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Abstract— This work deals with the design of health main-
tenance tests for systems operating under uncertainty. Faults
masked by uncertainty or uncertainty interpreted as a system
fault often lead to subsequent safety and performance com-
plications instantiated as false alarms, no fault founds, and
non-detections. Here, a model-based active fault detection and
isolation algorithm is employed in the form of a semi-infinite,
worst-case scenario design program. The objective of this pro-
gram is to maximize the fault detection and isolation capability
at the worst-case realization of uncertainty, by manipulating
the admissible system inputs. Fault detection and isolation are
improved by increasing the distance between sensed outputs
of the fault-free and faulty systems. The proposed method is
demonstrated with application to the benchmark three-tank
system with uncertain pipe flow coefficients, along with a faulty
pump actuator and an unknown tank leak. The corresponding
optimization problem is solved locally and globally using
different worst-case design algorithms.

I. INTRODUCTION

A. Built-In Test Design for Fault Detection and Isolation of
Complex Systems

Health diagnostics in modern and complex cyber-physical
systems is becoming increasingly challenging. Advanced
and accurate system prognostics and diagnostics are crucial
for system reliability and safety, especially in safety-critical
systems, such as aircraft systems or chemical plants. The
robustness of health checks employed during system mainte-
nance depends on the method of fault detection and isolation
(FDI) used. Significant research has been dedicated in the
past couple decades on model-based and data-based methods
for passive and active FDI [1]–[6]. Model-based methods
of active FDI gained popularity, because they alleviate the
high cost of equipment redundancy, while they leverage
the increasing computation capacity of modern systems.
Use of model-based active FDI methods in prognostics and
diagnostics reduces the cost and increases the accuracy of
maintenance by computationally “experimenting” with valid
systems models, with the goal to manipulate admissible sys-
tem inputs to reach optimal conditions for diagnosing faults.
Therefore, active FDI methods can improve the robustness
and accuracy of FDI in maintenance tests, in which system
conditions can mask the fault (i.e., due to uncertainty) or
uncertainty can be interpreted as a fault (i.e., false alarms)
[7], [8].
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In the automotive and aerospace industries, prognostics
and diagnostics are commonly deployed through built-in tests
(BITs). The term built-in test refers to system-integrated
methods for FDI used in system health checks and main-
tenance tests. More specifically, initiated BITs are tests
executed during maintenance and have relaxed performance
requirements, allowing the admissible system inputs to be
adjusted for improved FDI capabilities. Within this relaxed
operating envelope, this work focuses on the design of
optimal initiated BIT designs (i.e., optimal system conditions
for BIT execution), which have the potential to improve
system reliability and safety by alleviating the impacts of
uncertainty and multiplicity of faults.

B. Application of Optimization and Uncertainty Analysis to
Built-In Test Design

Research on optimization-based methods for FDI aims to
improve the robustness and accuracy of the tests deploying
it. [9]–[12]. Hale and Bollas [13] proposed an active FDI
method that optimizes the system operating conditions to
obtain unique system outputs for the isolation of several
discrete faults, in the absence of uncertainty. However,
accounting for uncertainty is a key component of robust
FDI, especially for safety-critical system faults that require
detection feasibility at all realizations of uncertainty. Mesbah
et al. [14] studied a probabilistic approach to active FDI that
optimized an input sequence for a three tank system under in-
put and state constraints and improved fault detectability and
isolability by separating the uncertain output distributions
of various fault scenarios. Scott et al. [15] use a set-based
approach to compute separating inputs (inputs that provide
outputs unique to at most one fault for all uncertainties) that
guarantee fault diagnosis and select the optimal separating
input with minimum norm. Streif et al. [16] certified the
robustness of active FDI by calculating an uncertain input
signal that separates outputs in a finite number of steps, while
also minimizing the number of outputs and measurements
required for robustness to subsequently reduce costs. Palmer
et al. [17] proposed a methodology that designs a BIT using
the D-optimality criterion and accounts for uncertainties
using a frequentist approach. The drawback of these methods
is the requirement of knowing the probabilistic information
of the uncertain inputs and parameters a priori.

