=1,...,np

w(P l
i ) and create two new nodes P l′ and P l′′ by bisect-

ing P l
j .

(b) Set fLBDl′ , fLBDl′′ := fLBDl and push the new nodes onto top of stack Σ.

(c) Set k := k + 1, go to 2.

4.4.4 Finite Convergence

Guaranteed finite ϵtol-optimal convergence of Algorithm 4.1 is established in this

section.

Definition 4.4.1 (X). Let X : IP → IRnx be a continuous, interval-valued function

which is both an interval extension and inclusion function of x on P such that for

each p ∈ P , x(p) is the unique solution of h(x(p),p) = 0 in X(P ).

It is assumed that such a function X is readily available by some procedure, such

as the parametric extension of interval-Newton methods discussed in [56, 101] or the

parameterized generalized bisection procedure discussed in Chapter 3.

116



Assumption 4.4.2. For Z ≡ X(P ), there exist continuous functions F : IZ × IP →

IR and G : IZ×IP → IRng such that F is both an interval extension and an inclusion

function of f on Z ×P and G is both an interval extension and an inclusion function

of g on Z × P .

For f and g factorable and continuous on open sets containing Z × P , F and G

are calculable by taking natural interval extensions [92, 101].

Lemma 4.4.3. Consider a nested sequence of intervals {P q} (i.e. Pm ⊂ P q, ∀m >

q), P q ⊂ P, q ∈ N, such that {P q} → [p̄, p̄] for some p̄ ∈ P . Let xcq,x
C
q be

relaxations of x on P q. Let f cq (· ) = uqf (x
c
q(· ),xCq (· ), · ) be a convex relaxation of the

objective function f on P q. Let f̂ cq = min
p∈P q

f cq (p). Then lim
q→∞

f̂ cq = f(x(p̄), p̄).

Proof. From continuity of X on IP , it is clear that lim
q→∞

X(P q) = X([p̄, p̄]) and since

X is an interval extension of x, X([p̄, p̄]) = [x(p̄),x(p̄)]. Let F q be an interval

function satisfying Assumption 4.4.2 on IX(P q) × IP q. Then, by continuity of F ,

we have lim
q→∞

F q(X(P q), P q) = F ([x(p̄),x(p̄)], [p̄, p̄]) = [f(x(p̄), p̄), f(x(p̄), p̄)] =

f(x(p̄), p̄). By construction, f̂ cq (p) ∈ F q(X(P q), P q), ∀p ∈ P q for every q, and

therefore it follows lim
q→∞

f̂ cq = f(x(p̄), p̄).

Lemma 4.4.4. Suppose Algorithm 4.1 generates an infinite sequence of nested nodes

{P q}, then lim
q→∞

P q = [p̄, p̄].

Proof. Each node P q is a subinterval partition of P that is an np-dimensional rectan-

gle. The branching rule is a bisection along one of the longest edges of the currently

selected node P q. This result follows analogously from Proposition IV.2 in [63].

Lemma 4.4.5. Suppose Algorithm 4.1 generates an infinite sequence of nested nodes

{P q}, then {P q} → [p̄, p̄] and p̄ is feasible in (4.4).

Proof. By Lemma 4.4.4, if Algorithm 4.1 generates an infinite sequence of nested

nodes {P q}, then {P q} → [p̄, p̄]. Suppose p̄ is infeasible in the original problem,

i.e. gi(x(p̄), p̄) > 0 for some i = 1, 2, . . . , ng. Let gc(· ) = ug(x
c(· ),xC(· ), · ). By

continuity of g, there exists an open ball, of radius δ > 0, around p̄, labeled Bδ(p̄),

117



such that p̂ ∈ Bδ(p̄) ⇒ gi(x(p̂), p̂) > 0 for some i = 1, 2, . . . , ng. This implies

that for some finite q′, P q′ ⊂ Bδ(p̄). Therefore, there exists a q′′ > q′ such that for

some i = 1, 2, . . . , ng, we have gci (p) > 0, ∀p ∈ P q′′ , where continuity of gci (and

xc,xC) on P follows from the definition of composite relaxations (Def. 4.2.9) and

the properties of generalized McCormick relaxations [128]. Thus, the convex lower

bounding problem (4.15) is infeasible for all q > q′′. Finally, the node containing p̄

would be fathomed no later than at node q′′ + 1. Therefore, Algorithm 4.1 cannot

generate an infinite sequence of nested nodes that converge to an infeasible point.

Lemma 4.4.6. Suppose an infinite sequence of nested nodes, {P q}, is generated by

Algorithm 4.1. Let f cq (· ) = uqf (x
c
q(· ),xCq (· ), · ) and gcq(· ) = ug

q(xcq(· ),xCq (· ), · ) be

convex relaxations of f and g on P q, respectively. Let f ∗,c
q = min

p∈P q
f cq (p) : g

c
q(p) ≤ 0.

Then {P q} → [p̄, p̄] and lim
q→∞

f ∗,c
q = f(x(p̄), p̄).

Proof. By Lemma 4.4.5, {P q} → [p̄, p̄], with p̄ ∈ P feasible. Let f̂ cq = min
p∈P q

f cq (p).

Since f̂ cq is the solution of the convex unconstrained problem, it is clear that f̂ cq ≤

f ∗,c
q . Since f∗,c

q is a rigorous lower bound of f(x(· ), · ) on P q, we have f̂ cq ≤ f ∗,c
q ≤

f(x(p̄), p̄). Since lim
q→∞

f̂ cq = f(x(p̄), p̄) from Lemma 4.4.3, it is clear that lim
q→∞

f ∗,c
q =

f(x(p̄), p̄).

Lemma 4.4.7. Let f∗ denote the globally optimal objective function value for (4.4).

The sequence of lower bounds generated by Algorithm 4.1 is either finite or satisfies

lim
k→∞

βk = f∗.

Proof. This result follows from Theorem 2.1 in [60] where the hypotheses are guar-

anteed by Lemmas 4.4.4-4.4.6 above.

Lemma 4.4.8. Suppose that an infinite sequence of nested nodes, {P q}, is generated

by Algorithm 4.1. Also, suppose that the upper-bounding problem (4.14) can locate a

feasible point for every q ≥ q′ for some finite q′, and thus a valid upper bound can

be located in every subsequent node. Then, the upper-bounding operation converges to

the global solution of (4.4), i.e. lim
k→∞

αk = f ∗.

118



Proof. From Lemma 4.4.5, if Algorithm 4.1 generates an infinite sequence of nested

nodes, {P q}, then {P q} → [p̄, p̄] and p̄ is feasible. From Lemma 4.4.6, we know

that lim
q→∞

f ∗,c
q (p) = f(x(p̄), p̄). Suppose that p̄ is not a global minimizer. Then

f ∗ < f(x(p̄), p̄) implying that for some q′′ we have f∗,c
q′′ > f ∗. However, using the

bound-improving node selection property of Algorithm 4.1, this node would have

never been selected again for branching. Therefore p̄ must be a global minimizer

p∗ = p̄.

From continuity of f , for some ϵ > 0, there exists an open ball of radius δ > 0

around p∗, Bδ(p
∗), such that p ∈ Bδ(p

∗) ⇒ |f(x(p),p) − f(x(p∗),p∗)| < ϵ, where

continuity of x on P follows from continuous differentiability of h and the implicit

function theorem.

By hypothesis, after some finite q′, a feasible point p̂ ∈ P q can be found that

provides a valid upper bound fUBDq . By the bound-improving property, if fUBDq is

lower than the current upper bound αk, then αk := fUBDq . For q large enough, a

feasible point p will be located such that p ∈ Bδ(p
∗). By continuity of f , we have

|f(x(p),p)−f(x(p∗),p∗)| < ϵ⇒ |fUBDq −f(x(p∗),p∗)| < ϵ⇒ fUBDq < f(x(p∗),p∗)+

ϵ. Since f(x(p∗),p∗) ≤ αk ≤ fUBDq , we have f(x(p∗),p∗) ≤ αk < f(x(p∗),p∗) + ϵ.

Thus lim
k→∞

αk = f(x(p∗),p∗) = f ∗.

Theorem 4.4.9 (Finite Convergence). After finitely many iterations, Algorithm 4.1

terminates with either ϵ-optimal global solutions, such that αk − βk ≤ ϵtol, or a guar-

antee that the problem is infeasible.

Proof. Follows immediately from Lemma 4.4.7 and Lemma 4.4.8 and the deletion by

infeasibility rule.

4.5 Illustrative Examples

For the following illustrative examples, Algorithm 4.1 was implemented in C++. The

hierarchy of the information flow for the implementation is shown in Figure 4-2. The

convex lower-bounding problems were solved using PBUN, a nonsmooth optimization

119



Main B &B Routine

Lower Bound Upper Bound

Convex/Concave Rlxns of
Implicit Functions

PBUN/
PBUNL

Procedure for 
generating X

Figure 4-2: The hierarchy of the flow of information for the implementation of the
global optimization of implicit functions algorithm (Alg. 4.1).

algorithm developed in [83]. If a lower-bounding problem returned a feasible point

p, the model equations were solved at this point using Newton’s method with Gauss-

Seidel and the objective function was evaluated for an upper bound on the solution,

instead of solving (4.14) locally. The methods used for calculating valid X intervals

are discussed briefly for each example.

Example 4.5.1. Let Z ∈ IR3 and P ∈ IR3. Consider the objective function f :

Z × P → R defined as

f(z,p) =

3∑
j=1

(
[aj(pj − cj)]2 +

∑
i̸=j

ai(pi − ci)− 5

(
(j − 1)(j − 2)(z2 − z1) +

3∑
i=1

(−1)i+1zi

))2

(4.16)

with ai, ci constants for i = 1, 2, 3, given in Table 4.5.1.

120



Example 1 Constants
a1 37.3692
c1 0.602
a2 18.5805
c2 1.211
a3 6.25
c3 3.60

Table 4.1: Constants for the objective function for the global optimization of implicit
functions example.

Consider the equality constraints

h(z,p) =


1.00× 10−9(exp[38z1]− 1) + p1z1 − 1.6722z2 + 0.6689z3 − 8.0267

1.98× 10−9(exp[38z2]− 1) + 0.6622z1 + p2z2 + 0.6622z3 + 4.0535

1.00× 10−9(exp[38z3]− 1) + z1 − z2 + p3z3 − 6.0


(4.17)

= 0.

The full-space optimization formulation is

min
(z,p)∈Z×P

f(z,p)

s.t. h(z,p) = 0 (4.18)

Z = [−5, 5]3

P = [0.6020, 0.7358]× [1.2110, 1.4801]× [3.6, 4.4].

The reduced-space, box-constrained, formulation becomes

min
p∈P

f(x(p),p) (4.19)

P = [0.6020, 0.7358]× [1.2110, 1.4801]× [3.6, 4.4]

Using the parametric interval-Newton method with interval Gauss-Seidel, an interval,

121



X, that conservatively bounds the implicit function x on all of P , can be calculated:

X = [0.5180, 0.5847]× [−3.9748,−3.0464]× [0.3296, 0.5827].

It is apparent that X is significantly tighter than Z. For each branch of P popped

off the stack, the interval-Newton method is applied to further refine the interval

X such that Definition 4.4.1 holds. This problem has a suboptimal local minimum

at p = (0.602, 1.46851, 3.6563) with a value of 731.197 and a global minimum at

p∗ = (0.703918, 1.43648, 3.61133) with a value of 626.565. This problem was solved

in 0.4 seconds with Algorithm 4.1 taking 43 iterations with tolerances for convergence

as 10−3 for relative error and absolute error.

For comparison, this problem was modeled in GAMS version 23.9 [116] using the

BARON solver [138] with preprocessing turned off. For a fair comparison, the local

search procedure for obtaining an upper bound was also turned off. Starting with the

variable interval Z, BARON failed to solve the problem noting “No feasible solution

was found.” Using the interval X calculated above, BARON solved the problem and

returned the global solution in 1 second after 810 iterations. Plots of the implicit

objective function f(x(p),p) are shown below in Figure 4-3 for three different values

of p3. Similarly, the implicit objective function and corresponding relaxations are

shown in Figure 4-4 for the same three values of p3.

Example 4.5.2. Consider the reactor-separator-recycle process system shown in Fig-

ure 4-5. The plant is designed to produce 50kmol/h of monochlorobenzene with

an undesired side-reaction producing dichlorobenzene. The reactor is a continuous-

stirred tank reactor (CSTR) and each separator column is designed to perform sharp

splits. As in [25], the optimization variables are the reactor volume and the operating

parameters. The hydrochloric acid (HCl) produced by each reaction is assumed to

be eliminated by a stripping operation whose costs are not taken into account, as

in [73]. For the purposes of this chapter, the operating parameters of interest will

be the reaction rate constants, assuming they can be manipulated by way of reactor

temperature or catalysts etc. Therefore, for this formulation, nx = 11 and np = 3.

122



 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

3
3.6p =

1
p

1
p

1
p

1
p

2
p

2
p

2
p

2
p

3
3.87p =

3
4.13p =

3
4.4p =

Figure 4-3: The objective function of the global optimization of implicit functions
example on P1 × P2 at three different p3 values.

The state vector z was taken as

z = (F1, F2, F3, y3,A, y3,B, y3,C , F4, y4,B, y4,C , F6, F7)

and the initial intervals are given in Table 4.2.

For this problem, it was not enough to use the parametric interval-Newton method

with interval Gauss-Seidel from Chapter 3 alone. In order to produce the required

interval X that satisfies Definition 4.4.1, at each partition of P popped off of the

stack, forward-backward constraint propagation3 [66, 125] is first applied. Second, the

linear-programming contractor method [6, 24, 66] was applied. Finally, parametric

interval-Newton with interval Gauss-Seidel was applied in an attempt to further refine

the interval.

3Forward-backward constraint propagation will be discussed in more detail in Chapter 8.

123



 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0.62 0.64 0.66  0.68  0.7  0.72

 1.25
 1.3

 1.35
 1.4

 1.45

 500

 1000

 1500

 2000

 2500

 3000

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 3800

 4000

 0.62 0.64 0.66 0.68  0.7  0.72

 1.25
 1.3
 1.35

 1.4
 1.45

3
3.6p =

1
p

1
p

1
p

1
p

2
p

2
p

2
p

2
p

3
3.87p =

3
4.13p =

3
4.4p =

Figure 4-4: The objective function of the global optimization of implicit functions
example on P1×P2 at three different p3 values and corresponding convex and concave
relaxations.

The model equations are as follows. The mixer model equation is

0 = F1 + F7 − F2 (4.20)

where Fj represent the total molar flowrate (in kmol/h) of stream j. The reactor

model equations are given by

0 = F2 − y3,AF3 − vr1 (A balance on reactor) (4.21)

0 = v(r1 − r2)− F5 (B balance on reactor) (4.22)

0 = vr2 − y3,CF3 (C balance on reactor) (4.23)

0 = 1− y3,A − y3,B − y3,C (4.24)

with v as the reactor volume in m3 and the reaction rates r1 and r2 (in kmol/(m3h))

124



Mixer

A

---

B

C

B

---

C

Feed

v 33 3, , 3,
, , ,A B CF y y y

5
F

6
F

,4 4 4,
,, B CyF y

7
F

1
F

2
F

1

2

6 6 2 6 5

6 5 2 6 4 2

k

k

H

H Cl

C H

Cl

Cl C Cl HC

H C

l

C C HCll

+ → +

→ ++

Figure 4-5: The process flow diagram for the reactor-separator-recycle process sys-
tem for producing monochlorobenzene. Note that HCl is eliminated by a stripping
operation not shown. A=benzene, B=monochlorobenzene, C=dichlorobenzene.

F1 ∈ [50, 150] F4 ∈ [50, 60]
F2 ∈ [100, 300] y4,B ∈ [0.142857, 1]
F3 ∈ [100, 300] y4,C ∈ [0.142857× 10−3, 1]
y3,A ∈ [0.5, 0.9] F6 ∈ [0, 10]
y3,B ∈ [0.1, 0.5] F7 ∈ [40, 250]
y3,C ∈ 0.001, 0.2

Table 4.2: The initial intervals for the reactor-separator-recycle example.

are given by the following expressions

r1 = k1CA =
k1y3,A

y3,Av̂A + y3,B v̂B + y3,C v̂C
(4.25)

r2 = k2CB =
k2y3,B

y3,Av̂A + y3,B v̂B + y3,C v̂C
(4.26)

where v̂i is the molar volume of species i ∈ {A,B,C} in m3/kmol. The symbols yj,i

represent the mole fraction of species i in stream j. The model equations for the first

125



separator are given by

0 = F3 − F4 − F7 (overall balance on first separator) (4.27)

0 = y3,AF3 − F7 (A balance on first separator) (4.28)

0 = y3,BF3 − y4,BF4 (B balance on first separator). (4.29)

Finally, the model equations for the second separator are given by

0 = F4 − F5 − F6 (overall balance on second separator) (4.30)

0 = y4,BF4 − F5 (B balance on second separator) (4.31)

0 = y4,CF4 − F6 (C balance on second separator). (4.32)

The capital costs of the first and second separators, respectively, are given by

Ccap
1 = 132718 + F3(369y3,A − 1113.9y3,B) (4.33)

Ccap
2 = 25000 + F4(6984.5y4,B − 3869.53y24,C). (4.34)

The capital cost of the reactor is given by

Ccap
CSTR = 25764 + 8178v. (4.35)

The operating cost of the reactor is considered to be negligible and the operating

costs of the first and second separators, respectively, are given by

Cop
1 = F3(3 + 36.11y4,A + 7.71y4,B)(CSteam + CCool) (4.36)

Cop
2 = F4(26.21 + 29.45y4,B)(CSteam + CCool). (4.37)

The economic objective is to minimize the annualized venture cost, given by

Cann =
1

α
(Ccap

1 + Ccap
2 + Ccap

CSTR) + β (Cop
1 + Cop

2 ) , (4.38)

126



Example 4.5.2 Constants
v̂A 8.937× 10−2m3kmol−1

v̂B 1.018× 10−1m3kmol−1

v̂C 1.130× 10−1m3kmol−1

α 2.5 yr
β 0.52

CSteam $21.67× 10−3kJ−1yr−1

CCool $4.65× 10−3kJ−1yr−1

Table 4.3: The constants for the reactor-separator-recycle model (Ex. 4.5.2).

where α is the payout time and β is the tax rate. The constants for this example are

given in Table 4.3.

The reactor volume was considered as v ∈ [14, 24]m3 and the reaction rate con-

stants were considered as k1 ∈ [0.405, 0.415]h−1 and k2 ∈ [0.0545, 0.0555]h−1. Al-

gorithm 4.1 solved the problem with an optimal objective of $289, 780yr−1 with

v = 21.68m3, k1 = 0.415h−1, k2 = 0.0545h−1 taking 148 seconds and 1209 itera-

tions with convergence tolerances of 10−2 and 10−3 for absolute and relative error,

respectively.

Again, for comparison, this example was modeled in GAMS version 23.9 [116]

using the BARON solver [138] with preprocessing turned off. Similar to the previous

example, the local search procedure for obtaining an upper bounds was also turned

off. Exploiting all of the other features of the program, the model was solved in an

impressive time of 0.4 seconds. It was identified that the algorithm relied heavily

on certain bounds-tightening strategies for convergence. For instance, if either the

nonlinear-feasibility-based range reduction option or the linear-feasibility-based range

reduction option were turned off, the algorithm failed to converge. This indicates

that these range-reduction strategies play a pivotal role in the convergence of the

BARON solver. Similarly, if the LP-contractor strategy, employed here for generating

a suitable X box satisfying Definition 4.4.1, was switched off, Algorithm 4.1 fails to

converge since no such X satisfying Definition 4.4.1 can be calculated.

Example 4.5.3. Consider the parameter estimation example presented in [88] which

was adapted from [130]. This problem attempts to determine whether or not a pro-

127



posed kinetic mechanism sufficiently predicts the behavior of a reacting system for

which experimental data is available. The following kinetic mechanism is proposed:

Z + Y
k1−→ A, A+O2

k2f←→
k2f/K2

D

A+O2

k3f←→
k3f/K2

B, B
k4−→M +N

2A
k5−→ P

which is modeled as a system of nonlinear ODEs:

dcA
dt

= k1cZcY − cO2(k2f + k3f )cA +
k2f
K2

cD +
k3f
K3

cB − k5c2A
dcB
dt

= k3fcO2cA −
(
k3f
K3

+ k4

)
cB,

dcD
dt

= k2fcAcO2 −
k2f
K2

cD (4.39)

dcY
dt

= −k1scY cZ ,
dcZ
dt

= −k1cY cZ

cA(t = 0) = 0, cB(t = 0) = 0, cD(t = 0) = 0, cY (t = 0) = 0.4, cZ(t = 0) = 140

where cj is the concentration (in appropriate units) of species j, T = 273, K2 =

46 exp[6500/T − 18], K3 = 2K2, k1 = 53, k1s = k1× 10−6, k5 = 1.2× 10−3, and cO2 =

2×10−2. The uncertain model parameters are p = (k2f , k3f , k4) with k2f ∈ [10, 1200],

k3f ∈ [10, 1200], and k4 ∈ [0.001, 40]. Each experimental measurement is given in

the form of Id = cA + 2
21
cB + 2

21
cD. The same data used in [88] is used here and

can be found in Appendix C or downloaded from http://yoric.mit.edu/libMC/

libmckinexdata.txt.

Using the implicit-Euler discretization scheme, the time domain is discretized

into n = 200 evenly-spaced nodes and the solution of the ODE system (4.39) can be

approximated, with reasonable accuracy, as the solution of a corresponding nonlinear

algebraic system with 5n state variables and 3 parameters. The method of [88] was not

applicable to this implicit scheme and so in [88] the method was demonstrated using

the explicit-Euler discretization scheme. As an aside, approximating the solution of

an ODE system using the explicit Euler numerical integration method may suffer

128



from numerical instabilities when the problem is stiff (i.e., when the solution exhibits

fast transient behavior) whereas the implicit technique, albeit more computationally

expensive per time step, is unconditionally stable and can therefore handle much

larger time steps than the explicit approach. The ODE (4.39) is considered to be

moderately stiff and so either approach may work well. For i = 1, . . . , n, the resulting

nonlinear algebraic system is

0 = ci−1
A − ciA +∆t

(
k1c

i
Y c

i
Z − cO2(k2f + k3f )c

i
A +

k2f
K2

ciD +
k3f
K3

ciB − k5ciA
2
)

0 = ci−1
B − ciB +∆t

(
k3fcO2c

i
A −

(
k3f
K3

+ k4

)
ciB

)
0 = ci−1

D − ciD +∆t

(
k2fc

i
AcO2 −

k2f
K2

ciD

)
(4.40)

0 = ci−1
Y − ciY +∆t

(
−k1sciY ciZ

)
0 = ci−1

Z − ciZ +∆t
(
−k1ciY ciZ

)
where, for n = 200, ∆t = 0.01. The resulting explicit NLP formulation therefore has

5n+ 3 variables with

z = (c1A, c
1
B, c

1
D, c

1
Y , c

1
Z , . . . , . . . , . . . , . . . , . . . , c

200
A , c200B , c200D , c200Y , c200Z ).

By solving the system for the state variables as implicit functions of the parameters,

the resulting implicit NLP formulation has just 3 independent variables. This can be

done using two different techniques. The first, which is not recommended, is to treat

the nonlinear system of equations as fully coupled and essentially solve for the state

variables simultaneously. Thus, in order to construct relaxations of implicit functions,

using this technique would require relaxing 1000 implicit functions simultaneously.