C. Semi-Infinite Programming for Worst-Case Design of BIT

Interest in semi-infinite programming (SIP) has existed for
decades in a wide range of research communities [18]. These
problems involve the optimization of a desired objective,



based on a finite set of design variables and an infinite
number of constraints dependent upon these design variables.
As highlighted by Kettich and Kortanek [19], these problems
are typically constructed into finite equivalents, which are
then solved using conventional algorithms. A specific subset
of SIPs for the optimization of systems under uncertainty
is the worst-case approach [20]–[22]. This approach does
not require probabilistic information a priori, as it uses
only the domain knowledge of uncertainty. The worst-case
approach is particularly useful for the robust FDI problem
application discussed earlier, and specifically in determining
design feasibility for safety-critical systems.

D. Contributions of This Work

In this work we apply a worst-case criterion to the design
of tests for active FDI, targeting system health maintenance
tests that can alleviate (or eliminate) common issues with
false alarms, no faults found, and non-detections. In Section
II, we present the proposed FDI problem formulation. In
Section III we illustrate the application of this formulation
to a benchmark three tank system and attempt to solve it
locally and globally using algorithms developed by Asprey
and Macchietto [20] and Stuber et al. [22], [23], respectively.
We conclude by illustrating non-convexities in the worst-
case FDI tests of (even) simple systems and highlight the
significance of obtaining global feasible solutions.

II. MATHEMATICAL FORMULATION OF BIT
DESIGN FOR ROBUST ACTIVE FDI

A. Model Definition

The proposed robust FDI method follows a similar formu-
lation to [13], with minor simplifications. The steady-state
algebraic equations describing the system are expressed as:

f[ f ](x̃,u,θp,θu,θ f ) = 0, ∀ f ∈ {0,1, ...,N f } (1)

where the superscript [ f ] (excluded from impacted variables
for compactness) denotes the fault scenario studied, f[ f ] :
Dx×Du×Dθp×Dθu×Dθ f →RNx is the set of continuously
differentiable system of governing equations corresponding
to [ f ], x̃ ∈ X̃ ⊂ RNx is the vector of system states, u ∈U ⊂
RNu is the vector of admissible system inputs, θp ∈ Θp ⊂
RNθp is the vector of system design parameters augmented
with all other model parameters, θu ∈Θu⊂RNθu is the vector
of uncertain parameters, and θ f ∈ Θ f ⊂ RNθ f is the vector
of parameters representing faults. The system outputs are
expressed as:

y[ f ] = x̄+w, (2)

where y[ f ] ∈Y ⊂RNy , is the vector of system outputs corre-
sponding to [ f ], x̄∈ X̄ ⊆ X̃ ⊂RNy is the reduced or equivalent
sized vector of measured system states, and w ∈W ⊂ RNy ,
is the vector of measurement noise. A partial mapping is
assumed in (1) for the functional relationship between the
system outputs and the states. More traditional relationships
of the system outputs with states, inputs, and parameters are
feasible by augmenting (1).

B. Implicit SIP Formulation of Worst-Case BIT Design

The main goal of implementing model-based FDI methods
in system health monitoring tests, such as BIT, is to be
able to detect when faults occur in a system by observing
and comparing the measured outputs to the outputs of the
model. Once a fault is detected, a subsequent goal is to be
able to accurately isolate the fault scenario that is present
by matching the measured outputs of the system to the
outputs of a fault model. Challenges arise when each fault
scenario is not unique in its model outputs or when a fault
is masked at the current operating condition due to control
loops or uncertainty (in measurements, inputs, faults, and the
system model) [14], [24]–[26]. For a “fully reliable” BIT,
the test must fully detect and isolate all potential faults for
any of the aforementioned uncertainties. A conservative BIT
that is robust to all uncertainties is designed by analyzing
the worst-case realization of uncertainty to determine if a
feasible test exists that is capable of producing unique system
outputs for every fault scenario. When designing a BIT,
the following decision variables are often available to tune
a test: the number of tests (sets of inputs); the duration
of these tests; their dynamic responses; the frequency and
type of sensors used; and the admissible system inputs. The
worst-case BIT design can be formulated mathematically as
a max-min problem, which in its simplest form uses only the
admissible system inputs as manipulated variables at steady-
state:

max
u∈U

min
θu∈Θu,θ f∈Θ f

G(x̃,u,θp,θu,θ f )

s.t. f(x̃,u,θp,θu,θ f ) = 0,
(3)

where G : Dx × Du × Dθp × Dθu × Dθ f → R is the con-
tinuously differentiable feasibility criterion that defines
the quality of the BIT design and f(x̃,u,θp,θu,θ f ) =
(f[1], f[2], ..., f[N f ]) is the combined vector of equations for all
fault scenarios from (1) with augmented variables.

With some mild assumptions from implicit function theory
[22], if at least one x̃ exists that satisfies (1) and (2), then
it defines an implicit function of (u,θp,θu,θ f ), expressed
as x̃ = x(u,θp,θu,θ f ). Given the existence and uniqueness
of the implicit function x : U ×Θp ×Θu ×Θ f → X , such
that f(x(u,θp,θu,θ f ),u,θp,θu,θ f ) = 0, ∀(u,θp,θu,θ f ) ∈
U ×Θp×Θu×Θ f with X ⊂ X̃ , the equality constraints of
(3) can be eliminated to formulate an SIP below:

min
u∈U, η∈H

−η

s.t. g(x(u,θp,θu,θ f ),u,θp,θu,θ f ,η)≤ 0
∀ (θu,θ f ) ∈Θu×Θ f ,

(4)

where η ∈ H ⊂ R is an auxiliary variable introduced for
the SIP formulation and g is a continuously differentiable
inequality constraint formulated as:

g(x(u,θp,θu,θ f ),u,θp,θu,θ f ,η) =

η−G(x(u,θp,θu,θ f ),u,θp,θu,θ f ).
(5)

C. Global Solutions to Implicit SIPs

The program (4) has a finite number of variables yet an
infinite number of constraints due to g, which is realized



Algorithm 1 SIP Max-Min Algorithm

Require: θ
[1]
u ∈Θu,θ

[1]
f ∈Θ f

1: K← 1
2: while η̂[K] < η[K]∧K ≤ Kmax do
3: (η[K],u[K])← min

u∈U, η∈H
−η

s.t. η−G(x(u,θp,θ
[k]
u ,θ

[k]
f ),u,θp,θ

[k]
u ,θ

[k]
f )≤ 0,

∀k ∈ {1,2, ...,K}
4: (η̂[K],θ

[K+1]
u ,θ

[K+1]
f )←

min
θu∈Θu,θ f∈Θ f

G(x(u[K],θp,θu,θ f ),u[K],θp,θu,θ f )

5: K← K +1
6: end
7: (uopt ,θopt

u ,θopt
f )← (u[K−1],θ

[K]
u ,θ

[K]
f )

across the entirety of the parameterized uncertainty and fault
domains. The infinite nature of (4) differs from standard
NLPs and makes it quite difficult to solve. A similar type
of problem was proven to be locally solvable by Asprey and
Macchietto [20] using Alg. 1. This algorithm likely requires
an assumption on convexity, as the objective function of [20]
is convex in nature [27], and this assumption is tested in this
work to explore the algorithm’s finite convergence. Alg. 1
holds for systems with bounded uncertainties, which is often
the case for engineered systems.

Alg. 1 solves (4) by first taking an initial set of values for
the uncertain parameters and finding the optimal BIT design
at the given uncertainty. It then uses the optimal BIT design
to try and find a new set of uncertain parameter values that
performs worse than the initial set, adding this set to an
overall uncertainty set comprised of the previous parameter
sets. At each iteration, the optimal BIT must satisfy its
constraints for the current set of uncertain parameters and
all other parameter sets in the overall uncertainty set. The
algorithm terminates at an optimal worst-case BIT design
when no new set of uncertain parameters that performs worse
than all previous sets can be found. If the algorithm iterates to
its maximum Kmax and no feasible solution has been found,
then the system design space, uncertainties, and constraints
should be reconsidered.