The second technique, which is how numerical integration is typically performed,

exploits the block structure of the problem.

Taking a look at the sparsity pattern of the system, a portion of which is shown

in Figure 4-6, it is easy to notice that each equation at node i is only dependent on

the variables at node i and the variables at node i − 1. Therefore, if the variables

129



{ { {1i − i 1i +

Figure 4-6: (Left) The sparsity pattern of the system with n = 7 discretization.
Each 5× 5 block is highlighted to show how the system can be solved in a sequential
block-by-block fashion. (Right) An expanded view of three time steps showing how
information from the previous node is used to solve the 5× 5 system associated with
the current node.

at node i− 1 are known, node i can be solved as a system of 5 nonlinear equations.

Since node 0 is specified by the initial conditions, this technique can be applied

sequentially from node 1 to node 200. Again, this is how the implicit Euler numerical

integration method is applied. Constructing relaxations is then done in an analogous

fashion. Relaxations are constructed for each system of 5 equations using the method

of Section 4.3.4 and subsequently used in the construction of relaxations of each

system associated with the next node with the relaxations of node 0 taken to be

exactly the initial conditions for all p ∈ P (since they are constant on P ). The initial

intervals are taken as cij ∈ [0, 140], j ̸= Y, ∀i and ciY ∈ [0, 0.4], ∀i. This approach

is recommended over the simultaneous approach as it is not only significantly less

computationally expensive, but it also produces much tighter relaxations.

The objective function for this problem is stated as

f(z,p) =
n∑
i=1

(
I i − I id

)2
where I i = ciA + 2

21
ciB + 2

21
ciD, i = 1, . . . , n, with ciA, c

i
B, c

i
D, i = 1, . . . , n, given by

130



k2f k3f k4 f∗ × 10−4

235.04 1048.8 0.33151 1.7066726
350.72 931.25 0.38279 1.7056881
678.53 596.96 0.82748 1.7024373
765.26 450.21 12.414 1.6807190
355.02 926.55 11.766 1.7056560
740.18 523.81 13.717 1.6993238
735.88 528.60 13.993 1.6995289
627.16 552.87 12.187 1.7051711
775.44 437.23 17.576 1.6802801

Table 4.4: Suboptimal local minima of Example 4.5.3 (using the sequential block
solve technique) found using the multi-start SQP approach.

the solution of the nonlinear system (4.40) and I id, i = 1, . . . , n, are the experimental

data mentioned previously, found in Appendix C.

In an effort to survey the topological features of the objective function for this

problem, multistart optimization techniques were employed. The explicit (full space)

NLP formulation (i.e., with 1003 variables and 1000 equality constraints) was solved

by multi-starting the MINOS solver [97] in GAMS version 23.9 [116]. Only one opti-

mum was found and it happened to correspond with the global solution. Alternatively,

the implicit NLP formulation, where the implicit functions are evaluated using the

second technique described above (i.e., sequential block solution), was then solved by

multi-starting the MATLAB SQP solver. In this case, eight suboptimal local min-

ima were found along with the global minimum. The suboptimal local minima that

were found are reported in Table 4.4. This is a rather interesting result because it

means that, for this problem, the reduced-space formulation has many suboptimal

local minima, whereas the full-space formulation may not have any. This is consistent

with what was found in the Methanol-to-Hydrocarbons Example in [39] and is not a

result that holds in general.

The reduced-space NLP was solved using Algorithm 4.1 taking 2 × 105 seconds

(55.6h) and 69981 iterations with convergence tolerances of 10−2 and 10−3 for absolute

and relative error, respectively. The optimal parameter values were found, p∗ =

(797.145, 423.545, 13.6096) with f ∗ = 16796, and the “best fit” corresponding to the

131



0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

 

 

Data

Best fit

t

I

Figure 4-7: The optimal “best fit” of the model plotted against the experimental
data.

optimal solution p∗ was plotted against the experimental data in Figure 4-7. As

was concluded in [88], the model with the best fit parameters does not agree with

experimental data at early times. Since a certificate of global optimality was obtained,

one can conclude that the model cannot represent the physical system at early times.

For comparison, the full-space NLP was modeled in GAMS 23.9 [116] using

BARON [138] with preprocessing turned off. Both a selective-branching strategy

and the standard strategy of branching on all variables were studied. Using MINOS

as the local-search algorithm for solving the upper-bounding problem, BARON con-

verged to the solution found using the multi-start approach discussed above within

just a few seconds, for each branching strategy. However, using SNOPT [48] as the

local-search algorithm for solving the upper-bounding problem, BARON converged

to a suboptimal solution in just a few seconds for each branching strategy. It should

be noted that in each case, BARON terminates normally claiming that it found a

solution with a guarantee of global optimality. The behavior of BARON here is not

fully understood and so it is considered to be ineffective at solving this problem.

Alternatively, each strategy was solved without using local-search algorithms for the

132



0.5 1 1.5 2 2.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

510×(sec.)t

BARON, Selective Branching
Global Op. Implicit Func.

/
L
B
D
U
B
D

10
1

10
2

10
3

10
4

10
50.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4-8: The performance of three methods on the kinetic mechanism example in
terms of convergence.

upper-bounding problems. When considering the strategy of branching on all of the

variables, BARON fails to solve the problem. For this case, the algorithm terminates

after about 460 seconds with the result that no feasible solution could be found.

Again, this is a very strange result since the problem is indeed feasible. Figure 4-8 is

a plot showing the performance, in terms of the ratio of the lower and upper bounds

versus CPU time in seconds, of Algorithm 4.1 versus BARON with selective branch-

ing and without a local-solve upper-bounding procedure. After about 30 seconds,

Algorithm 4.1 improves on the bounds quite effectively, even without a local-search

upper-bounding procedure. It takes BARON about 50000 seconds to achieve the same

level of convergence as Algorithm 4.1 achieves after the 30 second mark. After about

1000 seconds, Algorithm 4.1 begins to exhibit slow but consistent improvement on

the bounds until it converges. This is likely due to the node clustering problem and

is the topic of future research. It takes 2× 105 seconds for Algorithm 4.1 to converge

to the global solution whereas BARON is about 96.5% converged at this time. The

BARON selective branching strategy fails to converge even after more than 70 hours

when the maximum number of iterations of 100000 is reached. At this time BARON

133



is only 97% converged. It is clear that for this problem, Algorithm 4.1 performs more

favorably than BARON.

4.6 Concluding Remarks

In this chapter, a reformulation of the standard NLP with equality constraints has

been proposed that is an equivalent formulation offering a potentially large reduction

in dimensionality. This approach is similar to that taken in Chapter 2 for eliminat-

ing the equality constraints and formulating the SIP (2.5) with implicit functions

embedded. By solving the quality constraints for the dependent variables as im-

plicit functions of the independent variables, they are eliminated from the program

and the implicit functions are embedded within the objective function and inequality

constraint(s). In order to solve the reduced-space problem, new results for relax-

ing implicit functions were developed. In particular, the calculations of convex and

concave relaxations, and subgradients, of implicit functions were developed.

One new result was presented that guarantees that relaxations of a successive-

substitution iteration are also valid relaxations of the implicit function. Another

key result pertaining to solutions of parametric linear systems was presented. This

result states that relaxations of the solution of a parametric linear system can be

calculated iteratively in a fashion analogous to the Gauss-Seidel method. It was

demonstrated that relaxations of the generic Newton-type iteration cannot be re-

finements of the original bounds on the implicit function. This proves that direct

relaxations of Newton-type iterations are not useful, but relaxations of convergent

successive-substitution iterations may be useful. Because of this, new methods, anal-

ogous to interval Newton-type methods, were developed that essentially relax the

implicit functions by relaxing the mean-value theorem. These novel developments

offer ways to calculate relaxations of an implicit function that is a parametric solu-

tion of a general nonlinear system of equations that cannot be approximated via a

successive-substitution iteration. Furthermore, subgradients of such relaxations can

be calculated, which are useful in the solution of the resulting nonsmooth convex

134



program.

Utilizing these new results, a reduced-space global optimization algorithm was

proposed for solving nonconvex NLPs with embedded implicit functions. The algo-

rithm was shown to converge in finitely many iterations to an ϵ-optimal solution. The

algorithm was applied to three instructive numerical examples which demonstrate its

applicability. Together with the developments in Chapter 3, these developments suc-

cessfully accomplish objectives (1) and (2) listed at the end of Chapter 2. In the

next chapter, these developments will be applied to global optimization problems

constrained by large sparse (parametric linear) systems. In Chapter 7, these devel-

opments will be applied to solve implicit SIPs.

135



136



Chapter 5

Global Optimization of Large

Sparse Systems

Similar to the previous chapter, this chapter will focus on solving global optimization

problems of the form:

min
z∈X,p∈P

f(z,p)

s.t. g(z,p) ≤ 0 (5.1)

h(z,p) = 0.

However, now the model h is considered to be specifically of the form of a parametric

linear system:

h(z,p) = A(p)z− b(p) = 0⇒ A(p)z = b(p),

where A : P → Da and b : P → Db, where A is large and sparse1 and the sets Da

and Db are defined as in Chapter 4. For consistency with that chapter, the solution

of the parametric linear system will be denoted as the implicit function δ : P → Rnx .

Parametric linear systems arise in a number of modeling problems. In particular,

they commonly arise from the discretization of a time-independent partial differential

1Here, large and sparse matrices will be considered to have > 102 elements which are mostly
zeros.

137



( )a ( )b

Figure 5-1: (a) A plate reactor for the production of fine chemicals. (b) A plug-flow
reactor with injection needle. (Photo credit: Comsol)

equation (PDE)—or a system of PDEs—which is a popular method for approximating

their solutions.2 PDEs are encountered frequently when modeling complex systems

from first principles and theory.3 An example of such a problem is the optimal de-

sign of a chemical reactor whose model involves the steady-state species conservation

equations (under appropriate assumptions):

v·∇Ci −Di∇2Ci −RV i = 0, i = 1, 2, . . . , n, (5.2)

where v is the velocity of the medium, Ci is the concentration of species i in the

medium, Di is the diffusivity of species i in the medium, and RV i is the molar rate

of formation of species i per unit volume. The solution of two discretized models of

chemical reactors are shown in Figure 5-1, both of which exhibit complex flow and

heat transfer characteristics. There are many other applications of these types of

problems that range from oncology [1, 124] to computational fluid dynamics (CFD)

[65, 123, 144] to finance [20, 35, 36], among others.

In essence, this chapter will demonstrate the application of the algorithm devel-

oped in Chapter 4 using the relaxation technique of Section 4.3.3. As noted previously,

the results in [88] laid the foundations for global optimization of implicit functions

2In other words, approximate solutions of PDEs can be obtained by applying discretization and
finite differencing to formulate a parametric linear system and solving it.

3As opposed to phenomenological models.

138



which can be evaluated by an algorithm with a fixed number of iterations known a

priori. The main contribution of this chapter is the discussion behind the implemen-

tation of the algorithm and some numerical analysis and comparison with the method

of [88].

5.1 Computational Efficiency

One point that was emphasized in the previous chapter was that the solution time

of deterministic global optimization algorithms, in the worst case, scales exponen-

tially with the number of optimization variables. Therefore, the computational effi-

ciency of all internal routines and algorithms—such as the upper- and lower-bounding

procedures—is of great importance in order to minimize computational effort. In the

case of global optimization of implicit functions, this means that the procedures for

bounding and evaluating implicit functions must be highly optimized.4

5.1.1 Matrix Storage

Since the matrix A has nx × nx elements, in order to store it on a computer, an

array with size n2
x must be allocated, which may be prohibitively large. Similarly,

simply accessing the data in this array may be a computational bottleneck since it is

an O(n2
x) operation.

5 However, if A is sparse, most of its elements are zeros. Since

A is also large, this amounts to unnecessarily storing a large number of zeros in the

array. By storing only the necessary information of A, a significant reduction in the

number of operations and memory usage can be taken advantage of.

There are a few different methods for storing sparse matrices on a computer. The

main idea is to store every nonzero entry and its position. The simplest method

for doing this—and the one employed later in this chapter—is called the coordinate

format [121], or oftentimes referred to as the standard triple format. The idea here is

4Referring to memory management and minimizing the overall computational cost of the associ-
ated procedures.

5The standard convention for computational complexity is used here meaning that this operation
is proportional to nx squared floating-point operations or FLOPs.

139



to calculate the number (or maximum number) of nonzero entries, denoted nz, and

allocate three arrays of length nz. Two of the arrays will store the row coordinate

and the column coordinate of each nonzero entry, respectively, and the third array

will store each nonzero value at the respective coordinates. For example:
5 0 0 0

0 0 0 0

0 9 0 7

0 0 8 0

⇔


row index (1 3 4 3)

column index (1 2 3 4)

matrix element (5 9 8 7)

This example is not terribly convincing of the benefits of using this sparse storage

format since storing the original matrix requires storing 16 double-precision numbers

while the coordinate storage format requires storing 4 double-precision numbers and

8 integers. However, the benefits of sparse matrix storage are magnified when the size

of the sparse matrix is very large. There are other more clever storage procedures that

reduce the total storage requirement marginally over this method, such as compressed

sparse row, compressed sparse column, linked lists, etc. [34, 121]. It is common that

nz is known precisely, as well as the positions of all the nonzero elements, and so

creating/storing the A matrix is an O(nz) operation that requires two arrays of

nonnegative integers and one of double precision numbers. Similarly, accessing data

from a sparse matrix stored in this format is an O(nz) operation.

5.1.2 Matrix Structure

The types of models that are most often encountered in engineering applications—

which are the focus here—give rise to very large sparse matrices with special structure.

In particular, the matrices that typically arise have a banded structure. Figure 5-2

depicts the concept of a banded matrix and its bandwidth. Exploiting this special

structure can prove to be very advantageous in terms of computational efficiency since

every implicit function evaluation requires the solution of a parametric linear system.

For instance, solving a parametric linear system for only a single parameter value using

140



diagonal

0

0

bandwidth

Figure 5-2: A banded matrix is depicted and its bandwidth is defined.

naive Gauss elimination is an O(n3
x) operation, resulting in very expensive function

evaluations. However, in [7] the author explains that “Gauss elimination for tightly

banded matrices is particularly efficient, because for each row there are at most [the

half-bandwidth] elements below the diagonal that must be eliminated”. Labeling the

half-bandwidth as m, the author then explains that Gaussian elimination is reduced

to an O(m2nx) operation for banded matrices, where m << nx [7]. Therefore, for

small m, Gauss elimination is actually quite efficient. This is just one example but it

motivates the importance of exploiting the structure of A in terms of computational

efficiency.

Using graph theory to represent the structure of a sparse matrix, methods have

been developed for permuting sparse matrices to have special structure, which, in

turn, can be exploited for computational efficiency. For instance, the bandwidth (or

half-bandwidth) is one important feature of banded matrices that may drastically

impact computational efficiency. This fact has sparked a large amount of interest

to research what are called reordering schemes for permuting sparse matrices into

matrices with special structure, such as a banded matrix with the minimum band-

width. There are many other reordering schemes that focus on other features of sparse

matrices to increase computational efficiency. For instance, reordering schemes play

an important role in parallel implementations of solution methods [121] and such

implementations may require special structure other than minimum bandwidth.

141



0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 4501

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

3000

nz = 4501

( )a ( )b

Figure 5-3: (a) The sparsity pattern of a randomly-generated sparse symmetric ma-
trix. (b) The sparsity pattern of the same matrix as (a) after applying the reverse
Cuthill-McKee reordering scheme.

Perhaps the most commonly used reordering scheme for minimizing bandwidth is

the reverse Cuthill-McKee algorithm [34], which is simply the reversed ordering of

what is achieved using the Cuthill-McKee algorithm [32]. In [34], the authors state

that although there have been several other reordering schemes proposed, “they do

not offer any significant advantages”. Figure 5-3 shows just how dramatic an effect

the reverse Cuthill-McKee algorithm may have on the bandwidth of a sparse matrix.

Another important feature of sparse matrices is diagonal dominance.

Definition 5.1.1 (Diagonally Dominant). A matrix A is diagonally dominant if

|aii| ≥
∑
j ̸=i

|aij|, i = 1, 2, . . . , nx,

where aij is the (i, j)th element of A. If the inequality holds strictly, A is said to be

strictly diagonally dominant.

For parametric systems A(p), the above definition must hold for every p ∈ P .

If A is diagonally dominant, a host of theoretical and numerical implications result.

For instance, results regarding the applicability of certain algorithms, stability, con-

vergence properties, etc. [28, 121]. Luckily enough, diagonally dominant matrices are

142



commonly encountered when modeling engineering applications.

5.1.3 Numerical Solution Methods: Direct vs. Iterative

Direct methods refer to a class of numerical methods that are used in an attempt to

solve problems by applying a finite sequence of operations. Not only are direct meth-

ods very robust, but they have the ability to calculate the exact solution of the linear

system if numerical roundoff error can be avoided. An example of a direct method for

solving linear systems is Gauss elimination, mentioned previously. The calculation

of interval bounds and convex/concave relaxations of solutions of parametric linear

systems is straightforward since the rules for their calculation/construction are simply

propagated through the finite sequence of operations in the standard manner.

Alternatively, iterative methods attempt to solve problems by calculating sequences

of approximations of the solution and terminate after meeting some error tolerance

criterion. One advantage of iterative methods is that, in comparison to direct meth-

ods, their computational cost is far lower. Due to computational limitations, iterative

methods are often the only technique applicable to solving large sparse systems. An

example of an iterative method for solving linear systems is Gauss-Seidel. Itera-

tive methods for bounding solutions of parametric linear systems are discussed in

[106, 107, 119]. Similarly, an iterative method for constructing convex/concave relax-

ations of solutions of parametric linear systems was developed in Section 4.3.3.

In Chapter 4, it was discussed that the work in [88] was the first attempt at

global optimization of implicit functions. However, the method of [88] was restricted

to problems in which the implicit functions could be evaluated using direct methods

[88]. Specifically, they present a parameter estimation problem involving the one-

dimensional heat transport model with an affine heat-source term formulated as a

parametric linear system whose A matrix is a tridiagonal banded matrix6 [88]. This

model may be an ideal candidate for direct methods because of its structure.

However, as the model complexity increases and/or includes more than one spatial

6A tridiagonal matrix is a banded matrix with m = 1. Solving tridiagonal systems using Gauss
elimination is an O(nx) operation.

143



dimension, direct methods may not be favored due to their higher storage requirement

and computational cost. This is primarily due to a characteristic of direct methods

known as fill-in. Fill-in is simply when some matrix operation generates and stores

a nonzero element which was formerly a zero and in turn increases the number of

nonzero elements that must be accounted for and operated on. In other words,

nonzero elements fill in the sparse matrix. Reducing fill-in is a primary goal of some

reordering schemes [121].

Fill-in may have a negative impact on more than just storage and computational

efficiency as well. Consider the requirement to bound solutions of parametric linear

systems. If fill-in is significant, this means that there are many more interval opera-

tions required, and therefore there is a large potential for considerable overestimation.

Subsequently, this translates to the construction of convex/concave relaxations; pro-

ducing relaxations that are less tight than if fill-in could be avoided. Alternatively,

fill-in can be avoided entirely by applying an iterative method.

In [31], it is stated that “as the problem size grows, there is a point at which direct

methods become too expensive in terms of computational time and storage.” It is for

this reason, and the others listed above, that iterative methods are favored for global

optimization of large sparse systems.

5.1.4 Preconditioning

As was seen in Chapters 3 and 4, preconditioning matrices7 may play a pivotal role

in the ability to solve parametric systems as well as calculate bounds and construct

relaxations of solutions of parametric systems. As was shown in previous sections,

for a preconditioner Y ∈ Rnx×nx , a preconditioned system takes the form

YA(p)z = Yb(p),

and its solution is the same as the original system. Preconditioning large sparse

systems will be the focus here. For the concerns of this chapter, preconditioning

7Also referred to as preconditioners.

144



offers a way to manipulate and scale large sparse systems to have special structure

and theoretical properties that are ideal for iterative solvers. Consequently, precondi-

tioning matrices potentially accelerate iterative methods and guarantee convergence

properties of iterative methods for solving linear systems.

In Chapter 3, the preconditioner used is equivalent to the inverse of A(p̂) with

p̂ = mid(P ), for a given P . The problem with using this preconditioner for large

sparse systems is that it is computationally expensive in multiple ways. For instance,

in general, the inverse of a sparse matrix (if it exists) is not sparse. Furthermore,

the product of a dense matrix and a sparse matrix is not typically sparse. Therefore,

after spending an extraordinarily large amount of computational effort to calculate the

preconditioner, the resulting preconditioned system is large and dense. Therefore, in

this case, the computational cost associated with preconditioning the system is likely

to outweigh the gain in computational efficiency of the iterative method used to solve

the preconditioned system. In [121], it is stated that “finding a good preconditioner

[to solve a specific problem] is often viewed as a combination of art and science.” This

has sparked much interest in finding optimal preconditioners.

Numerous preconditioners—each with their own advantages and disadvantages—

are discussed in [121]. The simplest, and possibly the least expensive, preconditioner

that preserves sparsity and may be quite effective for diagonally dominant systems

is the diagonal preconditioner, or sometimes called the Jacobi preconditioner [121].

This preconditioner is simply the inverse of the diagonal elements of A:

Y(p) =


1/a11(p) 0 · · · · · · 0

0 1/a22(p) 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · 0 1/anxnx(p)

 .

The elements of the resulting preconditioned matrix G(p) = YA(p) are then given

by gij(p) = aij(p)/aii(p). Of course, this requires that aii(p) ̸= 0, ∀p ∈ P . When

applied to a system that will be solved using Gauss-Seidel, it eliminates the need for

the division by the diagonal elements at each iteration. For systems requiring many

145



iterations to converge, this may offer a significant performance benefit. It should be

noted that for parametric linear systems, which are the focus here, it is most beneficial

if the preconditioner is constant, and not a function of p. That way, for every point p

at which the implicit function needs to be calculated, the preconditioner need not be

updated. This is especially important if the preconditioner is expensive to calculate.

5.2 Methods

A few different methods for constructing relaxations of solutions of parametric linear

systems were implemented and studied. As mentioned above, each of these methods

can be categorized as either a direct or iterative approach. Each method is discussed

in this section. For analysis and benchmarking purposes, a general code was writ-

ten that, for a chosen method, constructs relaxations at a predetermined number of

parameter values and clocks the overall computation.

5.2.1 Direct Approach

For comparison with the iterative techniques being considered below, a direct ap-

proach was implemented. This approach is the same as that in [88] implemented

to exploit the banded structure (i.e., it only considers matrix operations within the

bands). In order for this approach to offer a fair comparison with the iterative meth-

ods, the reverse Cuthill-McKee reordering scheme was implemented to permute the

system prior to the application of the method.

5.2.2 Iterative Approach

For comparison purposes, multiple iterative methods for constructing relaxations of

solutions of parametric linear systems were implemented. In particular, the method

discussed in Section 4.3.3 was implemented in multiple ways: one that exploits spar-

sity fully (for non-preconditioned and diagonally preconditioned systems), a non-

preconditioned sparse multiple inclusion implementation, and a dense inverse mid-

146



point preconditioned method. For each of the implementations that exploit sparsity,

the coordinate storage format was used, and all for loops were done over nonzero

elements only.