Although the assumption on convexity made for Alg. 1
seems to be sufficient for the application presented in Sec. III,
global methods are required to guarantee feasibility in cases
when this assumption fails. Global methods address the issue
of local solutions caused by non-convexities in SIPs. Falk
and Hoffman [28] extend upon Blankenship and Falk’s [29]
cutting-plane algorithm for solving nonlinear explicit SIPs to
examine large classes of non-convex functions. Mitsos [30]
improved upon the Blankenship and Falk [29] algorithm by
utilizing an upper-bounding procedure that perturbs the right-
hand side of the semi-infinite constraint in (4), guaranteeing
the generation of SIP-feasible points in a finite manner
for continuous NLPs that contain Slater points. Stuber and
Barton [22] adapted the work of Mitsos [30] to allow for its
application to implicit SIPs. The method of [22] is used here
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Fig. 1. Three tank system model architecture from Mesbah et al. [14] with
labeled system states x̃ = [x̃1, x̃2, x̃3], inputs u = [u1,u2], design parameters
θp = [AT ,AP], uncertain parameters θu = [c1,c2,c3], and fault parameters
θ f = [α,r].

for the worst-case-scenario design of FDI tests in systems
under uncertainty. The results of Alg. 1 and the global
method presented in [22] are presented at the end of Section
III.

III. APPLICATION TO A THREE TANK SYSTEM

A. Three Tank System Model Equations

The example system modeled and studied in this work
is the benchmark three tank system described in [14] with
Nu = 2, Nθu = 3, Nθ f = 2, and Ny = 3. Fig. 1 shows
the corresponding three tank system architecture, component
labels, and variables. Tanks 1, 2, and 3 are cylindrical with
equivalent cross-sectional area AT = 0.0154 m2 and height
x̃max = 0.75 m. The admissible system inputs are the assigned
liquid flow rates of Pumps 1 and 2: u1 and u2 (m3s−1).
The pipes connecting and exiting Tanks 1, 2, and 3 have
equal cross-sectional area Ap = 0.00005 m2. The liquid flow
rates exiting Tanks 1, 2, and 3 are characterized by their
respective non-dimensional flow coefficients: c1, c2, and c3.
The system state x̃[ f ]i (m) corresponds to liquid height of
Tank i from the fault scenario model f ( f = 0 for the
fault-free system). Two uncertain fault scenarios are studied
for robust detection and isolation: a degradation to Pump
1 ( f = 1) and a leak in Tank 2 ( f = 2). The degradation
of Pump 1 is characterized by the non-dimensional flow
coefficient α, which impacts the flow rate of the liquid
supplied to Tank 1. The leak in Tank 2 is circular and is
characterized by the radius r (m).

The assigned liquid flow rates of Pumps 1 and 2, u1 and u2,
will be considered the system admissible inputs u = (u1,u2).
The pump degradation coefficient α and leak radius r are
considered parameters representing faults, θ f = (α,r) and
the flow coefficients c1,c2 and c3, are considered as un-
certain parameters, θu = (c1,c2,c3). The liquid heights of
Tanks 1, 2, and 3 for each fault scenario are the system
states, x̃ = (x̃[0]1 , x̃[0]2 , x̃[0]3 , x̃[1]1 , x̃[1]2 , x̃[1]3 , x̃[2]1 , x̃[2]2 , x̃[2]3 ). Perfectly
measured (w = 0) liquid heights of tanks 1, 2, and 3 are the
system outputs, y = x̃.

The combined set of steady-state system model equations
developed from the conservation of mass and Torricelli’s law



for each fault scenario is shown below:
f(x̃,u,θp,θu,θ f ) = (f[0], f[1], f[2]) = 0 =
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,
(6)

where lines 1-3 correspond to f[0], lines 4-6 correspond to f[1],
lines 7-9 correspond to f[2], ∆x̃[ f ]i j ≡ x̃[ f ]i − x̃[ f ]j , and tanh(k) is
an approximation of the signum function used to satisfy the
differentiability assumption.