Non-Preconditioned and Diagonally Preconditioned Implementation

This implementation exploits sparsity fully by only looping over the nonzero elements

of A. Essentially, the method described in Section 4.3.3 constructs relaxations of the

ith component of the implicit function δ by using the information of the ith equation

of the linear system. For instance, relaxing δi amounts to relaxing the expression

from (4.11) which includes two summations over off-diagonal elements of A. Since

the row and column index vectors contain the information for keeping track of the

coordinates of the nonzero elements of A, rather than the summations being over a

total of nx−1 elements, they are only over the half-bandwidth m number of elements

each, in the worst case that the matrix A is dense within its bands. Therefore,

constructing relaxations of δ is an O(nz) operation. Of course, these relaxations

can be iteratively refined and so constructing the tightest possible relaxations of δ

is an O(knz) operation, where k is the number of iterations it takes to refine the

relaxations as much as possible (until they converge). This implementation works

best for the original non-preconditioned system and preconditioned systems where

sparsity is preserved, such as diagonally preconditioned systems.

Multiple Inclusion Implementation

This implementation is similar to the previous one in that it only loops over nonzero

elements. Whereas the previous method considers only constructing relaxations of

δi using information from row i, this method construct relaxations of δj, ∀j = i −

m, . . . , i, . . . i + m using the information from row i corresponding to aij ̸= 0. For

instance, for some row i, relaxations of δj will be calculated by relaxing the right-hand

147



side of

δj(p) =

(
bi(p)−

∑
l<i

ail(p)δl(p)−
∑
l>i

ail(p)δl(p)

)
/aij(p), aij(p) ̸= 0, ∀p ∈ P,

for each j. After looping over all rows, the method then intersects all the relaxations

δj for each j in an attempt to make use of all available information for constructing the

tightest possible relaxations. The benefit of this method is that it is unnecessary to

guarantee that the diagonal elements are nonzero (or do not enclose zero). Therefore

it is unnecessary to precondition on the basis of manipulating A to have nonzero

diagonal elements. The downside of this method is that each iteration of refining

the relaxations is much more expensive than the previous implementation. Also, no

new information is obtained by using this method, and therefore it yields the same

results as the previous implementation as long as A has an appropriate structure (e.g.

nonzero diagonal elements).

Dense Preconditioned Implementation

This implementation can be regarded as a naive approach to calculating relaxations

of δ. This is because it amounts to taking a large sparse system, calculating an

expensive preconditioner, and in turn, calculating relaxations of the solution of a

large dense preconditioned system. Although it is quite effective for small systems, it

is extremely expensive since simply constructing Y is an O(n3
x) operation using LU-

decomposition.8 Although this computation can be done up front (and only once),

calculating G(p) = YA(p) is an O(n3
x) operation and constructing relaxations of δ

is O(kn2
x), where again k is the number of iterative refinements taken. It is clear that

for large systems, the O(n3
x) procedure will dominate and so the overall procedure for

constructing relaxations of δ is O(n3
x).

8Using Gauss elimination alone for matrix inversion amounts to an O(n4
x) computation.

148



Figure 5-4: An exploded view of a packaged CPU. The packaged device consists of a
substrate (black bottom), the processor die (multicolor center), and the heat spreader
(metallic top). (Photo credit: Intel R⃝)

5.3 Case Study

To demonstrate global optimization of large sparse systems, a parameter-estimation

problem is considered which arises from modeling steady-state heat transport in a

packaged semiconductor. Figure 5-4 shows the construction of a packaged semicon-

ductor, specifically, that of a microprocessor or central processing unit (CPU).

5.3.1 Model and Objective

An illustration of the model system is shown in Figure 5-5. It is assumed that the

heat spreader is a solid material that covers the substrate and the die with no void

space. Furthermore, conduction in the substrate is negligible, and convection on every

surface except the top is negligible. The physical design parameters of the system are

contained in Table 5.1. To model heat transport for this system, the 3-dimensional

energy conservation equation with an affine heat-source term (HV ) was used:(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
+
HV

kc
= 0, (5.3)

where T is the temperature, kc is the (constant) thermal conductivity of the material,

and the spatial coordinates will be denoted in the standard way by x, y, and z. Heat

149



xy

zheat 

spreader

substrate

1.2cm1.6cm

0.4cm

2.8cm

0.4cm

Figure 5-5: An illustration of the packaged CPU model for the parameter estimation
problem. The dimensions and layout differ from the actual CPU shown in Figure
5-4 to introduce asymmetry for an irregular temperature profile. For clarity, the heat
spreader is depicted as being completely transparent.

is generated in the model by the die, which is centered on the xy-plane, through the

application of electric current (i.e. Joule heating). Resistance is expected to be affine

in temperature, and so the source term takes the form:

HV = q0 (1 + α(T − T0)) (5.4)

where q0 and α are constants pertaining to physical properties of the semiconductor,

and T0 is the reference temperature, taken to be equal to the ambient (or bulk)

temperature Tb. It is assumed that there is negligible heat flux on all of the boundaries

except for the top surface where there is convection. The blue region on the top

surface in Figure 5-5 is a region of convection where a liquid-cooling coil contacts

the heat spreader. Convection occurs over the rest of the top surface of the heat

spreader—albeit to a lesser degree—due to a nearby fan. The boundary conditions

150



are:

n·∇T = 0 at every surface except z = 1cm

−n·∇T = h1(Tsurf − Tb)/kc z = 1cm blue region

−n·∇T = h2(Tsurf − Tb)/kc z = 1cm not blue region

(5.5)

where n is the unit normal directed away from the heat spreader, Tsurf is the temper-

ature of the fluid at the interface (assumed to be the same as the surface temperature

of the solid), h1 is the heat transfer coefficient of the fluid in blue region and h2 is the

heat transfer coefficient of the fluid elsewhere on the top surface. For this problem,

the model parameters for fitting will be h1, the heat transfer coefficient for the blue

area, and Tb, the ambient or bulk temperature. Therefore

p = (Tb h1)
T.

In order to construct the parametric linear system—whose solution will be an ap-

proximate solution of the original 3-dimensional PDE—a standard finite-differencing

approach is used. First, a uniform discretization is applied (i.e. a discretization with

an equal number of grid points in each spatial dimension Nx = Ny = Nz). A standard

node-numbering scheme is used:

iδ = (k − 1)NxNy + (i− 1)Ny + j,

where i, j, k are the indices corresponding to the grid point (xi, yj, zk). Thus, the

grid points get numbered sequentially from 1 to nx = NxNyNz. In order to obtain

a sufficient approximation of the solution of (5.3), a fine discretization of the spatial

dimensions is required (i.e. Nx, Ny, Nz are sufficiently large). Since the problem size,

nx, is equal to NxNyNz, it is easy to see why the problem size can be substantially

large, even for a relatively coarse discretization. After applying the discretization,

finite differencing is used to approximate the partial derivatives. For the interior nodes

(i.e. nodes not on the boundary of the system), the approximate partial derivatives

151



CPU Design Specifications
Packaged dimensions (x× y × z) 4cm× 4cm× 1cm

Die dimensions (x× y × z) 1.6cm× 1.2cm× 0.1cm
Substrate thickness 0.2cm

kc 4.0W/mK
α −2.0× 10−6K−1

q0 4500.0W/m3

h1 ∈ [1.5, 10]W/m2K
h2 0.0862W/m2K
Tb ∈ [250, 400]K

Table 5.1: The physical design specifications for the CPU packaging problem.

are given by

Tiδ−NxNy − 2Tiδ + Tiδ+NxNy
(∆z)2

+
Tiδ−Ny − 2Tiδ + Tiδ+Ny

(∆x)2

+
Tiδ−1 − 2Tiδ + Tiδ+1

(∆z)y
= −q0

kc
(1 + α(Tiδ − Tb)),

where q0 = 0 everywhere except in the die. The boundary conditions are as follows:

Tiδ+1−Tiδ
∆y

= 0 at yj = 0cm
Tiδ−Tiδ−1

∆y
= 0 at yj = 4cm

Tiδ+Ny−Tiδ
∆x

= 0 at xi = 0cm
Tiδ−Tiδ−Ny

∆x
= 0 at xi = 4cm

Tiδ+NyNx−Tiδ
∆z

= 0 at zk = 0cm
Tiδ−Tiδ−NxNy

∆z
= h1(Tiδ − Tb)/kc at zk = 1cm blue region

Tiδ−Tiδ−NxNy
∆z

= h2(Tiδ − Tb)/kc at zk = 1cm not blue region

(5.6)

After applying finite differencing, with some simple algebraic manipulation, a para-

metric linear system can be formed:

A(p)z = b(p), ziδ = Tiδ , ∀iδ = 1, . . . , NxNyNz.

Since this is a parameter estimation problem, the optimization formulation has a

152



y

x

1
T

3
T

4
T

5
T

2
T

1

4
T
43

T
3
T

2
T
2

5

4

T

T

T

2

Figure 5-6: An overhead view of the packaged CPU model. Temperature sensors
corresponding to the fictitious experiment are depicted in red. The grid lines corre-
spond to a 15× 15 mesh. The dotted rectangle corresponds to the location of the die
projected onto the surface.

least-squares objective function:

f(δ(p),p) =
Nsensors∑
n=1

(
Tn − δ̄n(p)

)2
, (5.7)

where Nsensors is the number of fictitious experimental temperature sensors, Tn is the

temperature reading taken by the nth sensor averaged over the area of the sensor,

and δ̄n will be the model-predicted temperature as the average temperature over the

number of mesh points (nodes) that lie within the nth sensor region. Figure 5-6

depicts an overhead view of the packaged CPU model with the sensors corresponding

to the fictitious experiment shown in red. The gridding corresponds to a 15 × 15

mesh, and each δi corresponds to the temperature—as predicted by the model—at

each of the intersections of the grid lines. Note that the sensors n = 1, 2, 3, 4 each

correspond to regions enclosing two mesh points (nodes). The fictitious experimental

data is given in Table 5.2. For the iterative method from Section 4.3.3, the variable

interval Ziδ = [250, 1000], ∀iδ = 1, . . . , NxNyNz, was chosen from physical intuition.

The interval X satisfying Definition 4.4.1 was calculated using parametric interval

Gauss-Seidel [101].

153



Experimental Temperature Data
T1 411.0K
T2 448.85K
T3 422.125K
T4 492.05K
T5 394.7K

Table 5.2: The experimental temperature data for CPU design problem.

5.3.2 Comparison of Methods

Numerical experiments were conducted to demonstrate the performance of each of

the methods discussed above in terms of computational complexity. The experiments

timed how long it took to evaluate a convex relaxation of one of the states δi at 36 p

values while varying the number of discretization points (size of the system) used to

approximate the solution of the PDE. This simulates the computational complexity

associated with evaluating the objective function of the convex lower-bounding prob-

lem as a function of problem size. The results of the numerical experiments are shown

in Figure 5-7. The results for the multiple-inclusion implementation were omitted for

clarity.

It was observed that sufficiently tight relaxations of δ were obtained after NxNyNz

iterations of the relaxation technique discussed in Section 4.3.3. The unfortunate

consequence of this result is the increased computational cost of calculating these

relaxations. As discussed in the methods section above, the non-preconditioned and

diagonally preconditioned implementations exhibit O(knz) complexity. For this ex-

ample,

nz = 4NyNz + 4(Nx − 2)Nz + 4(Nx − 2)(Ny − 2) + 7(Nx − 2)(Ny − 2)(Nz − 2),

which is on the order of nx. Therefore, since k = nx, the complexity of calculating

relaxations of δ was hypothesized to be O(n2
x). As can be seen from Figure 5-7, the

(numerical) experimental data supports this hypothesis.

As discussed in the Methods section above, the Gauss elimination implementa-

tions and the dense preconditioned implementation were hypothesized to have O(n3
x)

154



Nodes

O
b
je

ct
iv

e 
F
u
n
c.

 E
v
al

u
at

io
n
 (

se
c)

y = 0.0002x2.1121

y = 2E-06x2.7778

y = 2E-06x2.8509

y = 1E-05x2.9917

y = 0.0001x2.1347

B
C
D
F
E

210 310

010

110

210

310

410

510

Figure 5-7: The scaling of the evaluation of convex relaxations for each method as a
function of the problem size. Method B: Non-preconditioned impl. Method C: Direct
method w/RCMK. Method D: Direct method. Method E: Diagonally preconditioned
imp. Method F: Inverse-midpoint (dense) preconditioned imp.

complexity with the reordered implementation being slightly less expensive (due to

minimizing fill-in). Figure 5-7 supports this hypothesis as well. Interestingly, the

Gauss elimination implementations required less CPU seconds to calculate relax-

ations for nx < 729 (corresponding to Nx = Ny = Nz = 9). This is likely due

to the overhead of calculating interval bounds using the (parametric) interval linear

solver, which is equivalent to the interval Gauss-Seidel iteration [101]. Since the di-

rect methods scale worse with system size than the iterative method, even with this

overhead, the iterative methods perform better than the direct methods for nδ ≥ 729

(Nx = Ny = Nz ≥ 9). In order to adequately model the system, Nx = Ny = Nz ≥ 15

is required, and so for this model, the iterative methods perform more favorably.

5.4 Concluding Remarks

In this chapter, the results developed in Section 4.3.3 were explored further and

applied to large sparse systems which commonly arise in engineering applications. A

brief background on large sparse systems was given including various approaches for

155



solving them numerically as well as computational effort and storage requirements.

However, the main contribution is a parameter-estimation case study motivated by

an engineering design problem. The computational effort of the iterative relaxation

method of Section 4.3.3 was compared against the direct relaxation method of [88].

The method of Section 4.3.3 performed favorably as it scaled with the square of the

dimension of the problem as opposed to the cubic scaling of the direct method of

[88]. These initial results demonstrate that the iterative approach of Section 4.3.3

for constructing relaxations may be quite effective for large sparse systems and with

future research and the proper computer implementation, global optimization of large

sparse systems can be solved quickly and efficiently.

156



Chapter 6

Relaxations of Implicit Functions

Revisited

In this chapter, the theoretical arguments behind the construction of convex and

concave relaxations of implicit functions are revisited. In particular, in Chapter 4,

the assumptions regarding uniqueness of an implicit function x on P may be too

restrictive in some cases. The effects of relaxing the uniqueness assumptions are

explored in this chapter.

6.1 Direct Relaxation of Fixed-Point Iterations

In Section 4.3.1, Assumption 4.3.1 was applied, which stated that for P ∈ IRnp , there

exists an implicit function x : P → Rnx such that it is a fixed-point of the function

ϕ (as defined in that section). Furthermore, it was assumed that an interval X was

known such that x(P ) ⊂ X and x(p) is unique in X for all p ∈ P .

However, these assumptions are not entirely necessary for the main results of that

section (Theorems 4.3.4, 4.3.5, and 4.3.6) to hold. The results of that section are

generalized as follows.

Theorem 6.1.1. Let ϕ be defined as in Section 4.3.1. Suppose ϕ has n fixed-points

xi(p), i = 1, . . . , n, for every p ∈ P such that xi(P ) ⊂ X for some X ∈ IRnx for

i = 1, . . . , n. Then, Theorem 4.3.4 holds.

157



Proof. As long as xi(P ) ⊂ X, i = 1, . . . , n, the proof of Theorem 4.3.4 holds under

the relaxed hypotheses since xk,c(· ) and xk,C(· ) are relaxations of xi(· ) = ϕ(xi(· ), · )

for i = 1, . . . , n on P .

Theorem 6.1.2. Suppose the hypotheses of Theorem 6.1.1 hold. Then, Theorem

4.3.5 holds.

Proof. The proof of Theorem 4.3.5 holds here with x replaced by xi, i = 1, . . . , n.

Theorem 6.1.3. Suppose the hypotheses of Theorem 6.1.1 hold. Then, Theorem

4.3.6 holds.

Proof. The proof of Theorem 4.3.6 holds here without modification.

If more than one fixed point of ϕ exists in X, it is likely that the hypotheses of

Theorem 4.3.6 will hold and therefore the relaxations calculated by applying Theorem

6.1.1 will not be improvements on some of the interval bounds.

6.2 Relaxations of Solutions of Parametric Linear

Systems

In Section 4.3.3, Assumption 4.3.9 was applied. Assumption 4.3.9-1 is essentially

the same as Assumption 4.3.1 but stated with respect to parametric linear systems.

In that section, it was already discussed how Assumption 4.3.9-2 can be relaxed by

introducing a preconditioning matrix Y ∈ Rnx×nx . The results of Section 4.3.3 are

generalized as follows.

Theorem 6.2.1. Let A and b be as in Section 4.3.3 and suppose either Assumption

4.3.9-2 holds or that we have a proper preconditioning matrix Y. Suppose that there

exist n implicit functions δi, i = 1, . . . , n, such that A(p)δi(p) = b(p), i = 1, . . . , n,

for all p ∈ P and δi(P ) ⊂ ∆, i = 1, . . . , n for ∆ ∈ IRnx. Then, Theorem 4.3.12

holds.

158



Proof. As long as δi(P ) ⊂ ∆, i = 1, . . . , n holds, the proof of Theorem 4.3.12 holds

under the relaxed hypotheses since δk,c and δk,C are relaxations of δi, i = 1, . . . , nx

on P .

Theorem 6.2.2. Suppose the hypotheses of Theorem 6.2.1 hold. Then, Theorem

4.3.14 holds.

Proof. The proof of Theorem 4.3.14 holds here with δ replaced with δ, i = 1, . . . , n.

6.3 Relaxations of Solutions of Parametric

Nonlinear Systems

Similar to the previous two sections, the uniqueness assumption is not required as

long as proper interval bounds are known or are calculable that enclose all relevant

implicit functions. Each result of Section 4.3.4 will not be generalized explicitly here.

However, it should be known that the results still hold without the requirement that

X encloses a unique implicit function as long as X encloses all relevant implicit

functions.

6.4 Global Optimization of Implicit Functions

In the previous sections of this chapter, the uniqueness assumption imposed on Chap-

ter 4 was relaxed. Under the relaxed assumption, the results of Section 4.3 are still

valid. However, when considering using these relaxations within the branch-and-

bound algorithm for global optimization (Alg. 4.1), convergence issues arise. In

Section 4.4, finite convergence of Algorithm 4.1 was established under the relatively

strict definition of X (Def. 4.4.1), which requires that there exists a unique implicit

function enclosed by X. If X encloses multiple implicit functions, Definition 4.4.1

does not hold and the algorithm will fail to converge.

159



In the next chapter, the concept of semi-infinite optimization with embedded

implicit functions is revisited. With the developments of Chapter 4, the solution of

implicit SIPs, including the robust simulation SIP (2.5), is formalized.

160



Chapter 7

Semi-Infinite Optimization with

Implicit Functions

In this chapter, the solution of implicit semi-infinite programs is discussed. Using the

developments of Chapter 3 for bounding implicit functions as well as the algorithm

for global optimization of implicit functions developed in Chapter 4, an algorithm for

solving semi-infinite programs with implicit functions embedded is presented. The

algorithm is guaranteed to converge to global ϵ-optimality in finitely many iterations

given the existence of a Slater point arbitrarily close to a minimizer. Besides the Slater

point assumption, it is assumed that the functions are continuous and factorable, and

that the model equations are once continuously differentiable. The algorithm applies

to implicit SIPs in general, and is therefore not restricted to only the robust feasibility

SIP (2.5). As a consequence, a much more general optimization approach to process

design problems will be discussed along with a more general implicit SIP formulation.

7.1 Introduction

Many engineering design problems give rise to optimization problems whose feasible

sets are parameterized. As motivated in Chapter 1, this is because it is often of great

interest to study performance and/or safety of engineering systems under parametric

uncertainty. Particularly, it is important to study the performance/safety in the face

161



of the worst case, which gives rise to equality-constrained bilevel programs of the

form:

f ∗ = min
y
f(y)

s.t. 0 ≥ max
p,z

g(z,y,p) (7.1)

s.t. h(z,y,p) = 0

y ∈ Y = {y ∈ Rny : yL ≤ y ≤ yU}

p ∈ P = {p ∈ Rnp : pL ≤ p ≤ pU}

z ∈ Dx ⊂ Rnx

which is a more general form of the constrained max-min program (2.3), introduced

in Chapter 2. For the purposes of maintaining consistency with the standard form of

SIPs and the SIP literature, in this chapter, the variable p will be the standard pa-

rameterization variables which may represent parametric uncertainty and/or various

other model parameters such as the controls. The variables y will be introduced as

the decision variables of the outer program, which might correspond to various design

variables etc. In standard SIP form, the decision variables are typically taken to be

x. For consistency with the previous chapters, the variables x will be reserved for the

state variables as implicit functions, whereas the variables z will still represent the

internal state variables.

In [89], an algorithm for solving general nonconvex bilevel programs to ϵ global op-

timality was developed. However, since (7.1) contains equality constraints, Assump-

tion 3 in [89] cannot be satisfied and therefore is not applicable to (7.1). Similarly,

in [139] an algorithm for global optimization of bilevel programs was presented. The

authors rely on the convergence result of [18], which is only guaranteed to terminate

in finitely many iterations provided the functions are convex.

The objective function f : Dy → R and the inequality constraint function g : Dx×

Dy ×Dp → R are continuous and are factorable in the sense that they are composed

from elementary arithmetic operations and transcendental intrinsic functions. The

162



equality constraints are considered as the system of equations representing a steady-

state model of the system of interest:

h(z,y,p) = 0 (7.2)

with h : Dx×Dy×Dp → Rnx factorable and continuously differentiable on its domain

with Dx ⊂ Rnx ,Dy ⊂ Rny ,Dp ⊂ Rnp open. Due to the complexity of many process

systems models, the bilevel formulation (7.1) is intractable, or even impossible to

solve.

In a similar scheme to the previous chapters, the equality constraints can be used

to eliminate z from (7.1) and in an analogous fashion to Chapter 2, the bilevel program

(7.1) can be reformulated as an equivalent SIP without equality constraints. Again,

if such z exist that satisfy (7.2) for each (y,p) ∈ Y ×P ⊂ Dy×Dp, then it defines an

implicit function of (y,p), expressed as x(y,p). It will again be assumed that at least

one implicit function x : Y × P → X exists such that h(x(y,p),y,p) = 0, ∀(y,p) ∈

Y × P with X ⊂ Dx. Conditions guaranteeing uniqueness of x ∈ X were discussed

in Chapter 3, as well as a method for calculating a relevant X. Given the existence

of an implicit function x (and its uniqueness in X), the equality constraints can be

eliminated and (7.1) can be expressed as:

f ∗ = min
y
f(y)

s.t. 0 ≥ max
p

g(x(y,p),y,p) (7.3)

y ∈ Y = {y ∈ Rny : yL ≤ y ≤ yU}

p ∈ P = {p ∈ Rnp : pL ≤ p ≤ pU}.

Furthermore, using an identity similar to (2.4), the inner maximization program can

be expressed as:

max
p∈P

g(x(y,p),y,p) ≤ 0⇔ g(x(y,p),y,p) ≤ 0, ∀p ∈ P, (7.4)

163



where the latter constraint is referred to as the (implicit) semi-infinite constraint.

The following implicit SIP, which is equivalent to the original bilevel program (7.1),

can then be formulated:

f∗ = min
y
f(y)

s.t. g(x(y,p),y,p) ≤ 0, ∀p ∈ P (7.5)

y ∈ Y = {y ∈ Rny : yL ≤ y ≤ yU}

P = {p ∈ Rnp : pL ≤ p ≤ pU}.