B. Objective Function and SIP Formulation of Worst-Case
BIT Design

The objective function G used in this work for BIT
design is the separation between fault-free and faulty system
outputs. This is defined mathematically below for all fault
scenarios N f = 2:

G(x(u,θp,θu,θ f ),u,θp,θu,θ f ) =

−η f eas +
Ny

∑
i=1

N f−1

∑
f=0

N f

∑
g= f+1

(y[ f ]i − y[g]i )2,
(7)

and results in the following SIP formulation updated with
the objective (7):

min
u∈U, η∈H

−η

s.t. η−
Ny

∑
i=1

N f−1

∑
f=0

N f

∑
g= f+1

(y[ f ]i − y[g]i )2 +η f eas ≤ 0

∀ (θu,θ f ) ∈Θu×Θ f ,

(8)

where η f eas ∈ H f eas ⊂ R is the FDI performance parameter
specifying a minimum separation constraint. An ηopt < 0
implies no feasible worst-case BIT design exists that is
capable of producing the desired separation η f eas for all
realizations of uncertainty in Θu×Θ f . However, ηopt ≥ 0
means there is a feasible worst-case BIT design that satisfies
η f eas.

For (8), the state interval is X̃ = [0,0.75]9, the BIT de-
sign interval is U = [10−5,10−4]2, the uncertainty parameter
interval is Θu = [0.85,1.15]× [0.65,0.95]× [0.85,1.15], the
fault parameter interval is Θ f = [0.54,0.66]× [0.0005,0.005],
the SIP auxiliary variable interval is H = [−10,10], and
the FDI performance parameter is η f eas = 0.1. These in-
tervals were derived from the probabilistic information of
Table I provided by [14] and were assumed to enclose

TABLE I
DESCRIPTION OF THE FAULTS θ f = [α,r] AND UNCERTAINTIES

θu = [c1,c2,c3] STUDIED IN THE THREE TANK SYSTEM OF FIG. 1 AND

THEIR NORMALLY DISTRIBUTED N (µ,σ2) RANDOM PARAMETER

VALUES WITH MEAN µ AND VARIANCE σ2 [14].

Faults and Uncertainties Parameters Uncertainty Distribution
Pump 1 Degradation Coefficient θ f ,1 = α N (0.6,4∗10−4)
Tank 2 Leak radius θ f ,2 = r N (2∗10−2,1∗10−6)
Tank 1 Flow Coefficient θu,1 = c1 N (1.0,2.5∗10−3)
Tank 2 Flow Coefficient θu,2 = c2 N (0.8,2.5∗10−3)
Tank 3 Flow Coefficient θu,3 = c3 N (1.0,2.5∗10−3)

TABLE II
BOUNDS AND SOLUTION TO (8) FOR THE THREE TANK SYSTEM BIT

DESIGN AT THE WORST-CASE REALIZATION OF UNCERTAINTY.

Inputs and Parameters Min Nominal Optimal Max
u1 (m3s−1 ∗10−4) 0.10 0.41 0.80 1.00
u2 (m3s−1 ∗10−4) 0.10 0.41 0.10 1.00

θ f ,1 (−) 0.54 0.66 0.66 0.66
θ f ,2 (m) 0.00 0.0014 0.0022 0.005
θu,1 (−) 0.85 1.15 1.15 1.15
θu,2 (−) 0.65 0.95 0.95 0.95
θu,3 (−) 0.85 1.15 1.15 1.15

the implicit function x : U ×Θp×Θu×Θ f → X , such that
f(x(u,θp,θu,θ f ),u,θp,θu,θ f ) = 0, ∀(u,θp,θu,θ f ) ∈ U ×
Θp×Θu×Θ f .

The three tank system model equations (6) used in solving
this SIP were programed in MATLAB R© [31], where a robust
BIT design solution to (8) was found using the MATLAB R©

OPTI Toolbox with the Mesh Adaptive Direct Search al-
gorithm and Alg. 1. Table II provides the nominal and
optimal inputs and their corresponding worst-case uncertain
parameters, along with the interval bounds of each variable.
The upper and lower bounds of the parameter intervals were
calculated from the three sigma values of the distributions
presented in Table I.