For a chemical engineering application, z may represent internal state variables,

such as composition, determined by an equation of state or some other physics, the

variables y may represent design variables such as chemical reactor dimensions or

pipe lengths, and p may represent uncertain model parameters such as reaction rate

constants. In this case, f may represent some economic objective related to sizing and

g may represent a critical performance and/or safety constraint such as a constraint

on selectivity or temperature. The global solution (if one exists) will correspond to

the worst-case realization of uncertainty and address the question of optimal reactor

design under uncertainty. Alternatively, y may represent uncertainty in the system

and p may represent the controls. The function f may then represent some metric

of uncertainty and g may again represent a performance and/or safety constraint.

In that case, the global solution (if one exists) will correspond to the worst-case

realization of uncertainty for which there exists a control setting such that the system

meets specification. This formulation addresses the question of feasibility of the design

as well as the determination of the maximum allowable uncertainty realization such

the design remains feasible.

Solving SIPs which have only explicit functions, referred to as explicit SIPs herein,

has been an active area of research for years. An overview of the previous application

of explicit SIPs to real-world problems with theoretical results and available methods

can be found in [58, 82, 111]. The contributions that have specific importance and

implications for this thesis are summarized below.

164



Blankenship and Falk [18] presented an efficient cutting-plane algorithm for ap-

proximating solutions of explicit SIPs which amounts to solving two nonlinear pro-

grams (NLPs), to global optimality in the general case, at each iteration. Their

algorithm generates a sequence of (infeasible) points that converge to the solution of

the SIP in the limit [18]. Given appropriate convexity assumptions, their algorithm

converges finitely to a feasible solution [18]. Their method is applicable to SIPs in

general and they make specific mention of the application to the max-min problem.

The max-min problem is further explored by Falk and Hoffman in [41] for general

nonconvex functions. The cutting-plane algorithm relies on the techniques of dis-

cretization and what is called local reduction, which is a technique for theoretically

describing (locally) the SIP feasible region with finitely many constraints [110]. Most

SIP algorithms employ these techniques in various ways.

Zuhe et al. [145] presented a method based on interval analysis for solving explicit

min-max problems, again, which are special instances of explicit SIPs. Their method

is applicable to min-max problems with twice continuously differentiable explicit func-

tions. Interval analysis was used to dynamically exclude regions of the search space

guaranteed not to contain solutions [145]. It was suggested that, using the proper-

ties of interval analysis and generalized bisection, their method converges in finitely

many iterations [145]. Bhattacharjee et al. [13] applied interval analysis to the gen-

eral case of explicit SIPs in order to construct what is called the inclusion-constrained

reformulation, which is a valid restriction of the original explicit SIP. This idea was

used further in the first algorithm for generating SIP-feasible points finitely, that

relies on the inclusion-constrained reformulation [14]. A lower-bounding procedure

that relies on McCormick’s convex and concave relaxations [85] and discretization

was introduced [14]. Together with the inclusion-constrained reformulation and the

branch-and-bound (B&B) framework, Bhattacharjee et al. was able to solve SIPs to

global optimality with guaranteed finite ϵ-optimal convergence [14]. As previously

mentioned, this algorithm was employed in [134] to solve implicit max-min problems

cast as implicit SIPs. Due to the overestimation of inclusion functions and the fact

that the size of the upper- and lower-bounding problems grow rapidly with depth in

165



the branch-and-bound tree [14], this algorithm can be ineffective at solving implicit

SIPs modeling more complex processes. Bianco and Piazzi [15] developed a hybrid

genetic-interval algorithm for solving SIPs. The hybrid algorithm approach attempts

to circumvent the computational complexity of purely deterministic approaches while

avoiding the problem of generating bounds on the extremum that aren’t necessarily

rigorous and a final solution that may be infeasible, inherent to purely stochastic

(genetic) approaches. Although the authors state that the deterministic part of their

algorithm can guarantee feasibility of the final solution, they also state that it cannot

determine guaranteed (rigorous) bounds on the optimal solution.

Stein and Still [132] solved explicit SIPs, with g convex, as a Stackelberg game

using an interior-point method. By convexity of g, they were able to exploit the

first-order optimality conditions to characterize the solution set of the inner program

and solve equivalent finite nonlinear programs [132]. Floudas and Stein [44] used

a similar idea and constructed concave relaxations of g on P using αBB [2]. They

then replaced the inner program with its KKT optimality conditions and solved the

resulting finite nonlinear program with complementarity constraints [44]. By doing

so, the resulting program is a restriction of the original explicit SIP and therefore,

upon solution, generates SIP-feasible points [44]. This idea was concurrently dis-

cussed by Mitsos et al. [90], where they also considered a technique closely related to

the inclusion-constrained reformulation [13, 14] but instead used interval analysis to

further construct McCormick-based concave relaxations [85] of g on P to restrict the

inner program and generate SIP-feasible points finitely.

More recently, Mitsos [87] developed an algorithm based on the ideas of Blanken-

ship and Falk [18] that relies on a new relaxation technique for the upper-bounding

procedure that requires the right-hand side of the semi-infinite constraint to be per-

turbed from zero. This formulation results in solving at least three NLP subproblems

to global optimality, in the general case, and the computational results reported are

quite promising [87]. The key contribution is the novel upper-bounding procedure

that is guaranteed to generate SIP-feasible points after finitely many iterations. It is

stated explicitly that the algorithm only requires continuity of f and g and the exis-

166



tence of a Slater point arbitrarily close to a SIP minimizer, “provided the functions

can be handled by the NLP solver” [87]. Therefore, this algorithm could be applied

to solve (7.1) while handling the equality constraints directly, without requiring the

introduction of the implicit function, by reformulating each nonconvex subproblem

as an equality-constrained global optimization problem. However, this strategy is not

advisable since the algorithm would then force the number of variables in the upper-

and lower-bounding subproblems to increase with each iteration.1 Thus, these sub-

problems become increasingly more expensive to solve with each iteration. However,

this algorithm is a promising candidate for the global solution of SIPs with implicit

functions embedded.

With the exception of [134], all of the aforementioned methods were developed

to solve explicit SIPs (or explicit min-max programs). The major complication with

formulating the bilevel program in (7.1) as the SIP in (7.5), is that an implicit function

x, which may not have a known closed algebraic form, becomes embedded within the

semi-infinite constraint g. Therefore, x (and g) may not be evaluated directly, but

must be approximated using a numerical method, such as Newton’s method or some

other fixed-point iteration. In order to modify previously developed methods that

rely on relaxations of the inner program, it must be possible to construct relaxations

of g(x(· ,p), · ,p), ∀p ∈ P, on Y . However, in order to relax g(x(· ,p), · ,p), ∀p ∈ P,

on Y , convex and concave relaxations of the implicit function x(· ,p) on Y , must be

calculable. As previously mentioned, this has been achieved for problems in which

the implicit function x could be approximated using the successive-substitution fixed-

point iteration [134]. The theoretical details of these relaxations were presented in

[128]. This chapter is an improvement on the previous results discussed in [134] and

consider solving SIPs with more general implicit functions embedded that can be

evaluated using any available method, such as Newton’s method, instead of being

restricted to the successive-substitution case. This work will make use of a modified

version of the algorithm developed by Mitsos [87], where the solution of each of the

(implicit) subproblems will be performed using the novel relaxation techniques and

1This result is illustrated in Appendix B.

167



the global optimization algorithm developed in Chapter 4.

Just to recap, in Chapter 4 theoretical developments were made to construct con-

vex and concave relaxations of more general implicit functions. The construction of

these relaxations are analogous in many ways to how interval bounds were calculated

for implicit functions in Chapter 3 using parametric interval-Newton methods. By

applying parametric interval-Newton methods to a function h, under certain condi-

tions discussed in Chapter 3, an interval can be calculated that bounds a unique root,

x, of h over the set Y × P . Taking these bounds as initial relaxations of x, they can

be iteratively refined using the methods in Chapter 4 to produce convex and concave

relaxations of x on Y × P . As a result, global optimization of implicit functions was

developed.

In the next section, the global optimization algorithm for SIPs with embedded

implicit functions is discussed. The application to min-max and max-min problems

is made explicit, immediately following the statement of the algorithm. Finally, three

numerical examples are given that illustrate the solution of implicit SIPs to global

optimality.

7.2 Global Solution of SIPs with Implicit Func-

tions Embedded

The global optimization algorithm for solving implicit SIPs is based entirely on the

cutting-plane algorithm presented by Mitsos [87] which itself is based on the algorithm

developed by Blankenship and Falk [18] but with a novel upper-bounding procedure.

The algorithm, as applied to explicit SIPs, is guaranteed to produce SIP-feasible

points after finitely many iterations under the assumption that there exists a Slater

point arbitrarily close to a minimizer [87]. As previously mentioned, the algorithm

relies on the ability to solve three nonconvex NLP subproblems to global optimality.

The three subproblems are discussed below.

168



7.2.1 Lower-Bounding Problem

The lower-bounding procedure comes from a simple relaxation technique based on

an adaptive discretization procedure originally described in [18]. In this case, the

SIP is reduced to an implicit NLP by considering only a finite number of constraints

corresponding to realizations of p ∈ PLBD with PLBD ⊂ P , as a finite set. The

lower-bounding problem is formulated as

fLBD = min
y
f(y)

s.t. g(x(y,p),y,p) ≤ 0, ∀p ∈ PLBD (7.6)

y ∈ Y = {y ∈ Rny : yL ≤ y ≤ yU}.

In order to guarantee fLBD ≤ f ∗, the lower-bounding problem must be solved to

global optimality.

7.2.2 Inner Program

The inner program, stated explicitly in (7.3) and (7.4), which is equivalent to the semi-

infinite constraint, defines the SIP feasible region. Thus, given a candidate ȳ ∈ Y ,

feasibility can be determined by solving the inner (in general nonconvex) program:

ḡ(ȳ) = max
p∈P

g(x(ȳ,p), ȳ,p). (7.7)

The point ȳ is feasible in the SIP (7.5) if ḡ(ȳ) ≤ 0. Therefore, in order to deter-

mine feasibility of a candidate ȳ, the inner program (7.7) must be solved to global

optimality for the general case.

7.2.3 Upper-Bounding Problem

The upper-bounding problem comes from bounding the semi-infinite constraint away

from zero by introducing a parameter ϵg,k, referred to as the restriction parameter

[87], and reducing the SIP to an implicit NLP by only considering a finite number of

169



constraints corresponding to realizations of p ∈ PUBD, where PUBD ⊂ P is a finite

set. The upper-bounding problem is formulated as

fUBD = min
y
f(y)

s.t. g(x(y,p),y,p) ≤ −ϵg,k, ∀p ∈ PUBD (7.8)

y ∈ Y = {y ∈ Rny : yL ≤ y ≤ yU}.

As mentioned in [87], the upper-bounding problem (7.8) must be solved to global op-

timality in order for the algorithm to solve the original SIP (7.5) to global optimality.

However, any valid upper bound, fUBD ≥ f∗, can be obtained by solving (7.8) locally

for ȳ and verifying that it is feasible in the original SIP (7.5).

7.2.4 Algorithm

In this section, the algorithm used for solving globally SIPs with implicit functions

embedded to guaranteed ϵ-optimality is given. Again, as presented, this algorithm is

an adaptation of the algorithm given by Mitsos in [87] to SIPs with implicit functions

embedded. Finite convergence of the algorithm for explicit SIPs was previously proven

[87]. The results proven by Mitsos in [87] extend directly to the implicit SIP algorithm

provided finite convergence of each implicit NLP subproblem can be guaranteed. The

latter result was proven in Chapter 4. The assumptions on which the algorithm relies

are stated explicitly in the following.

Assumption 7.2.1.

1. The functions f : Dy → R, g : Dx×Dy×Dp → R, and h : Dx×Dy×Dp → Rnx

are factorable and continuous on their domains.

2. Derivative information ∇yhi, i = 1, . . . , ny is available and is factorable, say by

automatic differentiation [12, 49].

3. There exists x : Y × P → Dx such that h(x(y,p),y,p) = 0, ∀(y,p) ∈ Y × P ,

and an interval X ⊂ IDx is available such that x(Y, P ) ⊂ X and x(y,p) is

170



unique for every (y,p) ∈ Y × P .

4. A matrix Ψ ∈ Rny×ny is known such that A ≡ ΨJy(X, Y, P ) satisfies 0 /∈ Aii
for all i, where Jy is an inclusion monotonic interval extension of the Jacobian

matrix of h.

5. There exists a point yS ∈ Y with g(x(yS,p),yS,p) < 0, ∀p ∈ P such that

f(yS)− f∗ < ϵtol.

Assumptions 7.2.1(1)-(4) are essentially required for constructing convex and con-

cave relaxations for global optimization of implicit functions. Assumption 7.2.1(3)

can be satisfied by applying parametric interval-Newton methods and their theoret-

ical results discussed in Chapter 3. The matrix Ψ is a preconditioning matrix and

has been the focus of many research articles. The application to interval-Newton

methods is discussed in [69], among others. The interval-valued matrix A can be cal-

culated efficiently by taking natural interval extensions (see Chap. 3) and thus satisfy

Assumption 7.2.1(4). Assumption 7.2.1(5) is the ϵtol-optimal SIP-Slater point condi-

tion. Altogether, satisfying Assumption 7.2.1 guarantees that the following algorithm

terminates in finitely many iterations with a certificate of optimality and a rigorous

ϵtol-optimal feasible point (see Chap. 4 and [87]). The algorithm for semi-infinite

optimization with implicit functions embedded is presented in the following.

Algorithm 7.1 (Global Solution of Implicit SIPs).

1. (Initialization)

(a) Set LBD = −∞, UBD = +∞, ϵtol > 0, k := 0.

(b) Set initial parameter sets PLBD = PLBD,0, PUBD = PUBD,0.

(c) Set initial restriction parameter ϵg,0 > 0 and r > 1.

2. (Termination) Check UBD − LBD ≤ ϵtol.

(a) If true, terminate.

(b) Else k := k + 1, continue.

171



3. (Lower-Bounding Problem) Solve the lower-bounding problem (7.6) to global

optimality.

(a) Set LBD := fLBD, set ȳ equal to the estimate of an optimal solution

found, continue.

4. (Inner Program) Solve the inner program (7.7) to global optimality.

(a) If g(x(ȳ, p̄), ȳ, p̄) = ḡ(ȳ) ≤ 0, set y∗ := ȳ, UBD := f(ȳ), terminate

algorithm.

(b) Else, add p̄ to PLBD, continue.

5. (Upper-Bounding Problem) Solve the upper-bounding problem (7.8) to global

optimality.

(a) If feasible:

i. Set ȳ equal to the optimal solution found and solve the lower-level

program (7.7) to global optimality.

ii. If ḡ(ȳ) < 0:

A. If f(ȳ) ≤ UBD, set UBD := f(ȳ), y∗ := ȳ, continue.

B. Set ϵg,k+1 := ϵg,k/r, go to 2.

iii. Else (ḡ(ȳ) ≥ 0), add p̄ to PUBD, go to 2.

(b) Else (infeasible), set ϵg,k+1 := ϵg,k/r, go to 2.

It should be noted that the subproblems can only be solved finitely to within

some chosen tolerances. In order to guarantee that the SIP algorithm is rigorous, the

convergence tolerances for the subproblems must be set such that they are smaller

than ϵtol.

172



7.3 Application to Max-Min and Min-Max Prob-

lems

Constrained min-max problems:

min
y∈Y

max
p∈P,z∈X

{G(z,y,p) : h(z,y,p) = 0} (7.9)

and constrained max-min problems:

max
y∈Y

min
p∈P,z∈X

{G(z,y,p) : h(z,y,p) = 0}, (7.10)

with G : Dx ×Dy ×Dp → R, can also be solved using Algorithm 7.1. The min-max

case results in solving the implicit program:

G∗ = min
y∈Y

max
p∈P

G(x(y,p),y,p) (7.11)

which can be formulated as an implicit SIP using the same technique in Chapter 2,

by introducing a variable η ∈ H ⊂ R and writing:

η∗ = min
y∈Y,η∈H

η (7.12)

s.t. max
p∈P

G(x(y,p),y,p) ≤ η.

Using the relationship (7.4) and setting g(x(y,p),y,p, η) = G(x(y,p),y,p)− η, the

following SIP can be written:

η∗ = min
y∈Y,η∈H

η (7.13)

s.t. g(x(y,p),y,p, η) ≤ 0, ∀p ∈ P,

which is equivalent to the implicit SIP in (7.5). The implicit SIP algorithm can be

applied directly to this problem without any modification by setting ny := ny+1 and

treating η as the ny + 1 component of y. As mentioned in Chapter 2, an optimal

173



solution value of η∗ ≤ 0 implies G∗ ≤ 0, and alternatively, η∗ > 0 implies G∗ > 0.

The constrained max-min problem reformulation is slightly different. This case

amounts to solving

G∗ = max
y∈Y

min
p∈P

G(x(y,p),y,p). (7.14)

Again the variable η ∈ H ⊂ R is introduced and (7.14) is written as

η∗ = max
y∈Y,η∈H

η (7.15)

s.t. η ≤ G(x(y,p),y,p), ∀p ∈ P (7.16)

(which is equivalent to the robust SIP formulation (2.5)) by using the relationship

(7.4) and equivalently as

−η∗ = min
y∈Y,η∈H

−η (7.17)

s.t. g(x(y,p),y,p, η) ≤ 0, ∀p ∈ P (7.18)

by using the identity g(x(y,p),y,p, η) = η−G(x(y,p),y,p). Now, the implicit SIP

algorithm can be applied without any modification by again setting ny := ny +1 and

treating η as the ny + 1 component of y. Now, analogous to the min-max case, and

optimal solution value of η∗ ≤ 0 implies that G∗ ≤ 0 and η∗ > 0 implies G∗ > 0.

7.4 Examples

Example 7.4.1. Consider the following illustrative example with nx = np = ny = 1:

f(y) =(y − 3.5)4 − 5(y − 3.5)3 − (y − 3.5)2 + 30(y − 3.5)

h(z, y, p) =z − (y − y3/6 + y5/120)/
√
z − p = 0

g(z, y, p) =z + cos(y − p/90)− p ≤ 0, ∀p ∈ P

y ∈ Y = [0.5, 8.0]

p ∈ P = [80, 120].

174



The objective function and implicit semi-infinite constraint are shown in Figure 7-

1. An interval X = [68.8, 149.9], guaranteed to contain a unique implicit function

x : Y ×P → X was obtained using the parametric interval-Newton method discussed

in Chapter 3.

0 1 2 3 4 5 6 7 8
−40

−20

0

20

40

60

80

100

120

( )f y

y

15.8077SIPf = −

1 2 3 4 5 6
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

SIP Feasible

 Region
p

p
p

2.95275y =

y

( )( , ), ,g x y p y p

Figure 7-1: The objective function and implicit semi-infinite constraint for Example
7.4.1.

Example 7.4.2. Consider the robust design of an isothermal flash separator under

uncertainty. We wish to verify robust operation of a proposed design in the face of

the worst-case realization of uncertainty. The flash separator is designed to separate

a ternary mixture of n-butane, n-pentane, and n-hexane, with molar fractions of

0.5, 0.4, and 0.1, respectively. The separator is designed to create a vapor product

stream with no more than 0.05 mole-fraction of n-hexane. To do so, it is designed to

operate at 85◦C and a pressure no greater than 5100torr (6.80bar). It is expected that

during operation, the vessel temperature, or simply the thermocouple reading, may

vary by as much as ±5◦C. For this system there are six unknowns: the compositions

of the vapor and liquid streams. Three species balance equations and three phase-

behavior equations can be written, resulting in a dimensionality nx = 6. However,

an alternative, and equivalent, model formulation with nx = 1 can be formulated by

writing the stream composition model equations in terms of the cut fraction α̂:

h(α̂, τ, p) =
∑
i

γi(Ki(τ, p)− 1)

(Ki(τ, p)− 1)α̂+ 1
= 0,

175



where τ will be the temperature (uncertain) variable, the cut fraction, α̂, is defined

as the fraction of the feed that leaves in the vapor stream (internal state variable),

p is the vessel pressure which can be controlled in order to mitigate fluctuations in

τ , Ki is the vapor-liquid equilibrium coefficient for the ith chemical species, and γi is

the mole-fraction of chemical species i in the feed. Solving h(α̂, τ, p) = 0 for α̂ defines

the cut fraction as an implicit function of temperature and pressure, α : T ×P → X.

Any value α /∈ [0, 1] is nonphysical so the interval X = [0, 1] was considered. For this

system, the vapor-liquid equilibrium coefficient can be calculated as

Ki(τ, p) =
psati (τ)

p

for each chemical component i with

log10 p
sat
i (τ) = Ai −

Bi

Ci + τ
,

with τ in ◦C and psati in torr. The Antoine coefficients Ai, Bi, Ci are available in

Table 7.1. For robust design problems, one must consider the worst-case realization of

Ex. 2 Antoine Coefficients
i Ai Bi Ci Temp. Range
1: n-butane 7.00961 1022.48 248.145 −138.29− 152.03◦C
2: n-pentane 7.00877 1134.15 238.678 −129.73− 196.5◦C
3: n-hexane 6.9895 1216.92 227.451 −95.31− 234.28◦C

Table 7.1: Antoine coefficients for the ternary mixture in Example 7.4.2 [143].

uncertainty and examine if there exists a control setting that allows the design to still

meet the performance and/or safety specification. This problem can be formulated

mathematically as a max-min problem:

max
τ∈T

min
p∈P

G(α(τ, p), τ, p)

T = [80, 90]

P = [4400, 5100],

176



which, if G(α(τ ∗, p∗), τ ∗, p∗) ≤ 0, the design is robustly feasible, or simply, for the

worst-case realization of uncertainty, there exists a control setting such that the sys-

tem meets specification. The lower bound on the control variable comes from a

80 82 84 86 88 90
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

p

τ

( )( , ), ,G p pα τ τ

Figure 7-2: The design constraint function for Example 7.4.2.

requirement that there are two phases present in the separator at all times (i.e., any

lower pressure will flash all of the liquid into the vapor phase). According to the

previous discussion, this problem can be reformulated as an implicit SIP:

min
τ∈T,η∈H

−η

s.t. η −G(α(τ, p), τ, p) ≤ 0, ∀p ∈ P.

The performance specification can be written as

G(α(τ, p), τ, p) =
γ3K3(τ, p)

(K3(τ, p)− 1)α(τ, p) + 1
− 0.05 ≤ 0,

which comes from material balances on the system. Figure 7-2 shows G plotted

against τ .

Example 7.4.3. Consider the engineering problem of optimal design of a continuous-

stirred tank reactor (CSTR) for the chlorination of benzene, shown in Figure 7-3. The

177



Stream 1

Stream 2

Figure 7-3: The continuous-stirred tank reactor for Example 7.4.3.

reactions taking place are

C6H6 + Cl2
k1−→ C6H5Cl +HCl

C6H5Cl + Cl2
k2−→ C6H4Cl2 +HCl

where the rate constants k1 and k2 (hr−1), as well as the feed flowrate F1 (kmol/h),

will be considered as uncertainty parameters, p = (k1 k2 F1)
T. The design variable

will be the reactor volume (m3), y = v. The reaction kinetics can be considered

to be first-order with respect to benzene and chlorobenzene and the reactions are

irreversible [73]. For simplicity, A will denote C6H6, B will denote C6H5Cl, and C

will denote C6H4Cl2. Therefore, there are a total of four unknowns: the composition

of the product stream and the product stream flowrate in terms of A, B, and C,

z = (zA zB zC F2)
T. In this formulation, nx = 1, ny = 4, and np = 3. Note that F1

and F2 are the flowrates (kmol/h) in terms of the chemical components A, B, and C

only. The model equations are then:

h(z,y,p) =


zA,1p3 − z1z4 − yr1
zB,1p3 − z2z4 + y(r1 − r2)

zC,1p3 − z3z4 + yr2

1− z1 − z2 − z3

 = 0 (7.19)

with zi,1 as the mole-fraction of chemical component i in the feed stream, and the

178



reaction rates r1 and r2 are given by:

r1 = p1z1/(z1VA + z2VB + z3VC),

r2 = p2z2/(z1VA + z2VB + z3VC).

with Vi as the molar volumes of chemical component i: VA = 8.937× 10−2m3/kmol,

VB = 1.018 × 10−1m3/kmol, VC = 1.13 × 10−1m3/kmol. The feed was taken to be

pure benzene.

For this particular system, the design objective is to minimize the reactor vol-

ume while satisfying the performance constraint that at least 22kmol C6H5Cl/h is

produced:

min
y∈Y

y

s.t. 22− x2(y,p)x4(y,p) ≤ 0, ∀p ∈ P.

The uncertainty interval will be P = [0.38, 0.42]× [0.053, 0.058]× [60, 70], the design

interval will be Y = [10, 20]. From the parametric interval-Newton method, an inter-

val X = [0.15, 0.85]× [0.3, 0.65]× [0.0, 0.12]× [60, 70] was calculated that encloses an

implicit function x : Y × P → X such that h(x(y,p), y,p) = 0, ∀(y,p) ∈ Y × P .

7.5 Experimental Conditions and Results

Algorithm 7.1 was implemented in C++. Each NLP subproblem was solved using the

algorithm for global optimization of implicit functions developed in Chapter 4, which

was also implemented in C++ and utilizes the library MC++[26]. The algorithm for

global optimization of implicit functions relies on the ability to solve convex nons-

mooth subproblems. For this task, the nonsmooth bundle solvers PBUN and PBUNL

[83] were utilized with default settings for the NLP lower-bounding problems and the

objective function was evaluated at NLP feasible points to obtain valid upper bounds

on the NLP. Since the constrained bundle solver (PBUNL) can only handle affine con-

179



straints, affine relaxations of the convex constraints with respect to reference points

must be calculated. Two sets of experiments were conducted:

Case 1: A single reference point—taken as the midpoint of Y—was used to con-

struct affine relaxations of constraints.

Case 2: Three reference points—the lower bound, the midpoint, and the upper

bound of Y—were used to construct affine relaxations of the constraints and

used simultaneously.

The numerical experiments were performed using a PC with an Intel Core2 Quad

2.66GHz CPU operating Linux. For each example, absolute and relative convergence

tolerances of 10−7 and 10−5, respectively, were used for the NLP subproblems.

7.5.1 Example 7.4.1

For the SIP algorithm, each constraint set was initialized as empty, ϵg,0 = 0.9, r = 2.0,

and ϵtol = 10−3. For each set of experiments, the implicit SIP algorithm was applied

and the global optimal solution with an objective function value of f∗ = −15.8077

at y∗ = 2.95275. Convergence was observed in 2 iterations. For this example, the

algorithm terminates after the lower-bounding problem furnishes a SIP-feasible point

(Step 4a of the algorithm). Therefore, for this example, the parameter r does not

affect the performance of the implicit SIP algorithm. Interestingly, Case 1 converged

after 0.097 seconds while Case 2 converged after 0.085 seconds. This may indicate

that the added computational cost of Case 2 is outweighed by the benefit of having

more precise approximations of the constraints.

7.5.2 Example 7.4.2

For the implicit SIP algorithm, each constraint set was initialized as empty, ϵg,0 = 0.9,

and ϵtol = 10−4. For both Case 1 and Case 2, the implicit SIP algorithm was applied

and the global optimal solution was obtained with η∗ = 3.56 × 10−3, τ ∗ = 90◦C,

p∗ = 5100torr. For Case 2, the algorithm terminates in 3 iterations taking 0.25

180



seconds after the lower-bounding problem furnishes an SIP-feasible point. Thus,

as previously mentioned, the parameter r has no effect on the performance of the

algorithm.

Case 1 was more interesting in that the algorithm doesn’t terminate with the

lower-bounding problem furnishing an SIP-feasible point but it terminates at Step 2

of the algorithm. For a modest value of r = 32, the algorithm converges in only 6

iterations, taking 0.557sec. The performance of the algorithm for Case 1 can be found

in Figure 7-4. Similar to the results discussed in [87], a relatively small value for r

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

n
u
m

b
er

 o
f 

it
er

at
io

n
s

r

0 10 20 30 40 50
0

2

4

6

8

10

12

r

C
P

U
 T

im
e 

(s
ec

)

Figure 7-4: The computational effort in terms of the number of iterations the algo-
rithm takes to solve Case 1 of Example 7.4.2 versus the reduction parameter r.

resulted in the implicit SIP algorithm taking many iterations to converge. As r was

increased, the number of iterations taken to converge, as well as the total solution

time, plateaued. For this example, by using a relatively large reduction parameter

value (r = 32), the total number of iterations of the implicit SIP algorithm could be

reduced by an order of magnitude and the solution time by almost two orders, over

using r = 1.1.

Returning to the idea of robust design, since η∗ > 0, the flash separator design is

not robust. However, as can be seen from Figure 7-2, if the design can be improved

such that the temperature (or thermocouple reading) may only vary by ±4◦C, the

design appears to be robust. This result was verified by the implicit SIP algorithm

converging after 6 iterations to the optimal solution with η∗ = −1.04× 10−3.

181



7.5.3 Example 7.4.3

For the SIP algorithm, each constraint set was initialized as empty, ϵg,0 = 0.9, and

ϵtol = 10−4.

For Case 2, the implicit SIP algorithm was applied and the global optimal solution

was obtained with f∗ = y∗ = 10.1794m3, p∗ = (0.38 0.058 60)T. Therefore, in order

to produce at least 22kmol/h of chlorobenzene, taking into account uncertainty in the

input flowrate and the reaction rate constants, the reactor volume must be 10.1794m3.

Note that the worst-case realization of uncertainty is exactly what is to be expected;

in order to have the least amount of chlorobenzene in the product stream, k1 should

be the smallest value it can take, k2 should be the largest it can take, and the least

amount of benzene should be fed to the reactor. For a value of r = 18, the algorithm

converges in 7 iterations and 11.71 seconds. The performance of the algorithm for

Case 2 can be found in Figure 7-5.

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

C
P

U
 T

im
e 

(s
ec

)

r

0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

n
u

m
b

er
 o

f 
it

er
at

io
n

s

r

Figure 7-5: The computational effort in terms of the number of iterations the algo-
rithm takes to solve Case 2 of Example 7.4.3 versus the reduction parameter r.

Similar to Case 1 of Example 7.4.2, a small value for r resulted in the implicit

SIP algorithm taking many iterations to converge. As r was increased, the number of

iterations required to converge, as well as the total solution time dropped drastically

and plateaued. A parameter value of r = 18 reduced the solution time by two orders

of magnitude over r = 1.1. For each example, the implicit SIP algorithm performed

182



very favorably converging after only a few iterations of the algorithm.

For this example, Case 1 failed to converge within 200 iterations of the algorithm.

This result is simply a consequence of using PBUNL which only accepts affine con-

straints. In this case, since the affine constraints are being constructed with reference

to the midpoint of X, the solver apparently fails to ever return a point that is feasible

in the original SIP.

7.6 Concluding Remarks

In this chapter, a class of bilevel programs that commonly arise in engineering design

problems was reformulated as a semi-infinite program with implicit functions embed-

ded. An algorithm for solving SIPs with implicit functions embedded was presented

which is an adaptation of a recently developed algorithm for solving standard SIPs.

As a proof-of-concept, three numerical examples were presented that illustrate the

global solution of implicit SIPs using this algorithm. The first example illustrated the

solution of a simple numerical system that fits the implicit SIP form given in (7.5).

The second example was an engineering problem of robust design under uncertainty,

originally cast as a constrained max-min problem as in (2.3). It was then reformulated

as an implicit SIP of the form in (7.5) and solved using the implicit SIP algorithm.

The third example was an engineering problem of optimal design of a chemical reactor

considering uncertainty in the kinetic parameters and formulated as an SIP.

A method was presented for reformulating equality-constrained bilevel programs

as SIPs with embedded implicit functions, requiring that:

1. all functions involved are continuous,

2. all functions involved are factorable,

3. derivative information for the equality constraint functions is available and is

factorable,

4. there exists at least one solution x to the system of equations in (7.2) for every

(y,p) ∈ Y × P , and

183



5. there exists a Slater point arbitrarily close to a SIP minimizer.

To solve the resulting implicit SIP, the global optimization algorithm developed by

Mitsos [87] has been adapted. The algorithm relies on the ability to solve three non-

convex implicit NLP subproblems to global optimality. This is performed utilizing

the relaxation methods and the deterministic algorithm for global optimization of

implicit functions which were developed in Chapter 4. Algorithm 4.1 relies on the

ability to solve nonsmooth lower- and/or upper-bounding problems at each iteration.

This can be done using any available nonsmooth optimization algorithm or using the

calculated subgradient information to construct affine relaxations and transform the

problem into a linear program and solved using any efficient LP optimization algo-

rithm. For this chapter, the nonsmooth bundle solvers PBUN and PBUNL [83], were

utilized. Note that the requirements (2) and (3) are only due to current limitations of

the algorithm for global optimization of implicit functions. The requirements (4) and

(5) imply that the SIP is feasible and (1) and (5) are required for guaranteed ϵ-optimal

convergence of the original explicit SIP algorithm [87] after finitely many iterations.

Altogether, these requirements guarantee ϵ-optimal convergence of Algorithm 7.1.

Due to the limitations of the PBUNL solver, only affine constraints could be

used. Since the implicit semi-infinite constraint is almost surely nonlinear, affine

relaxations must be constructed. For the numerical examples, two sets of experiments

were conducted: one using a single reference point for constructing affine relaxations

of the constraints and another using three reference points for constructing affine

relaxations of the constraints and using them all simultaneously. The first method

was hypothesized to be advantageous since it required less computational effort to

calculate the constraints. Alternatively, the second method was hypothesized to be

advantageous since using multiple reference points results in better approximations of

the constraints, which in turn may speed up convergence of the overall algorithm. For

each experiment, it was observed that Case 2 was superior to Case 1 in terms of total

CPU time. For Example 7.4.3, Case 1 even failed to converge after 200 iterations.

This was likely due to the affine relaxations of the semi-infinite constraint not being

very tight, resulting in PBUNL failing to find a solution that is feasible in the original

184



SIP.

In the next chapter, worst-case design of subsea production facilities is addressed.

A slightly modified version of Algorithm 7.1 is applied and the feasibility problem is

solved for various cases.

185



186



Chapter 8

Robust Simulation and Design of

Subsea Production Facilities

In this chapter, the problem of designing subsea production facilities for the worst

case is revisited. In particular, a model of a subsea separator process is presented that

can act as a framework for modeling systems involving more complex unit operations

models in future case studies. A complete implementation of the algorithm for robust

simulation and design is presented which utilizes the developments of the previous

chapters and elsewhere. Finally, the robust simulation SIP (2.5) is solved for this

model using the robust simulation algorithm implementation.

8.1 Background

In solving SIPs with implicit functions embedded, meaningful global bounding in-

formation for the semi-infinite constraint function g is required. Calculating this

information is often a limiting step in the overall performance of the algorithm be-

cause all that is known about the state variables initially are their natural bounds,

which in turn lead to a prohibitively large initial bound on g from which no mean-

ingful information can be deduced. Since interval-Newton-type methods, discussed in

Chapter 3, often prove to be ineffective in refining sufficiently large initial intervals,

this poses a serious problem for the algorithm. Although interval-Newton methods

187



are quite effective on smaller intervals, a method that can obtain meaningful bounds

on the function g starting with large initial intervals on the state variables efficiently

is necessary for the overall success and performance of the algorithm.

Interval analysis has been widely applied to many simulation and optimization

applications in chemical engineering, e.g., [6, 80]. In [80] strategies for bounding

the solution of interval linear systems were presented, which were solved in the con-

text of the interval-Newton method. The authors reviewed several preconditioning

techniques for the above mentioned method and proposed a new bounding approach

based on the use of linear programming (LP) strategies. They demonstrated the

performance of the proposed technique on global optimization problems such as pa-

rameter estimation and molecular modeling. In [6], interval-based global optimization

of modular process models is addressed. In their work, the authors explored the use of

five different interval contraction methods to improve the performance of the interval

optimization algorithm of [24]. The contraction methods used were: consistency tech-

niques, constraint propagation, LP contractors, interval Gaussian elimination, and

the interval-Newton contractor. Using a set of mathematical problems and chemical

engineering flowsheet design problems such as the Haverly pooling problem, reac-

tor flowsheet problem, and a reactor network problem, they compared the impact of

various contraction methods on the overall performance of the interval optimization

algorithm. Their computational experiments showed that the LP contractors per-

formed the best while the constraint propagation and interval Gaussian elimination

methods were ineffective.

In the context of interval contraction, there exist several methods developed by re-

searchers outside of the process engineering community. For a detailed review of such

methods, see [66]. In [125] the fundamentals of interval analysis on directed acyclic

graphs (DAGs) for global optimization and constraint propagation were presented.

The proposed framework overcomes the limitation of propagating each constraint in-

dividually by taking into account the effects of any common subexpressions that are

shared by many constraints. Later, the above framework was extended to perform

adaptively forward evaluations and backward projections on only some select nodes

188



of a DAG [141]. The computational study showed that the adaptive framework per-

forms at least one to two orders of magnitude faster than the other state-of-the-art

interval constraint propagation techniques.

More recently, the adaptive DAG framework of [141] was used in a branch-and-

prune algorithm to find multiple steady states in homogeneous azeotropic and ideal

two-product distillation problems [5]. Their computational experiments showed some

promising results from the application of constraint propagation techniques of [141].

In this work, a forward-backward constraint propagation technique, similar to the

DAG framework of [125], will be discussed and exploited. The technique is used to

obtain meaningful bounds on the implicit functions of (2.5). Thus, the goal is to

expedite the above bounding procedure over a given large initial box using the con-

straint propagation technique, and subsequently obtain rigorous, tight, and conver-

gent bounds on implicit functions using the interval-Newton method. Combining the

strengths of forward-backward constraint propagation and interval-Newton methods

seems to be a promising approach to obtaining useful bounding information required

for solving (2.5), and this will be the focus of the proposed solution framework.

8.2 Robust Simulation Algorithm Implementation

In Chapter 7, a cutting-plane algorithm (Alg. 7.1) for solving SIPs with implicit

functions embedded was presented. Furthermore, it was shown how constrained max-

min and min-max problems can be reformulated as implicit SIPs and solved using

Algorithm 7.1. In this section, the problem of worst-case design is addressed, for which

Algorithm 7.1 was demonstrated to be effective at solving. However, since robust

simulation and design is effectively a worst-case feasibility problem (see Chap. 2), it

may be unnecessary to solve the SIP formulation (2.5) to global optimality since a

guarantee of feasibility or infeasibility solves the problem. This detail was identified in

[134] where two termination criteria were added to the SIP algorithm of [14]. The new

criteria terminate the algorithm if a rigorous lower bound on the solution is obtained

such that ηLBD > 0, in which case the design is infeasible, or if a rigorous upper bound

189



is obtained such that ηUBD ≤ 0, in which case, the design meets robust feasibility.

Similarly, these termination criteria can be added to the implicit SIP algorithm (Alg.

7.1) and will be utilized in this section to solve the feasibility problem. With the

addition of the new termination criteria, the algorithm is expected to be drastically

more efficient since solving the SIP to global optimality is quite expensive. However,

in order to guarantee that the algorithm terminates after finitely many iterations,

the standard ϵ-optimality termination criterion must remain present. If, however, the

algorithm terminates with ϵ-optimality, further investigation is required to determine

robust feasibility of the design rigorously. These termination criteria are identical to

those of the algorithm in [134], labeled 3(d) and 4(d), respectively, which was written

with reference to solving the maximization problem (2.5).

Since Algorithm 7.1 is to be applied here, it is again required that the global

optimization subproblems, with implicit functions embedded, can be solved. Con-

sequently, efficiently calculating rigorous, tight, and convergent bounds on implicit

functions is required, as previously discussed in this chapter and in Chapter 4. As

a reminder, in order to calculate these bounds in this chapter, a combination of

the forward-backward constraint propagation technique and the parametric interval-

Newton method will be employed.

8.2.1 Forward-Backward Propagation of Intervals

Different interval arithmetic implementations have been developed in the past, e.g. for

C++ [22, 72]. These provide a new data type and use operator and function overloading

to calculate interval extensions of arithmetic expressions. They can be easily used for

the forward interval evaluation of an explicit factorable function. However, in order

to evaluate the backward propagation of intervals, it is necessary to keep information

about intermediate factors in memory. A similar requirement is found in the reverse

mode of automatic differentiation [49]. There, a record of each operation is kept on

a so-called tape during the forward function evaluation. During the reverse pass, the

tape is read to reconstruct the operation and calculate the derivative. The stored

information includes the type of operation and the address of the operands in the

190



tape.

Here, for the implementation of a backward interval propagation, it is proposed

to proceed in a slightly different fashion. First, the factorable function is parsed

using operator and function overloading to construct its computational graph. All

other operations will be performed on this graph object. In contrast to typical AD

implementations, the computational graph, which can be thought of as a kind of tape,

is persistent in memory and can be reused after it is constructed once. Basically,

the graph is stored in an array where each element, or factor, contains information

about the type of operation and the address of the operands. In addition, for each

factor, an interval is also stored. These intervals can be accessed for the independent

and dependent variables, i.e., variables and function values, respectively. Also, it is

possible to provide bounds on some specific intermediate factors, if desired.

Forward interval evaluation Prior to the forward interval evaluation, an interval

is specified for each independent variable. Also, intervals can be specified for inter-

mediate factors. Then, during the forward evaluation, the graph can be traversed

element-by-element and an inclusion interval can be constructed for each factor ac-

cording to its operation type since each factor depends only on factors that have been

evaluated already and for which this inclusion information is already available. If an

element is an intermediate factor for which bounds have been provided, then these

bounds are intersected with the newly calculated interval so as to provide potentially

tighter bounds. If the intersection is empty, then this bound can not be satisfied

for all possible realizations of the independent variables. Once all factors have been

calculated, the inclusion intervals of the dependent variables, i.e., the function values,

are exported from the graph object.

Backward interval propagation After a forward interval evaluation has provided

valid bounds on each factor, the intervals for the dependent variables can be updated

by intersecting these with additional information such as constraints that must be

satisfied. Then, the computational graph will be traversed in reverse order. For

191



example, suppose that the current factor is vk = vi + vj. Then, it also must be true

that vi = vk − vj and vj = vk − vi. Analogous rules can be constructed for other

operations too, where more discussion can be found in [125]. This provides additional

bounds on the operands vi and vj, which can be intersected with their current bounds

resulting in potentially tighter bounds. Again, factor after factor is re-visited until

the first factor, that is not an independent variable, is reached. If an intersection

resulted in an empty interval, then one can conclude that no possible realizations of

the independent variables on the original box can satisfy the constraints. Otherwise,

potentially tighter intervals have been computed for the independent variables.

It is possible to perform multiple forward evaluations and backward propagation

steps consecutively as these do not necessarily converge in a single iteration. The

following illustrative example illustrates the forward evaluation and backward prop-

agation steps.

Example 8.2.1. Consider

f(z, p) = z2 + zp+ 4, X0 = [−0.8,−0.3], P = [6, 9].

A factorable representation is given by

v1 = z2

v2 = zp

v3 = v1 + v2

v4 = v3 + 4

192



Forward interval evaluation results in

V1 = [−0.8,−0.3]2 = [0.09, 0.64]

V2 = [−0.8,−0.3]· [6, 9] = [−7.2,−1.8]

V3 = [0.09, 0.64] + [−7.2,−1.8] = [−7.11,−1.16]

V4 = [−7.11,−1.16] + [4, 4] = [−3.11, 2.84].

Prior to the backward pass, we set V4 = [0, 0]. First, we update V3 according to

V3 := V3∩V4−4 = [−4,−4]. Next, we reverse the assignment V3 = V1+V2 to update

V1 and V2: V1 := V1 ∩ V3 − V2 = [0.09, 0.64], V2 := V1 ∩ V3 − V1 = [−4.64,−4.09].

Then, V2 = X·P is reversed: X := X ∩ V2/P = [−0.7734,−0.4544], P := P ∩

V2/X = [6, 9]. Lastly, V1 = X2 is reversed: X := hull{X ∩ −
√
V1, X ∩

√
V1} =

[−0.7734,−0.4544], which concludes the backward interval propagation. As a result,

X = [−0.7734,−0.4544] is a refinement of the original interval X0 with the guarantee

that any x ∈ [−0.8,−0.3] for which there exists a p ∈ P with f(z, p) = 0 is also

contained in X.

In some cases, it is possible that a univariate function operating on an interme-

diate factor is only defined for a subset of R, e.g., ϕ(z) = cos−1[z] is only defined for

z ∈ [−1, 1]. In the model presented in the next section, a domain violation of the

cos−1 function corresponds to the physical phenomenon of flooding of the gas-liquid

separator unit. In this case, the model is invalid and evaluating it returns no mean-

ingful solution. In order to prevent numerical artifacts from impacting the forward

interval evaluation, the following convention will used. Consider the univariate func-

tion ϕ : D ⊂ R → R. If z /∈ D then ϕ(z) ≡ ∅. Let Φ be an interval extension of ϕ

and suppose X is an interval that is not fully contained in D. In this case it is safe to

evaluate Φ(X ∩D) to obtain conservative bounds on the image of X under ϕ. It may

be possible that X ∩D = ∅ which means that all points in X cause domain violations

and, hence, the separator floods. Otherwise, at least one operating condition exist

that does not cause flooding and the model can be evaluated safely.

193



8.2.2 SIP Algorithm

The algorithm for solving the robust simulation SIP was also implemented using

C++ in a manner analogous to Chapter 7 with two important additions. First, the

additional stopping criteria discussed previously in this chapter were added to the

algorithm, and second, the forward-backward constraint propagation technique was

added. The flowchart for the algorithm is shown in Figure 8-1. All other details

Lower-

Bounding

Problem

Inner Program

Upper-

Bounding

Problem

Inner Program

Terminate,

Feasible Design

Terminate,
Infeasible Design

UBP

Feasible?

UBD<0?

GoTo

1

GoTo

1

1

Terminate,

Unknown

NO

YES

NO

YES

YES

NO

YES

YES

NO

YES

NO

YES

NO

START,

Initialize

GoTo
1

NO

0?g ≤

0?g ≤

0?LBD ≥

* 0?η ≤

tol ?

UBD LBD−

< ε

Figure 8-1: The simplified flowchart for the main SIP algorithm (Alg. 7.1) adapted
as the robust simulation algorithm.

of the algorithm are identical to Chapter 7. In particular, the global optimization

194



subproblems are solved using the global optimization of implicit functions algorithm

developed in Chapter 4 (Alg. 4.1) which relies on rigorous and convergent interval

bounds on implicit functions and the ability to solve nonsmooth convex programs.