Fig. 2 shows the dynamically simulated outputs of the
three tank system at the nominal and optimal conditions of
Table II. The dynamic system model equations are At ˙̃x =
f(x̃,u,θp,θu,θ f ), where ˙̃x ∈ X̃ ⊂ RNx is the vector of state
variable time derivatives. These dynamic outputs are equiv-
alent to the outputs calculated from solving (6) once steady-
state is achieved. The objective functions calculated at these
conditions were Gnom = 0.018261 and Gopt = 0.1126. This
objective calculated the distance between the outputs of the
different fault scenarios and was evaluated at the respective
worst-case realization of uncertainty for the nominal and
optimal conditions. In the nominal case, there is little to
no separation of the three outputs for the three different
fault scenarios. At these nominal system conditions, the
uncertainty causes the fault scenarios to be indistinguishable
from the fault-free system resulting in non-detections during
operation or no fault found occurrences during maintenance.
In the optimal case, all three outputs of the three fault
scenarios have adequate separation which is beneficial for
detection and isolation purposes. The inputs of the optimal
BIT design are selected to maximize the FDI test perfor-



mance, while ensuring the system tank heights are valid
(within their intervals, i.e., dotted black lines in Fig. 2) for
every possible realization of uncertainty. This is the main
reason why the inputs did not reach their respective interval
bounds. Expanding the system tank height intervals through
adjustments to the physical system design would likely cause
the inputs to reach their respective upper or lower interval
bounds and significantly improve the BIT performance.

Fig. 3 is descriptive of this conclusion, showing the
objective function over the input set U for the worst-
case realization of uncertainty without consideration of state
constraints. The greatest objective function value lies at the
upper bounds of inputs 1 and 2. However, it is important
to mention that this result is not necessarily the solution to
(8). By following the max-min inequality, the result shown
acts as an upper bound to the feasible region of (8). The
actual objective function in the feasible region of (8) will
be less than or equal to what is shown in Fig. 3. Looking
simply at this upper bound, the objective function seems
to be convex, verifying the assumption made on convexity.
However, it is still of interest to use global methods such as
those described at the end of Section II to observe whether
or not an improvement in BIT design can be found.

The three tank system model equations (6) and worst-
case BIT design SIP (8) were also formulated in the GAMS
modeling environment [32]. In GAMS, the global algorithm
adapted from the work of Mitsos [30] and presented by
Stuber and Barton in [22] was used to find the global
optimum of (8) using the Branch-And-Reduce Optimization
Navigator, BARON [33]. It was seen that Alg. 1 could
only converge to the global solution using multiple shooting
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methods for the constrained (by output constraints) feasible
set of inputs. Ongoing work focuses on the impact of local
solutions on system safety, depending on the criticality of
faults. This analysis will determine the need for application
of global optimization techniques in systems of considerably
larger scale, than that of the three tank benchmark.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a method for developing robust maintenance
tests on the basis of active FDI and worst-case design
was presented. A semi-infinite program with the admissible
system inputs as the manipulated variables was formulated
to design robust maintenance tests for the worst-case real-
ization of uncertainty. This problem was attempted to be
solved locally using the algorithm presented by Asprey and
Macchietto [20] and globally using a cutting plane algorithm
presented by Stuber et al. [22]. The method and programs
developed were applied on the three tank benchmark system.
This example system is interesting for its nonconvex objec-
tive function. The optimal FDI tests designed were shown
capable of distinguishing between a fault-free system and
two separate fault scenarios, which was not feasible with
a nominal FDI test design. Moreover, the nonconvexity of
the objective function was shown to lead to local minima,
which can lead to state constraint violations or non-decisive
tests. Future work includes the utilization of dynamic system
information in the objective function and state constraints
(which was on a concern for the simple three tank system),
false alarm rate analysis, and analysis of the sensor selection
and the impact of variable levels of noise on maintenance
test accuracy.
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