PBUNS and PBUNL [83] are again employed to solve nonsmooth convex problems.

Similar to Chapter 7, in order to circumvent the limitations imposed by PBUNL (i.e.,

only accepting affine inequality constraints), affine relaxations of convex nonlinear in-

equality constraints with respect to multiple reference points are used. The hierarchy

for the information flow of the algorithm for global optimization of implicit functions

is shown in Figure 8-2.

Main B &B Routine

Lower Bound

F-B
Const.
Prop.

Upper Bound

Convex/Concave Rlxns of
Implicit Functions

Interval-
Newton

PBUN/
PBUNL

Figure 8-2: The hierarchy of the flow of information for global optimization of implicit
functions.

The required interval bounding information is obtained using a combination of the

forward-backward propagation technique discussed above and the parametric interval-

Newton method discussed in Chapter 3. When the algorithm is first initialized, the

computational graph corresponding to the system model is constructed. This graph

is then made available to the global optimization of implicit functions algorithm. In-

terval bounds are constructed by passing initial bounds on the state variables—which

are nothing more than natural bounds on the variables—and pertinent bounds on the

controls and uncertainty parameters to the forward-backward constraint propagation

implementation using the previously constructed graph. Forward-backward propaga-

tion is iterated until the interval is sufficiently refined, converges, or it is guaranteed

195



Gas-Liquid Sep

Liquid-Liquid Sep

V-1

Stream 1

Stream 2

Stream 4

Stream 3

Stream 7

Stream 6

Stream 8

Stream 9

V-2

Stream 5

L

L

Figure 8-3: The ultra deepwater subsea separation process. (Photo credit: the author)

that no implicit function exists within the original bounds signaling an infeasible sub-

problem, in which case the interval is discarded. The resulting (nonempty) interval

is then passed to the parametric interval-Newton method (implemented componen-

twise) to be potentially refined further. The resulting interval is then passed to the

bundle solver to be used in the construction of the relaxations of implicit functions.

8.3 Model

The subsea separator is considered to be at the heart of subsea production facilities

since it is the key process system for performing upstream material separation as it is

being produced from the wellhead. In this model, it is considered that a three-phase

mixture of oil/water/gas is being sufficiently separated to allow for re-injection of the

water back into the environment and the production of separate oil and gas streams.

It is assumed that sand has been separated from this stream prior to being fed to this

separator model. Figure 8-3 shows the process flow diagram of the subsea separator

with some modeling details.

The model consists of two control valves, a gas mixer, a gas-liquid separator

(GLS), and a liquid-liquid separator (LLS). There is a control valve (V-1) on the

inlet to the GLS as well as a control valve (V-2) on the inlet to the LLS. The gas

outlet streams from each of the separators are combined in the gas mixer to form the

gas product stream. Uncertainty in the inputs to the process will be in the form of

196



the feed gas/water/oil composition. The full details of the model including the model

equations are discussed in detail in the following sections.

8.3.1 Model Assumptions

Since the model is meant to be a simple initial approach, there is a list of assumptions

that may not necessarily hold true for a more detailed model or for the physical

system. However, since various levels of complexity may be added to this model,

certain assumptions can be eliminated in the future. For the purposes of this chapter,

the following assumptions are made.

1. Ideal homogeneous mixtures in multiphase streams and the GLS.

2. No liquid entrainment in the gas phase.

3. Perfect oil-water phase separation in the LLS.

4. Unrestricted flow from the LLS implying constant phase volumes.

5. Horizontal separator vessels are horizontal cylinders with flat end-caps.

6. Oil and water phases remain in a homogeneous emulsion with only the gas phase

separating in the GLS.

8.3.2 Input Parameters

The various physical properties of the system can be specified by the user as input

parameters. The following tables contain the parameter values used in this study.

Fluid Properties
API 35 American Petroleum Institute gravity
SGG 0.6 specific gravity of gas
SGW 1.0 specific Gravity of water
ρ◦W 1000 density of water (kg/m3) at standard conditions

Table 8.1: The fluid properties used in the subsea separator model.

197



Physical Design Specifications

Cv1 1.0 V-1 sizing coefficient (kg/Pa1/2min)

Cv2 10.05 V-2 sizing coefficient (kg/Pa1/2min)
LGLS ∈ {4.0, 5.0} length (m) of GLS
RGLS ∈ {0.4, 0.6} radius (m) of GLS
PGLS 39.5 operating pressure (atm) of GLS
LLLS 5.0 length (m) of LLS
RLLS 0.8 radius (m) of LLS
PLLS 39.5 operating pressure (atm) of LLS
HLLS 0.6 liquid level in the LLS (m)

Table 8.2: The physical design specifications of the subsea separator model.

Input Conditions
Pwell 54.5 wellhead pressure (atm)
ξG1 ∈ [0, 1] mass fraction of gas, uncertain
ξW1 ∈ [0, 1] mass fraction of water, uncertain
ξO1 ∈ [0, 1] mass fraction of oil, uncertain

Table 8.3: The input conditions for the subsea separator model.

The following calculation for the specific-gravity of oil is used:

SGO =
141.5

131.5 + API
.

The specific gravity of the mixture at the wellhead is

SGmix = (ξG1/SGG + ξW1/SGW + ξO1/SGO)
−1.

Of course, the following constraint on the mixture at the wellhead must hold:

ξG1 + ξW1 + ξO1 = 1.

Control Settings
u1 ∈ [0, 1] valve V-1 opening
u2 ∈ [0, 1] valve V-2 opening

Table 8.4: The control settings for the subsea separator model.

198



8.3.3 Control Valve V-1

The variables associated with V-1 are:

ṁ1, ṁ2, P1, P2, ξG1, ξO1, ξW1, ξG2, ξO2, ξW2

where ṁi is the mass flowrate of Stream i in kg/min, Pi is the pressure of Stream i

in Pa, and ξji is the mass fraction of component j in Stream i. Similarly, the vector

of mass fractions can be expressed as ξi = (ξGi, ξWi, ξOi).

The model equations are:

P1 = Pwell
101325Pa

1atm
(specified from wellhead)

P2 = PGLS
101325Pa

1atm
(GLS specified design pressure)

ξ1 = ξ2 (specified, source of disturbance uncertainty)

The mass flow rate through the valve is given by

ṁ1 = ṁ2 = u1Cv1

√
P1 − P2

SGmix

(8.1)

where u1 is the control setting.

8.3.4 Gas-Liquid Separator

The variables associated with the GLS are:

ṁ2, ṁ3, ṁ4, P2, P3, P4, HGLS, ρ4, VGLS, ξ2, ξ3, ξ4,

where HGLS is the liquid level in the GLS in m, ρ4 is the density of the mixture in

Stream 4 in kg/m3, and VGLS is the liquid volume in the GLS in m3. The associated

model equations are given below.

199



The pressure relationships are given by:

P3 = P2 (specified by design)

P4 = P3 + ρ4gaHGLS (8.2)

The liquid volume in the GLS is given by:

VGLS = LGLS

(
(HGLS −RGLS)

√
2RGLSHGLS −H2

GLS +R2
GLS cos

−1

[
1− HGLS

RGLS

])
,

(8.3)

where ga is the acceleration of gravity in m/s2. The mass balances are:

ṁ2 = specified by wellhead

ṁ2 = ṁ3 + ṁ4

1 = ξG4 + ξW4 + ξO4

ξG2ṁ2 = ξG3ṁ3 + ξG4ṁ4

ξW2ṁ2 = ξW4ṁ4 (no water in the tops)

ξ2 = specified by wellhead composition

ξ3 = (1, 0, 0) (only gas in Stream 3)

Where the density of Stream 4 is given by:

ρ4 = ρ◦W (ξG4/SGG + ξW4/SGW + ξO4/SGO)
−1 (8.4)

Lastly, the model describing the gas-liquid separation is a simple exponential decay

ξG4 = ξG2 exp

[
−0.5 VGLS

ṁ4/ρ4

]
(8.5)

where the constant 0.5 is a separator performance factor and the quantity VGLS/(ṁ4/ρ4)

is a residence time of the liquid solution in the GLS.

200



8.3.5 Control valve V-2

The control valve V-2 is almost identical to V-1. The associated variables are:

P4, P5, ṁ4, ṁ5, ξ4, ξ5, ρ4.

The mass-balance equations are

ξ4 = ξ5

ṁ4 = ṁ5 = u2Cv2

√
P4 − P5

ρ4/ρ◦W

The outlet pressure is given by

P5 = PLLS
101325Pa

1atm
.

8.3.6 Liquid-Liquid Separator

The LLS is very similar to the GLS. One key difference is the liquid level in the LLS is

specified assuming no restrictions on exit stream flowrates. The associated variables

are

ṁ5, ṁ6, ṁ7, ṁ8, ξ5, ξ6, ξ7, ξ8, P8, VLLS, Voil, HLLS, ρ7,

where ρ7 is the density of the solution in Stream 7 in kg/m3, VLLS is the total liquid

volume in the LLS in m3, HLLS is the total liquid level in the LLS in m, and Voil is

the volume of just the oil/gas mixture in the LLS.

The liquid volume in the LLS is given by

VLLS = LLLS

(
(HLLS −RLLS)

√
2RLLSHLLS −H2

LLS +R2
LLS cos

−1

[
1− HLLS

RLLS

])
(8.6)

where the liquid height HLLS is specified. The volume of the oil/gas mixture phase

in the separator is given by the following relationship assuming an ideal mixture

Voil = VLLS

(
ṁ7

ρ7

ρ5
ṁ5

)
. (8.7)

201



The quantity ṁ7ρ5/ρ7ṁ5 is the volume fraction of the combined oil and gas exiting

in Stream 7 with respect to the total solution incoming in Stream 5. The product

with VLLS is therefore the volume of the oil/gas solution for which further gas-liquid

separation is taking place.

The mass-balance equations are:

ξ8 = (1, 0, 0) (only gas in Stream 8)

ξ6 = (0, 1, 0) (only water in Stream 6)

1 = ξG7 + ξO7 (only gas and oil in Stream 7)

ṁ5 = ṁ6 + ṁ7 + ṁ8

ξG5ṁ5 = ξG8ṁ8 + ξG7ṁ7

ξW5ṁ5 = ξW6ṁ6

ξW7 = 0 (no water in Stream 7).

Further gas-liquid separation is again being modeled as a simple exponential decay

ξG7 = ξG5 exp

[
−0.01 Voil

ṁ7/ρ7

]
(8.8)

where the constant 0.01 is a separator performance factor and the quantity Voil/ṁ7ρ7

is a residence time of the gas/oil mixture in the separator.

The density of the oil/gas mixture stream is given by

ρ7 = ρ◦W (ξG7/SGG + ξO7/SGO)
−1.

Since the liquid outlet streams have no restrictions to flow, their flow-pressure rela-

tionships can be ignored. The pressure in the gas stream 8 is specified:

P8 = PLLS
101325Pa

1atm
.

202



8.3.7 Gas Mixer

The gas mixer is simply a junction of two pure gas streams. The associated variables

are

ξ8, ξ3, ξ9, ṁ3, ṁ8, ṁ9, P3, P8, P9.

The associated equations are

ξ3 = ξ9

ṁ9 = ṁ3 + ṁ8

P9 = min{P3, P8}

8.3.8 Model Structure

The total size of the system ends up as 11 state variables, 1 uncertain parameter, and

2 control variables. The computational graph for the subsea separator model is shown

in Figure 8-4. It depicts how all the state variables, uncertainty parameters, control

variables, and intermediate variables are coupled through the model equations. The

corresponding occurrence matrix is shown in Figure 8-5 which depicts only how the

model equations depend on the state variables, which is most important for equation

solving.

8.4 Case Study

8.4.1 Pointwise Numerical Simulation

Pointwise numerical simulation was performed to study the behavior of the model over

a range of uncertainty parameter and control values using the JACOBIAN R⃝ process

simulator [112]. In effect, this resulted in a very coarse-grain view of the system under

varying input conditions and control actions. It should be noted that the gas mixer

model equations contain the min operator, which is nonsmooth. This does not pose

any problems for the JACOBIAN R⃝ solver, which can handle nonsmoothness, and

203



1
6

1
-

2
0

0
.6
/

5
4

*

5
6

*

1
7

-

1
8

0
.8
4
9
8
5
/

3
0

+

3
5

0
.6
/

5
5

+

5
7

*

7
10
.6
/

8
0

*

8
9

*

+

3
4

1
/

6
0

*

7
0

1
/

7
8

*

3
1+

3
3

0
.8
4
9
8
5
/ 6
90
.8
4
9
8
5
/

2
8

+

5
8

+

+

5
2

/

*
*

6
8

-

7
5

+
*

*

8
7

/

3
9

0
.6
/

4
31
.2
-

4
4

*

4
6

-0
.6

6
3

*9
.8
1

8
1*

8
4

+

9
0

+

+

7
7

-

7
9

+

7
6

-*
-

8
2+

2
6

*
1

6
6

*1
0
.0
5

+

1
9

1
/

6
1

*

2
2

+

2
1+

+

+

2
3

/1

2
4

/1
.5
1
6
4
3
e
+
0
6

2
5S
Q
R
T

2
7

*

*

2
9

-

*
*

+

+

3
2-1

3
7

+
3
6

+
+

+

3
8/1

0
0
0

5
1*

4
0

1
- 4
1A
C
O
S

4
2*0
.3
6

4
8

+*

4
5S
Q
R
T 4
7

*

*

+

4
9

*
5

5
0

*-
0
.5

*

*

5
3E
X
P

*

-

5
9

-

+

+

6
2

-

+

6
4*1

0
0
0

6
5S
Q
R
T

6
7

*

*

+

7
3

+
7
2

+
+

+

7
4

/1
0
0
0

8
6

*-
0
.0
3
4
4
3
3
7

+

+

-

8
3

-

+

+

8
5-1

*

8
8E
X
P

*

-

G
L
S

H
1
Gξ

4
Oξ

4
Gξ

1
u

 1
Wξ

 4
Wξ

3
m
&

4
m
&

2
u

8
m
&

7
Gξ

7
m
&

7
Oξ

6
m
&

Figure 8-4: The computational graph associated with the subsea separator model.
The square nodes represent all of the variables (including intermediates), the cir-
cle nodes represent intermediate expressions, and the hexagonal nodes represent the
model outputs.

204



1
x

1
h

2
h

3
h

4
h

5
h

6
h

7
h

8
h

9
h

10
h

11
h

2
x

3
x

4
x

5
x

6
x

7
x

8
x

9
x

10
x

11
x

Figure 8-5: The occurrence matrix associated with the subsea separator model.

since that particular equation is not required to solve the model, it does not introduce

any problems for the SIP algorithm either.

For this study, the mass fractions of the gas (ξG1) and water (ξW1) in the input

stream were varied holding the oil fraction (ξO1) constant. The physical interpretation

of this may be a gas bubble being produced from the wellhead. The gas fractions

of 0.35, 0.4, 0.45, and 0.5 were studied, and the oil fraction was set to 0.4. The

dimensions of the GLS were set to RGLS = 0.6m and LGLS = 5m. The control

actions were varied between 30% open and fully-opened positions in 5% increments.

A constraint was imposed that the gas carry-under (GCU), which is the fraction of

gas in the oil product stream, had to be less than (or equal to) 5%. The inherent

physical constraint that the liquid volume in the GLS could not be greater than the

total volume of the GLS vessel was imposed by the design. A coarse-grain view of the

operating envelope for each finite realization of gas fraction of the incoming stream

as a function of the control actions are shown in Figure 8-6. Each contour plot is the

result of running 196 steady-state simulations, taking a total time of approximately

205



Control Valve 1

C
o
n
tr

o
l 
V

a
lv

e 
2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10,0.05 0.35
G

GCU ξ =− ≤

0.05GCU >

Flooding

Control Valve 1

C
o
n
tr

o
l 
V

a
lv

e 
2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10,0.05 0.50
G

GCU ξ =− ≤

0.05GCU >

Flooding

Control Valve 1

C
o
n
tr

o
l 
V

a
lv

e 
2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10,0.05 0.40
G

GCU ξ =− ≤

0.05GCU >

Flooding

Control Valve 1

C
o
n
tr

o
l 
V

a
lv

e 
2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10,0.05 0.45
G

GCU ξ =− ≤

0.05GCU >

Flooding

Figure 8-6: The coarse-grain approximations of the operating envelope of the subsea
separator process model as a function of control actions for varying input compositions
(uncertainty).

45 seconds for each gas fraction.

It is apparent that for even relatively simple models, the process systems can

often exhibit complex nonconvex behavior. It is interesting to note that the region

of feasible operation of the subsea separator system is actively constrained by the

region where the GLS vessel floods. This suggests that the GLS performs optimally

when it is nearly flooded. This property has important physical, as well as numerical,

implications that will be discussed later.

In Chapter 2, it was stated that explicit enumeration (pointwise simulation) was

an inadequate procedure for guaranteeing robust feasibility of the process. It is not

only because pointwise numerical simulations are computationally expensive, but

because in order to certify robust feasibility, every realization of uncertainty (and

206



Control Valve 1

C
o
n
t
r
o
l 
V

a
lv

e
 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8-7: The feasible operating envelope for four realizations of uncertainty corre-
sponding to the subsea separator model is shown as the solid band.

controls) must be simulated. However, in order to guarantee the process does not

satisfy robust feasibility, it is sufficient to guarantee that at least one of the oper-

ating envelopes shown in Figure 8-6, explicitly enumerating every (infinite) control

realization, has an empty intersection with the control interval. This implies that for

some realization of uncertainty, there does not exist a feasible control setting such

that the performance/safety specification is satisfied and therefore the process does

not satisfy robust feasibility. The intersection of the feasible regions of the pointwise

simulations are shown in Figure 8-7. This region corresponds to the control settings

that are feasible for the four realizations of uncertainty simulated. In other words,

a control interval that intersects this region is guaranteed to have a nonempty inter-

section with the four operating envelopes considered in the pointwise simulation. In

fact this region corresponds to the control settings for which the design is feasible

(with respect to the four uncertainty realizations) even in the event that the control

valves cannot be adjusted. Although no conclusive information can be obtained from

this result, with respect to the four realizations of uncertainty, the system appears to

meet robust feasibility. In the next section, the robust simulation SIP (2.5) is solved

for this model and a mathematically rigorous and conclusive result regarding robust

feasibility is obtained.

207



8.4.2 Robust Simulation

Similar to the previous case study, the mass fraction of the gas in the feed stream

from the wellhead was considered to be uncertain. Likewise, the oil composition was

held constant. The controls simply correspond to the control valve positions. Stated

formally:

p = (ξG1),

u = (u1, u2),

z = (ξG4, ξW4, ξO4, ṁ3, ṁ4, HGLS, ξG7, ξO7, ṁ6, ṁ7, ṁ8).

Again, in order to avoid pump damage, the performance specification for the

model requires that the mass fraction of gas in the oil product stream (GCU) was less

than or equal to some specified amount, Gmax, which will be varied for the purpose

of demonstrating the algorithm. Stated formally, the performance specification is

g(z,u,p) = ξG7 − Gmax ≤ 0, where z is the vector of all the internal state variables,

such as flow rates and compositions of each stream. Since the simulation algorithm

solves the model for the state variables as implicit functions of the controls and

uncertainty parameters (represented as x : U×P → X), the performance specification

can be stated as the following nonlinear implicit function:

g(x(u,p),u,p) = xG7(u,p)−Gmax ≤ 0,

where xG7 is the relevant component of x representing the mass fraction of gas in the

oil product stream. Therefore, the robust simulation SIP (2.5) can be written for this

208



problem as:

η∗ = max
p∈P,η∈R

η

s.t. η ≤ xG7(u,p)−Gmax, ∀u ∈ U (8.9)

P = [0.35, 0.50]

U = [0, 1]× [0, 1],

or equivalently as:

−η∗ = min
p∈P,η∈R

−η

s.t. η − xG7(u,p) +Gmax ≤ 0, ∀u ∈ U (8.10)

P = [0.35, 0.50]

U = [0, 1]× [0, 1].

It is clear from Figure 8-6 that certain control valve settings lead to flooding of

the GLS. In other words, if the control valve V-2 was allowed to close too much and

the control valve V-1 was allowed to be open too much, the GLS would flood. This

phenomena has not only physical implications, but more importantly, numerical ones,

which were discussed in Section 8.2.1. The physical issue with this scenario is that the

GLS effectively becomes useless as no gas-liquid separation can occur. Numerically,

since the GLS was modeled as a horizontal cylinder, the model equations contain the

term cos−1[1−H/R], which is only defined on the set {H ∈ R : 0 ≤ H ≤ 2R}. Thus,

if the control valves are allowed to take values from fully-opened to fully-closed, it is

easy to produce scenarios with H > 2R, and numerically, there is a domain violation

of the cos−1 term and the model has no solution. When this situation was encountered

in the study from the previous section, with results depicted in Figure 8-6, the process

simulator simply fails, as expected. Such domain violations are the topic of future

research.

For this study, the valid interval from which HGLS may take values is [0, 2RGLS].

209



However, the model solution is an implicit function of the controls u and the uncertain

variable p, and therefore, the liquid level in the GLS is dependent on both u and

p. Since the level in the GLS is limited to the interval [0, 2RGLS], it is clear that

the implicit function x does not exist for every (u,p) ∈ U × P . Because of this,

Algorithm 4.1 may encounter three situations. The first situation is one where a

partition U l × P l is popped off the stack in which x exists for every point (u,p) ∈

U l × P l, after applying forward-backward constraint propagation. This situation is

of course no different than if x exists on all of U ×P . The second situation that may

be encountered is one where x doesn’t exist for any (u,p) ∈ U l × P l after applying

forward-backward constraint propagation. In this case, the subproblem is simply

labeled as infeasible and the partition U l × P l is discarded. The third situation

which may be encountered is one where x only exists for some (u,p) ∈ U l × P l

after applying forward-backward constraint propagation. The question arises of how

Algorithm 4.1 may address this situation. For the purposes of this thesis, when this

situation is encountered, relaxations of x are still constructed but since x does not

exist on all of U l × P l, the relaxations that are constructed are relaxations of x on

U l′ × P l′ ⊂ U l × P l, where x exists for every (u,p) ∈ U l′ × P l′ and does not exist

for any (u,p) ∈ (U l′ × P l′)∩ (U l × P l). In this case, relaxations of x do not exist for

(u,p) ∈ (U l′ × P l′) ∩ (U l × P l). The following example illustrates this idea.

Example 8.4.1. Consider x(p) = cos−1[1− p/2] on P = [−2, 6]. A factorable repre-

sentation is given by

v1 = p/2

v2 = 1− v1

v3 = cos−1 v2

Calculating the forward interval evaluation of x on P according to Section 8.2.1 results

210



 0

 0.5

 1

 1.5

 2

 2.5

 3

-2 -1  0  1  2  3  4  5  6
p

( )cx p

( )x p

( )Cx p

Figure 8-8: Convex and concave relaxations of x(p) = cos−1[1 − p/2] on P = [−2, 6]
which exist only for p ∈ [0, 4].

in:

V1 = [−2, 6]/2 = [−1, 3]

V2 = 1− [−1,−3] = [−2, 2]

V3 = cos−1 ([−2, 2] ∩ [−1, 1]) = cos−1 ([−1, 1]) = [0, π].

Furthermore, the results of Chapter 4 can be applied and relaxations of x on P can

be calculated. Of course, these relaxations are only guaranteed to exist for p ∈ [0, 4],

as Figure 8-8 illustrates.

If the bundle solver requires the evaluation of a function at a point in which it

doesn’t exist, the bundle solver simply fails. In the event that the bundle solver fails,

the lower bound from the interval evaluation is used as the lower bound on the node

and it is either fathomed or branched in the normal way. In essence, the problematic

regions of the search space are systematically discarded by the algorithm.

In order to get a sense of the effectiveness of each of the interval methods on

this problem, forward-backward constraint propagation technique was applied to the

211



X0 XFB XN

ξG4 [9.46305× 10−3, 0.36] [0.080707, 0.154937] [0.11869, 0.11869]
ξW4 [0.24, 0.375] [0.316898, 0.344735] [0.330492, 0.330492]
ξO4 [0.4, 0.625] [0.500327, 0.602395] [0.550819, 0.550819]
ṁ3 [0, 304.517] [205.261, 256.99] [231.61, 231.61]
ṁ4 [541.364, 845.881] [588.891, 640.62] [614.271, 614.271]
HGLS [0.462165, 0.7992] [0.546875, 0.647172] [0.59503, 0.59503]
ξG7 [8.6697× 10−3, 0.348991] [0.0762948, 0.148717] [0.113166, 0.113166]
ξO7 [0.651009, 0.99133] [0.851283, 0.923705] [0.886834, 0.886834]
ṁ6 [203.011, 203.011] [203.11, 203.11] [203.11, 203.11]
ṁ7 [338.352, 642.869] [338.352, 437.609] [381.528, 381.528]
ṁ8 [0, 304.517] [0, 73.4416] [29.7311, 29.7311]

Table 8.5: Forward-backward constraint propagation was applied with 100 iterations
to X0 resulting in the refined interval XFB. Interval-Newton with interval Gauss-
Seidel was then applied to XFB resulting in the refined interval XN after 5 iterations.

model1 with 100 iteration at the point p = (0.36) and u = (0.6, 0.8). The initial

interval X0, which is calculated automatically from physical information about the

problem, is shown in the second column of Table 8.5. Forward-backward constraint

propagation took 0.006 seconds to complete and the results are reported in the third

column of Table 8.5. Finally, (parametric) interval-Newton with interval Gauss-Seidel

was applied iteratively to the refined interval from the forward-backward constraint

propagation technique. Recall from Chapter 3 that this iteration will terminate in

finitely many iterations when using rounded interval arithmetic. Although this is

true, it is often unnecessary to continue iterating until this point since the resulting

interval may be unnecessarily precise. For this study, the intervals are said to be

converged when an absolute tolerance on the bounds of 10−9 is met. For this demon-

stration, interval-Newton converged after 5 iterations, taking 0.008 seconds. The

result of applying interval-Newton is shown in the last column of Table 8.5. It can be

seen that forward-backward constraint propagation was very effective in refining the

initial interval, however it failed to converge to degeneracy in 100 iterations. In fact,

forward-backward constraint propagation is nearly converged after 100 iterations and

no further refinement is seen after 200 iterations. However, interval-Newton is very

1The compact dimensions were used, LGLS = 4.0m and RGLS = 0.4m.

212



effective in further refining the interval returned from forward-backward constraint

propagation. It should be noted that interval-Newton applied to X0 is not effective

at all and simply returns X0.

For this model, considerable overestimation was encountered using interval anal-

ysis. In order to circumvent the issues that arise due to excessive overestimation, the

uncertainty interval P was subdivided and the robust simulation SIP was solved for

each subdivision of P . The uncertainty intervals considered were P 1 = [0.35, 0.3875],

P 2 = [0.3875, 0.425], P 3 = [0.425, 0.4625], and P 4 = [0.4625, 0.50]. In order to

demonstrate the effectiveness and applicability of the algorithm, four different ro-

bust simulation case studies were performed varying the size of the GLS and the

performance specification.

Case 1

The control interval U = [0.35, 0.8]2 was considered. The GLS dimensions were such

that RGLS = 0.6m, and LGLS = 5m. The performance specification was such that

Gmax = 0.05.

The robust simulation algorithm solved the problem in a total time of 3.35sec,

with a rigorous upper bound on η of −0.0104, implying η∗ ≤ 0. That is, for all

realizations of wellhead compositions within the intervals considered, there exists a

control setting from the interval considered such that the design meets the product

purity specification that no more than 5% of the oil product stream can be gas, in

the worst case.

Case 2

The same control interval and GLS dimensions as the previous case are considered.

The performance constraint was made much more strict with Gmax = 0.015.

The robust simulation algorithm solved the problem in a total time of 14.7 seconds,

with a rigorous upper bound on η of −1.25×10−3, implying η∗ ≤ 0. The solution time

was about twice as long for this case as compared to Case 1, with the more relaxed

performance specification. This is likely due to the fact that the feasible region for

213



this problem is significantly smaller than that of Case 1.

Case 3

The same control interval as the previous cases is used and the GLS dimensions

are such that RGLS = 0.4m and LGLS = 4m. These new dimensions result in the

GLS having roughly 36% of the volume of that in the previous two studies. The

performance specification is such that Gmax = 0.05. Intuitively, the smaller GLS

dimensions will result in the new design having reduced performance as compared to

the larger design. Therefore, it is expected that if this design is feasible, the feasible

region of the SIP will be much smaller than that of Case 1.

The robust simulation algorithm solved the problem in a total time of 598.3 sec-

onds with a rigorous upper bound on η of−5.77×10−3. Again, this means that η∗ ≤ 0,

implying that the design is feasible. The solution time of the algorithm suggests that

verifying robust feasibility of the more compact design is much more difficult than for

the original larger design. Again, this is likely due to the significantly smaller feasible

region of the SIP.

Case 4

The purpose of this final study is to demonstrate the behavior of the algorithm when

the design is not nearly as robust as that in the previous studies. The dimensions of

the GLS are the same as in Case 3. For this study, the control valve V-2 is stuck at

50% and the control valve V-1 will have limited movement between 30%-35%. The

performance specification will be such that Gmax = 0.05.

The robust simulation algorithm solved the problem in a total time of 25.8 seconds

with a rigorous lower bound on η of 1.32× 10−2, implying η∗ > 0. As expected, this

more compact design with extremely limited control actuation does not satisfy robust

feasibility. With regards to the solution time, the SIP algorithm performed favorably

for this study. This seems rather counterintuitive since guaranteeing infeasibility of

the design requires locating an SIP-feasible point that has a corresponding objective

function value that is greater than zero (such a point provides a rigorous lower bound

214



on η). However, for this problem, in order to guarantee infeasibility of the design,

it simply needs to verify infeasibility of the design for one of the four uncertainty

intervals. Therefore, although generating a rigorous lower bound on η that is greater

than zero may be computationally expensive (especially for a problem with such

a small SIP-feasible region), once it is done, the algorithm can terminate without

needing to solve the remaining SIPs for the other uncertainty intervals.

8.4.3 Algorithm Performance

Case n t (sec.) LBPs nLBP UBPs nUBP IPs nIP
1 2 1.675 2 19 1 1 2 6
2 3 3.684 3 24 2 1 3 8
3 2 149.58 2 16 1 1 2 2726
4 7 25.794 7 15 7 36 10 45

Table 8.6: The performance of the algorithm depicted in Figure 8-1 for each case.

The performance of the robust simulation algorithm varies wildly between cases.

Table 8.6 shows how the algorithm performed for each case in terms of the average

number of iterations taken by the robust simulation algorithm (n), the average so-

lution time (t), the average number of lower-bounding problems solved (LBPs), the

average number of branch-and-bound iterations taken to solve each lower-bounding-

problem (nLBP ), the average number of upper-bounding problems solved (UBPs), the

average number of branch-and-bound iterations taken to solve each upper-bounding

problem (nUBP ), the average number of inner programs solved (IPs), and the aver-

age number of branch-and-bound iterations taken to solve each inner program (nIP ).

Besides n and t, the values in Table 8.6 are rounded up to the nearest integer.

For Case 1 and Case 2, the algorithm is quite effective and performs as expected.

The algorithm takes roughly twice as long to solve Case 2 as it does to solve Case 1.

Again, this is likely because the feasible region is significantly smaller than that of

Case 1. You can see from the data in Table 8.6 that both the lower-bounding problem

and the inner program require slightly more effort to solve for Case 2 than for Case

1 but also that the robust simulation algorithm requires an extra iteration for Case

215



2 than for Case 1.

It is clear from Table 8.6 that Case 3 poses the most difficulty for the algorithm.

As can be seen from the performance numbers, the inner programs are taking many

more iterations as compared to the other cases. This could be due to many issues but

it is most likely due to the ineffectiveness of the interval methods to refine the bounds

on the state variables efficiently for this specific case. As a result, Algorithm 4.1 must

take many iterations before significant refinement of the variable bounds can occur.

That is, the bounds converge very slowly for this case, resulting in very expensive

inner programs. Although Case 4 is also considering the same separator dimensions

as Case 3, the algorithm performs very differently. Two likely reasons for this have

been identified. First, the numerical behavior of the model seems to be much more

favorable for the restricted controls. The second reason is that Case 4 is not robustly

feasible and the algorithm can verify this on P 1 and subsequently terminate.

8.5 Concluding Remarks

In this chapter, the problem of rigorous worst-case design of subsea production facil-

ities was addressed and solved using the methods developed throughout this thesis.

Since this problem was cast as a feasibility problem, it was identified that solving the

nonconvex implicit SIP to global optimality may not be necessary. In response, two

additional criteria were implemented in order to terminate the implicit SIP algorithm

if a rigorous guarantee on feasibility/infeasibility can be deduced.

Due to the complex behavior of process systems models, it was identified early on

that the overestimation encountered using interval analysis with these models may

be detrimental to calculating useful bounding information for implicit functions. To

combat this, an automatic forward-backward constraint propagation technique was

implemented to help refine interval bounding information required by the algorithm.

In order to demonstrate the effectiveness and performance of the algorithm on

the worst-case design of a subsea separator, a model was developed and four case

studies were performed. Overall, the algorithm performed favorably obtaining rigor-

216



ous guarantees on robust feasibility/infeasibility with relatively little effort for each

study.

217



218



Chapter 9

Conclusions, Future Work and

Opportunities

9.1 Interval Methods

In Chapter 3 the idea of parametric interval methods was discussed and parameter-

ized generalized bisection was introduced. The key contribution was a method for

bounding rigorously all solution branches of parameterized systems. In order to verify

existence and uniqueness of solution branches within an interval, a sharper existence

and uniqueness test was developed since the classical inclusion test was difficult and

often impossible to satisfy for parameterized systems. However, even with the devel-

opment of this more effective existence and uniqueness test, there are still numerous

examples where existence and uniqueness cannot be verified (the test can never be

satisfied) and parameterized generalized bisection is ineffective (e.g. the algorithm

returns many interval boxes for which it was unable to determine any information).

In addition, these systems in which existence and uniqueness tests fail often exhibit

convergence problems when interval Newton-type methods are applied (i.e. as P is

partitioned to degeneracy, X does not converge to a degenerate interval).

Future work in this area should focus on developing even more effective existence

and uniqueness tests, if they exist, as well as developing a method to identify a priori

systems with convergence problems (i.e. interval iterations do not produce degenerate

219



intervals even as the parameter interval is partitioned to degeneracy). In both Chap-

ter 4 and Chapter 8, parametric interval-Newton was combined with other interval

methods to overcome convergence problems that were encountered when paramet-

ric interval-Newton was applied on its own. In Chapter 4, both forward-backward

constraint propagation as well as the linear-programming contractor method were ap-

plied. In Chapter 8, forward-backward constraint propagation was employed along-

side parametric interval-Newton. Although forward-backward constraint propaga-

tion is extremely inexpensive, the linear-programming contractor method is rather

expensive as it requires the solution of 2nx LPs at each iteration of the B&B algo-

rithm. By identifying when convergence problems will be encountered, it may be

possible to employ effective interval contraction methods selectively. For instance,

the reactor-separator-recycle system in Chapter 4 has regions of the parameter space

where parametric interval-Newton is effective on its own but completely ineffective in

other regions on its own.

9.2 Relaxations of Implicit Functions

In Chapter 4, methods for constructing convex and concave relaxations of implicit

functions were developed. The methods are iterative in nature and rely on the ability

to calculate appropriate interval bounds. Similarly, in order to guarantee conver-

gence of the B&B algorithm, the interval bounds must converge to degeneracy as

the parameter interval is partitioned to degeneracy. Therefore, relaxations of implicit

functions suffer from the same pitfalls identified above.

Interestingly, the number of iterations performed for constructing relaxations has a

drastic impact on their tightness for some problems whereas there is no improvement

after a single iteration for other problems. It may be worthwhile to explore this

behavior further and develop a method to identify a priori (possibly per node) how

many iterations will be required to construct tight relaxations. This would ensure

that an unnecessary number of iterations aren’t being taken or that too few iterations

aren’t being taken; both scenarios would be very inefficient and negatively affect the

220



performance of the B&B algorithm.

Analysis of the convergence order and node clustering effect when used within the

B&B algorithm [19] may be also worth exploring. It is expected that the convergence

order for relaxations of implicit functions is between first- and second-order and that

in general, problems solved using the approach in Chapter 4 will suffer from clustering.

Lastly, in Chapter 6, the uniqueness assumptions of Chapter 4 were relaxed. It was

shown that the theoretical results surrounding the construction of convex and concave

relaxations of implicit functions still hold. Furthermore, in Chapter 8, the idea of an

implicit function only existing on part of the parameter space was mentioned. These

results are clearly still in their infancy and it would be interesting to further explore

these ideas which may be more applicable, in general, to process systems examples.

9.3 Global Optimization of Large Sparse Systems

The purpose of Chapter 5 was primarily to demonstrate the application of Section

4.3.3 on large sparse systems as a “jumping-off point”. Using a proper computer

implementation of the algorithm, streamlined specifically for large sparse systems, it

is expected that the relaxations of Section 4.3.3 will be ideal for solving problems of

global optimization of large sparse systems in the general case.

In [101], the author states that for certain problem structures, interval Gauss elim-

ination will yield the hull and will be even more effective than interval Gauss-Seidel in

these cases. It is expected that these results translate directly to the construction of

relaxations and that the direct approach of [88] will be more effective for constructing

tight relaxations than the method in Section 4.3.3 for some problem structures. Since

it was shown that the direct approach scales poorly with the dimension of the system,

identifying the proper problem structure a priori may allow the user to switch be-

tween relaxation techniques when necessary. Furthermore, this may enable the user

to determine situations where the added cost of the direct method may be outweighed

by the tightness of the relaxations.

221



9.4 Robust Simulation and Design

In Chapter 8, the robust feasibility problem was solved for the subsea separator

model for various scenarios. That is, the question “Given the worst-case realization

of uncertainty (from the interval of uncertainty), does there exist a control (from

the interval of control values) such that the performance/safety constraint will be

satisfied?” Throughout this thesis, only a single performance/safety constraint was

considered. In [87], Mitsos briefly comments on how the SIP algorithm could possi-

bly be extended to systems with more than one semi-infinite constraint. It would be

of interest to explore this idea and develop a modification to Algorithm 7.1 to effi-

ciently handle multiple implicit semi-infinite constraints. Thus enabling us to address

worst-case design and feasibility problems with more than one performance/safety

constraint.

As mentioned in the footnotes of Chapter 2, an idea complementary to the idea of

the operating envelope is the concept of flexibility. It may also be of interest to address

the flexibility of the process and explore what the largest interval of uncertainty can

be such that a feasible control still exists. This is what is known as the “inverse

problem” and can be formulated as the following program:

max
δ∈Rn

f(δ)

s.t. max
p∈P (δ)

g(x(u,p),u,p) ≤ 0, ∀u ∈ U (9.1)

where f is simply some objective defining how to maximize the effect of the uncer-

tainty growth parameter δ and the uncertainty interval is now taken as the interval-

valued mapping P : Rn → IRnp . This problem is known as a generalized semi-infinite

program (GSIP) with implicit functions embedded. Algorithms for solving GSIPs

with explicit functions have been discussed previously [79, 133, 140]. The next step

is to make the extension from previous works, such as [79], to GSIPs with implicit

functions embedded to solve (9.1).

222



Appendix A

A Note on Selective Branching

The purpose of this appendix is to present the argument that in order for the selective

branching algorithm of [38] to incorporate equality constraints, they must be in the

form of a parametric linear system. Consider the equality constraints

h(z,p) = 0, (z,p) ∈ X × P,

which can be expressed as the following inequality constraints

hi(z,p) ≤ 0, i = 1, . . . , nx

−hi(z,p) ≤ 0, i = 1, . . . , nx.

However, according to [38], each inequality constraint (expressed generically as w)

must be able to be expressed as

w(z,p) = wA(z) +
∑
j∈Q

wBj (z)w
C
j (p) + wD(p) (A.1)

where Q is an index set indicating the bilinear interactions between functions of z

and functions of p. The functions wA and wBj , j ∈ Q, must be convex on X and

the functions wCj , j ∈ Q, and wD need to be continuous on P . For the sake of

argument, suppose that functions of both z and p exist only as bilinear interactions

223



in the expressions for h. If this is not the case—say if z and p are arguments of an

intrinsic transcendental function—then the method of [38] may not applicable to this

system unless it can be reformulated so its functions fit the form of (A.1). Without

loss of generality, choose some i = 1, . . . , nx. Then the following must hold

hi(z,p) = wA(z) +
∑
j∈Q

wBj (z)w
C
j (p) + wD(p) ≤ 0

−hi(z,p) = −wA(z)−
∑
j∈Q

wBj (z)w
C
j (p)− wD(p) ≤ 0.

By the requirements laid out in [38], both wA and −wA must be convex. Therefore

wA must be affine on X. Now consider the middle “bilinear interactions” term. In

order to satisfy Conditions W 6 in [38], for each j ∈ Q, either wBj is affine or wCj ≥ 0.

Suppose we have wBj affine. Then −wBj is also affine. Now, suppose wBj is convex

nonaffine, then wCj ≥ 0 on P . Since wBj is nonaffine it must be true that wCj ≤ 0

on P since −wBj is concave nonaffine and would otherwise violate Conditions W 1 in

[38]. Since we have both wCj ≥ 0 and wCj ≤ 0 on P , then wCj = 0 on P , implying

that there can be no bilinear interaction. Therefore, if Q is the index set indicating

bilinear interactions between functions of z and functions of p, then wBj , j ∈ Q, is

affine. Since both wBj , j ∈ Q, and wA are affine on X, then the system is in the form

of a parametric linear system A(p)z = b(p). This completes the argument.

224



Appendix B

A Note on Solving Explicit SIPs

In Chapter 7, it was mentioned that the SIP algorithm of [87] could potentially be

applied to solve (7.1) without reformulating as an implicit SIP. In that section, it

is stated that “this strategy is not advisable since the algorithm would then force

the number of variables in the upper- and lower-bounding subproblems to increase

with each iteration.” Here, we demonstrate this result. Again, the lower-bounding

problem is the result of reducing the SIP to an NLP by considering only a finite

number of constraints corresponding to specific realizations of p. Here, each of these

realizations will be denoted as pi with i ∈ ILBD, where ILBD is a finite index set.

This is analogous to the notation in Chapter 7 where PLBD was a finite set whose

elements correspond to specific realizations of p. Then, for each pi, i ∈ ILBD, there

is a corresponding zi that is dependent on y. Thus, the lower-bounding problem can

be stated as:

fLBD = min
y,zi, i∈ILBD

f(y)

s.t. g(zi,y,pi) ≤ 0, ∀i ∈ ILBD

h(zi,y,pi) = 0, ∀i ∈ ILBD.

From this formulation, it is clear to see how as ILBD grows with each iteration, so

does the number of variables that the optimizer sees. Although the inner-program is

225



not plagued with this issue, the upper-bounding problem is as well. Thus, at each

iteration of the SIP algorithm, three global optimization subproblems must be solved;

two of which become increasingly larger and therefore prohibitively more expensive

to solve.

226



Appendix C

Kinetic Mechanism Experimental

Data

227



ti I id ti I id ti I id ti I id ti I id
0.01 66.0952 0.41 59.619 0.81 28.4429 1.21 18.1524 1.61 12.4238
0.02 104.762 0.42 58.2857 0.82 28.3476 1.22 18.1952 1.62 12.5143
0.03 110.333 0.43 57.4762 0.83 27.5429 1.23 17.8476 1.63 12.9143
0.04 114.905 0.44 56.4762 0.84 27.4333 1.24 17.9095 1.64 12.5714
0.05 122.238 0.45 55.8095 0.85 27.6048 1.25 17.5048 1.65 13.3667
0.06 125.429 0.46 54.5238 0.86 27.1762 1.26 17.500 1.66 13.2286
0.07 125.429 0.47 53.000 0.87 27.200 1.27 15.9619 1.67 13.7905
0.08 123.476 0.48 51.8571 0.88 26.4333 1.28 16.2095 1.68 13.7571
0.09 121.286 0.49 50.4286 0.89 25.7619 1.29 16.181 1.69 13.5905
0.10 118.857 0.50 49.381 0.90 24.8095 1.30 15.6952 1.70 12.9667
0.11 117.667 0.51 47.9524 0.91 24.7429 1.31 15.7095 1.71 12.981
0.12 116.143 0.52 47.3714 0.92 24.2857 1.32 15.4619 1.72 12.8857
0.13 113.857 0.53 46.8952 0.93 24.1714 1.33 15.9476 1.73 12.919
0.14 111.571 0.54 46.4857 0.94 23.5667 1.34 16.000 1.74 13.0143
0.15 108.81 0.55 45.9048 0.95 23.5476 1.35 16.1952 1.75 13.0095
0.16 105.952 0.56 45.0762 0.96 23.3952 1.36 16.1143 1.76 12.3857
0.17 104.048 0.57 44.3238 0.97 22.919 1.37 15.7429 1.77 12.5571
0.18 102.048 0.58 43.4143 0.98 22.3095 1.38 15.5762 1.78 12.3429
0.19 100.143 0.59 43.5429 0.99 21.8048 1.39 15.7048 1.79 12.7571
0.20 98.5238 0.60 42.3619 1.00 21.2857 1.40 15.8095 1.80 12.681
0.21 96.2381 0.61 41.8381 1.01 21.2048 1.41 15.6667 1.81 12.5429
0.22 94.381 0.62 40.2381 1.02 20.8429 1.42 14.9048 1.82 12.1857
0.23 91.6667 0.63 39.1286 1.03 20.4429 1.43 14.5857 1.83 12.7905
0.24 89.5714 0.64 38.7857 1.04 20.0048 1.44 14.7524 1.84 12.5571
0.25 87.1429 0.65 37.081 1.05 19.9381 1.45 14.7571 1.85 12.8429
0.26 84.8571 0.66 36.9524 1.06 19.500 1.46 14.9762 1.86 12.5476
0.27 83.4286 0.67 36.581 1.07 19.8667 1.47 14.5333 1.87 12.5714
0.28 81.1905 0.68 36.281 1.08 18.9333 1.48 14.5524 1.88 12.3762
0.29 78.9048 0.69 35.3476 1.09 19.1381 1.49 14.0143 1.89 11.9952
0.30 77.0476 0.70 34.8905 1.10 18.9619 1.50 13.6286 1.90 11.4571
0.31 75.4762 0.71 34.1667 1.11 18.5476 1.51 13.4429 1.91 11.300
0.32 73.4762 0.72 33.6714 1.12 17.9048 1.52 13.4667 1.92 11.1524
0.33 71.8095 0.73 32.9667 1.13 17.7571 1.53 13.319 1.93 11.681
0.34 70.6667 0.74 31.8429 1.14 18.5333 1.54 12.9333 1.94 11.619
0.35 68.381 0.75 31.5429 1.15 18.3762 1.55 13.1238 1.95 11.9048
0.36 67.3333 0.76 31.1476 1.16 18.3571 1.56 12.7476 1.96 12.000
0.37 65.0952 0.77 30.9905 1.17 18.3286 1.57 12.9333 1.97 12.0762
0.38 63.7143 0.78 29.9571 1.18 18.2762 1.58 13.0714 1.98 11.9143
0.39 62.0476 0.79 29.1333 1.19 18.3952 1.59 13.0714 1.99 11.7619
0.40 60.8571 0.80 28.7857 1.20 17.5952 1.60 12.7619 2.00 11.5333

Table C.1: Experimental data for the kinetic mechanism example.

228



Bibliography

[1] G. S. Abdoulaev, K. Ren, and A. H. Hielscher. Optical tomography as a PDE-
constrained optimization problem. Inverse Problems, 21:1507, 2005.

[2] C. S. Adjiman and C. A. Floudas. Rigorous convex underestimators for general
twice-differentiable problems. Journal of Global Optimization, 9:23–40, 1996.

[3] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, Inc., New York, 1983.

[4] J. C. Alexander and J. A. Yorke. The homotopy continuation method: nu-
merically implementable topological procedures. Transactions of the American
Mathematical Society, 242:271–284, 1978.

[5] A. Baharev, L. Kolev, and E. Rév. Computing multiple steady states in
homogeneous azeotropic and ideal two-product distillation. AIChE Journal,
57(6):1485–1495, June 2011.

[6] S. Balendra and I. D. L. Bogle. Modular global optimisation in chemical engi-
neering. Journal of Global Optimization, 45(1):169–185, 2009.

[7] K. J. Beers. Numerical Methods for Chemical Engineering. Cambridge Univer-
sity Press, Cambridge, 2007.

[8] R. E. Bellman. Dynamic Programming. Princeton University Press, New Jersey,
1957.

[9] R. E. Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[10] R. E. Bellman and L. A. Zadeh. Decision-making in a fuzzy environment.
Management Science, 17:141–161, 1970.

[11] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and appli-
cations. Math. Program, Ser. B(92):453–480, Feb 2002.

[12] C. Bendtsen and O.Stauning. FADBAD, a flexible C++ package for automatic
differentiation. Technical Report 1996-x5-94, Technical University of Denmark,
1996.

[13] B. Bhattacharjee, W. H. Green Jr., and P. I. Barton. Interval methods for
semi-infinite programs. Comp. Opt. and App., 30:63–93, 2005.

229



[14] B. Bhattacharjee, P. Lemonidis, W. H. Green Jr., and P. I. Barton. Global
solution of semi-infinite programs. Math. Program, 103:283–307, 2005.

[15] C.G. Bianco and A. Piazzi. A hybrid algorithm for infinitely constrained opti-
mization. International Journal of Systems Science, 32(1):91–102, 2001.

[16] D. Biello. One year after BP oil spill, at least 1.1 million barrels still missing.
Scientific American, April 25 2011.

[17] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer
Series in Operations Research and Financial Engineering. Springer, Heidelberg,
second edition, 2011.

[18] J. W. Blankenship and J. E. Falk. Infinitely constrained optimization problems.
J. Optim. Theory and App., 19(2):261–281, June 1976.

[19] A. Bompadre and A. Mitsos. Convergence rate of McCormick relaxations. Jour-
nal of Global Optimization, 52(1):1–28, 2012.

[20] I. Bouchouev and V. Isakov. Uniqueness, stability and numerical methods for
the inverse problem that arises in financial markets. Inverse Problems, 15:95–
116, 1999.

[21] BP oil spill seriously harmed deep-sea corals, scientists warn. The Guardian,
March 26 2012.

[22] H. Bronnimann, G. Melquiond, and S. Pion. The design of the Boost interval
arithmetic library. Theoretical Computer Science, 351(1):111–118, 2006.

[23] James V. Burke and Michael L. Overton. Variational analysis of non-Lipschitz
spectral functions. Mathematical Programming, 90:317–351, 2001.

[24] R. P. Byrne and I. D. L. Bogle. Global optimization of constrained non-convex
programs using reformulation and interval analysis. Computers & Chemical
Engineering, 23:1341–1350, 1999.

[25] R. P. Byrne and I. D. L. Bogle. Global optimization of modular process flow-
sheets. Ind. Eng. Chem. Res., 39:4296–4301, 2000.

[26] B. Chachuat. MC++: A versatile library for McCormick relaxations and Taylor
models. http://www3.imperial.ac.uk/people/b.chachuat/research.

[27] B. Chandran and H. Balakrishnan. A dynamic programming algorithm for ro-
bust runway scheduling. Proceedings of the 2007 American Control Conference,
pages 1161–1166, July 2007.

[28] S. C. Chapra and R. P. Canale. Numerical Methods for Engineers. McGraw-Hill,
New York, fifth edition, 2006.

230



[29] C. Chatfield. Model uncertainty, data mining and statistical inference. J. Royal
Statistical Society, 158(3):419–466, 1995.

[30] L. Cheng, E. Subrahmanian, and A. W. Westerberg. Design and planning
under uncertainty: Issues on problem formulation and solution. Comp. and
Chem. Eng., 27:781–801, 2003.

[31] H. N. Cofer and M. A. Stadtherr. Reliability of iterative linear equation solvers
in chemical process simulation. Comp. and Chem. Eng., 20(9):1123–1132, 1996.

[32] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matri-
ces. In Proceedings 24th National Conference of the Association for Computing
Machinery, New Jersey, 1969. Brandon Press.

[33] D. Draper. Assessment and propagation of model uncertainty. J. Royal Statis-
tical Society, 57(1):45–97, 1995.

[34] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford Scientific Publications, Oxford, 1992.

[35] B. Dupire. Pricing with a smile. Risk, 7:18–20, 1994.

[36] H. Egger and H. W. Engl. Tikhonov regularization applied to the inverse
problem of option pricing: convergence analysis and rates. Inverse Problems,
21:1027, 2005.

[37] L. El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems
with uncertain data. SIAM Journal on Matrix Analysis and Applications,
18(4):1035–1064, 1997.

[38] T. G. Epperly and E. N. Pistikopoulos. A reduced space branch and bound
algorithm for global optimization. Journal of Global Optimization, 11:287–311,
1997.

[39] W. R. Esposito and C. A. Floudas. Global optimization for the parameter es-
timation of differential-algebraic systems. Industrial and Engineering Chemical
Research, 39:1291–1310, 2000.

[40] F. Facchinei and J. S. Pang. Finite-Dimensional Variational Inequalities and
Complementarity Problems. Springer, New York, 2003.

[41] J. E. Falk and K. Hoffman. A nonconvex max-min problem. Naval Research
Logistics Quarterly, 24(3):441–450, 1977.

[42] J. E. Falk and R. M. Soland. An algorithm for separable nonconvex program-
ming problems. Management Science, 15(9):550–569, 1969.

[43] C. A. Floudas, Z. H. Gumus, and M. G. Ierapetritou. Global optimization in
design under uncertainty: Feasibility test and flexibility index problems. Ind.
Eng. Chem. Res., 40(20):4267–4282, 2001.

231



[44] C. A. Floudas and O. Stein. The adaptive convexification algorithm: A feasible
point method for semi-infinite programming. SIAM J. Optim., 18(4):1187–1208,
2007.

[45] Fukushima faced 14-metre tsunami. World Nuclear News, March 23 2011.

[46] D. M. Gay. Perturbation bounds for nonlinear equations. SIAM Journal on
Numerical Analysis, 18(4):654–663, 1981.

[47] D. M. Gay. Computing perturbation bounds for nonlinear algebraic equations.
SIAM Journal on Numerical Analysis, 20(3):638–651, 1983.

[48] P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for
large-scale constrained optimization. SIAM Review, 47(1):99–131, 2005.

[49] A. Griewank and A. Walther. Evaluating Derivatives. Society for Industrial
and Applied Mathematics, Philadelphia, PA, second edition, January 2008.

[50] Andreas Griewank and George F. Corliss, editors. Automatic Differentiation
of Algorithms: Theory, Implementation, and Application. SIAM, Philadelphia,
1992.

[51] I. E. Grossmann and R. W. H. Sargent. Optimum design of chemical plants
with uncertain parameters. AIChE Journal, 24(6):1021–1028, November 1978.

[52] K. P. Halemane and I. E. Grossmann. Optimal process design under uncertainty.
AIChE Journal, 29(3):425–433, May 1983.

[53] E. R. Hansen. A globally convergent interval method for computing and bound-
ing real roots. BIT, 18:415–424, 1978.

[54] E. R. Hansen and R. I. Greenberg. Interval Newton methods. Applied Mathe-
matics and Computation, 12:89–98, 1983.

[55] E. R. Hansen and S. Sengupta. Bounding solutions of systems of equations
using interval analysis. BIT, 21:203–211, 1981.

[56] E. R. Hansen and G. W. Walster. Global Optimization Using Interval Analysis.
Marcel Dekker, New York, second edition, 2004.

[57] J. Herron. No closure yet on BP oil spill costs. The Wall Street Journal,
November 2 2010.

[58] R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods,
and applications. SIAM Review, 35(3):380–429, September 1993.

[59] R. Horst. A general class of branch-and-bound methods in global optimization
with some new approaches for concave minimization. Journal of Optimization
Theory and Applications, 51(2):271–291, November 1986.

232



[60] R. Horst. Deterministic global optimization with partition sets whose feasibility
is not known: Application to concave minimization, reverse convex constraints,
DC-programming, and Lipschitzian optimization. Journal of Optimization The-
ory and Applications, 58(1):11–37, July 1988.

[61] R. Horst and N. V. Thoai. Conical algorithm for the global minimization of
linearly constrained decomposable concave minimization problems. Journal of
Optimization Theory and Applications, 74:469–486, 1992.

[62] R. Horst and N. V. Thoai. Constraint decomposition algorithms in global op-
timization. Journal of Global Optimization, 5:333–348, 1994.

[63] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer,
Berlin, third edition, 1996.

[64] M. G. Ierapetritou, J. Acevedo, and E. N. Pistikopoulos. An optimization
approach for process engineering problems under uncertainty. Comp. and Chem.
Eng., 20(6-7):703–709, 1996.

[65] G. C. Itle, A. G. Salinger, R. P. Pawlowski, J. N. Shadid, and L. T. Biegler.
A tailored optimization strategy for PDE-based design: application to a CVD
reactor. Computers and Chemical Engineering, 28(3):291–302, 2004.

[66] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis.
Springer-Verlag, London, 2001.

[67] P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons,
Chichester, second edition, 1994.

[68] R. B. Kearfott. Abstract generalized bisection and a cost bound. Mathematics
of Computation, 49(179):187–202, 1987.

[69] R. B. Kearfott. Preconditioners for the interval Gauss-Seidel method. SIAM
Journal on Numerical Analysis, 27(3):804–822, 1990.

[70] R. B. Kearfott. Rigorous Global Search: Continuous Problems. Kluwer Aca-
demic Publishers, Boston, 1996.

[71] D. S. Kirby and O. Fiksen. A dynamic optimisation model for the behaviour
of tunas at ocean fronts. Fisheries Oceanography, 9:328–342, 2000.

[72] O. Knüppel. PROFIL/BIAS—a fast interval library. Computing, 53(3-4):277–
287, September 1994.

[73] A. C. Kokossis and C. A. Floudas. Synthesis of isothermal reactor-separator-
recycle systems. Chemical Engineering Science, 46:1361–1383, 1991.

[74] L. V. Kolev. Automatic computation of a linear interval enclosure. Reliable
Computing, 7:17–28, 2001.

233



[75] L. V. Kolev and I. P. Nenov. Cheap and tight bounds on the solution set of
perturbed systems of nonlinear equations. Reliable Computing, 7:399–408, 2001.

[76] R. Krawczyk. Newton-algorithmen zur bestimmung con nullstellen mit fehler-
schranken. Computing, 4:187–201, 1969.

[77] R. Krawczyk. Interval iterations for including a set of solutions. Computing,
32:13–31, 1984.

[78] B. M. Kwak and Jr. E. J. Haug. Optimum design in the presence of parametric
uncertainty. Journal of Optimization Theory and Applications, 19(4):527–546,
1976.

[79] P. Lemonidis. Global Optimization Algorithms for Semi-Infinite and Generalized
Semi-Infinite Programs. PhD thesis, MIT, 2008.

[80] Y. Lin and Mark A. Stadtherr. Advances in interval methods for deterministic
global optimization in chemical engineering. Journal of Global Optimization,
29(3):281–296, July 2004.

[81] A. G. Little. Pumped up: Chevron drills down 30,000 feet to tap oil-rich Gulf
of Mexico. Wired Magazine, 15(9), October 2007.

[82] M. Lopez and G. Still. Semi-infinite programming. European Journal of Op.
Res., 180:491–518, 2007.

[83] L. Luksan and J. Vlcek. Algorithms for non-differentiable optimization. ACM
Transactions on Mathematical Software, 27(2):193–213, June 2001.

[84] R. K. Malik and R. R. Hughes. Optimal design of flexible chemical processes.
Computers and Chemical Engineering, 3:473–485, 1979.

[85] G. P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part I-convex underestimating problems. Math. Program, 10:147–
175, 1976.

[86] C. Miranda. Un’osservatione su un teorema di brower. Boll. Un. Mat. Ital.,
3:5–7, 1940.

[87] A. Mitsos. Global optimization of semi-infinite programs via restriction of the
right-hand side. Optimization, 60(10-11):1291–1308, 2011.

[88] A. Mitsos, B. Chachuat, and P. I. Barton. McCormick-based relaxations of
algorithms. SIAM J. Optim., 20(2):573–601, December 2009.

[89] A. Mitsos, P. Lemonidis, and P. I. Barton. Global solution of bilevel programs
with a nonconvex inner program. Journal of Global Optimization, 42(4):475–
513, 2008.

234



[90] A. Mitsos, P. Lemonidis, C. K. Lee, and P. I. Barton. Relaxation-based bounds
for semi-infinite programs. SIAM J. Optim, 19(1):77–113, February 2008.

[91] R. E. Moore. A test for existence of solutions to nonlinear systems. SIAM
Journal on Numerical Analysis, 14(4):611–615, 1977.

[92] R. E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadel-
phia, 1979.

[93] R. E. Moore and J. B. Kioustelidis. A simple test for accuracy of approximate
solutions to nonlinear (or linear) systems. SIAM Journal on Numerical Analysis,
17(4):521–529, 1980.

[94] A. P. Morgan. A method for computing all solutions to systems of polynomials
equations. ACM Transactions on Mathematical Software, 9(1):1–17, 1983.

[95] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-
scale systems. Operations Research, 43(2):264–281, 1995.

[96] J. R. Munkres. Analysis On Manifolds. Westview Press, Boulder, CO, 1991.

[97] B. A. Murtagh and M. A. Saunders. MINOS 5.5 user’s guide. Technical report,
Stanford University, 1983.

[98] L. D. Muu and W. Oettli. Combined branch-and-bound and cutting plane
methods for solving a class of nonlinear programming problems. Journal of
Global Optimization, 3:377–391, 1993.

[99] A. Neumaier. The enclosure of solutions of parameter dependent systems, pages
269–286. Reliability in Computing. Academic Press, Inc., San Diego, CA, 1988.

[100] A. Neumaier. Rigorous sensitivity analysis for parameter-dependent systems
of equations. Journal of Mathematical Analysis and Applications, 144:16–25,
1989.

[101] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, 1990.

[102] N. Nishida, A. Ichikawa, and E. Tazaki. Synthesis of optimal process systems
with uncertainty. Ind. Eng. Chem., Process Des. Develop., 13(3):209–214, 1974.

[103] Deepwater Gulf of Mexico 2009: Interim report of 2009 highlights. 2009. OCS
Report MS2009-016, US Dept. of the Interior, Minerals Management Service.

[104] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations
in Several Variables. Computer Science and Applied Mathematics. Academic
Press, Inc., Boston, 1970.

[105] A. T. Phillips and J. B. Rosen. A parallel algorithm for constrained concave
quadratic global optimization. Mathematical Programming, 42:421–448, 1988.

235



[106] E. D. Popova. On the solution of parametrised linear systems, pages 127–138.
Scientific Computing Validated Numerics Interval Methods. Kluwer Academic
Publishers, Boston, 2001.

[107] E. D. Popova. Parametric interval linear solver. Numerical Algorithms, 37:345–
356, 2004.

[108] E. D. Popova and W. Kraämer. Parametric fixed-point iteration implemented
in C-XSC. Technical report, Wissenschaftliches Rechnen/Softwaretechnologie,
2003.

[109] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Mathematics and its Applications. Ellis Horwood Limited, 1984.

[110] R. Reemtsen and S. Görner. Numerical Methods for Semi-Infinite Program-
ming: A Survey. Nonconvex Optimization and Its Applications: Semi-Infinite
Programming. Kluwer Academic Publishers, Boston, 1998.

[111] Rembert Reemtsen and Jan-J. Rückmann, editors. Nonconvex Optimization
and Its Applications: Semi-Infinite Programming. Kluwer Academic Publishers,
Boston, 1998.

[112] RES Group. JACOBIAN Process Simulator.
www.openbio.resgroupsoftware.com/jacobian.html.

[113] W. C. Rheinboldt. Computation of critical boundaries on equilibrium manifolds.
SIAM Journal on Numerical Analysis, 19(3):653–669, 1982.

[114] W. C. Rheinboldt. On the computation of multi-dimensional solution manifolds
of parametrized equations. Numerische Mathematik, 53:165–181, 1988.

[115] W. C. Rheinboldt and J. V. Burkardt. A locally parameterized continuation
process. ACM Transactions on Mathematical Software, 9(2):215–235, 1983.

[116] R. E. Rosenthal. GAMS–A user’s manual. GAMS Development Corp., Wash-
ington DC, January 2012.

[117] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, New York, third
edition, 1976.

[118] S.M. Rump. Rigorous sensitivity analysis for systems of linear and nonlinear
equations. Mathematics of Computation, 54(190):721–736, 1990.

[119] S.M. Rump. Verification methods for dense and sparse systems of equations.
In Topics in Validated Compuations, Topics in Validated Compuations, pages
63–136. Elsevier, 1994.

[120] H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global opti-
mization. Journal of Global Optimization, 8(2):107–138, March 1996.

236



[121] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,
2nd edition, 2003.

[122] N. V. Sahinidis. Optimization under uncertainty: state-of-the-art and oppor-
tunities. Comp. and Chem. Eng., 28(6-7):971–983, 2004.

[123] A. G. Salinger, R. P. Pawlowski, J. N. Shadid, B. van Bloemen Waanders,
R. Bartlett, G. C. Itle, and L. T. Biegler. Optimization in large-scale reacting
flows using MPSalsa and sequential quadratic programming. In Large-scale
PDE-constrained optimization, Lecture Notes in Computational Science and
Engineering, Heidelberg, 2003. Springer-Verlag.

[124] M. Salloum, R. Ma, and L. Zhu. Enhancement in treatment planning for mag-
netic nanoparticle hyperthermia: Optimization of the heat absorption pattern.
Int. J. Hyperthermia, 25(4):309–321, 2009.

[125] H. Schichl and A. Neumaier. Interval analysis on directed acyclic graphs for
global optimization. Journal of Global Optimization, 33(4):541–562, December
2005.

[126] S. Scholtes. Introduction to piecewise differentiable equations. Technical report,
University of Karlsruhe, 1994. Habilitation Thesis.

[127] J. K. Scott. Reachability Analysis and Deterministic Global Optimization of
Differential-Algebraic Systems. PhD thesis, MIT, 2012.

[128] J. K. Scott, M. D. Stuber, and P. I. Barton. Generalized McCormick relaxations.
Journal of Global Optimization, 51(4):569–606, 2011.

[129] R. Seydel. Practical Bifurcation and Stability Analysis. Interdisciplinary Ap-
plied Mathematics. Springer-Verlag, New York, second edition, 1994.

[130] A. B. Singer. Global Dynamic Optimization. PhD thesis, Massachusetts Insti-
tute of Technology, 2004.

[131] B. Srinivasan, D. Bonvin, E. Visser, and A. Palanki. Dynamic optimization of
batch processes II. Role of measurements in handling uncertainty. Comp. and
Chem. Eng., 27:27–44, 2002.

[132] O. Stein and G. Still. Solving semi-infinite optimization problems with interior
point techniques. SIAM J. Control Optim., 42(3):769–788, 2003.

[133] G. Still. Generalized semi-infinite programming: Theory and methods. Euro-
pean Journal of Op. Res., 119(2):301–313, December 1999.

[134] M. D. Stuber and P. I. Barton. Robust simulation and design using semi-infinite
programs with implicit functions. Int. J. of Reliability and Safety, 5(3/4):378–
397, 2011.

237



[135] U. Rashid Sumaila, Andres M. Cisneros-Montemayor, Andrew Dyck, Ling
Huang, William Cheung, Jennifer Jacquet, Kristin Kleisner, Vicky Lam, Ash-
ley McCrea-Strub, Wilf Swartz, Reg Watson, Dirk Zeller, and Daniel Pauly.
Impact of the Deepwater Horizon well blowout on the economics of US Gulf
fisheries. Can. J. Fish. Aquat. Sci., 69:499–510, 2012.

[136] R. E. Swaney and I. E. Grossmann. An index for operational flexibility in chem-
ical process design. Part I: Formulation and theory. AIChE Journal, 31(4):621–
630, April 1985.

[137] R. E. Swaney and I. E. Grossmann. An index for operational flexibility in
chemical process design. Part II: Computational algorithms. AIChE Journal,
31(4):631–641, April 1985.

[138] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming, 103(2):225–249, 2005.

[139] A. Tsoukalas, B. Rustem, and E. N. Pistikopoulos. A global optimization algo-
rithm for generalized semi-infinite, continuous minimax with couples constraints
and bilevel programs. Journal of Global Optimization, 44:235–250, 2009.

[140] F. Guerra Vazquez, J.-J. Rückmann, O. Stein, and G. Still. Generalized semi-
infinite programming: A tutorial. Journal of Computational and Applied Math-
ematics, 217:394–419, 2008.

[141] X. H. Vu, H. Schichl, and D. Sam-Haroud. Interval propagation and search
on directed acyclic graphs for numerical constraint solving. Journal of Global
Optimization, 45(4):499–531, December 2009.

[142] C. Yalcin and A. W. Stott. Dynamic programming to investigate financial
impacts of mastitis control decisions in milk production systems. Journal of
Dairy Research, 67:515–528, 2000.

[143] C. L. Yaws, P. K. Narasimhan, and C. Gabbula. Yaws’ Handbook of Antoine
Coefficients for Vapor Pressure. Knovel, second electronic edition, 2009.

[144] D.P. Young, W.P. Huffman, R.G. Melvin, C.L Hilmes, and F.T. Johnson. Non-
linear elimination in aerodynamic analysis and design optimization. In Large-
scale PDE-constrained optimization, Lecture Notes in Computational Science
and Engineering, Heidelberg, 2003. Springer-Verlag.

[145] S. Zuhe, A. Neumaier, and M. C. Eiermann. Solving minimax problems by
interval methods. BIT Numerical Mathematics, 30:742–751, 1990.

238


