
2. Chemotherapy Adjunct Increases Nanocarrier Delivery[5] Background & Motivation

• Quantitative and formal methods provide huge 
opportunities for novel and high-impact discovery in 
many science fields.

Rigorous Parameter Estimation for
Model Validation in Oncological Systems

• Cancer research
 Uncertainty in detailed transport mechanism;
 Lacking applicable physiological model;
 Hard to offer systemetical instructions.

Well-organized Leaky;
Poorly-organized

Less leaky;
Normalized

• Improvements of current therapies;
• Development of novel therapies;
• Optimization of therapy for individual patient.

Formal methods for 
model validation

Model-based systems 
engineering approach

Well-founded physical 
transport framework in 
tumors

1. Tumor Transport Model[5]

• Solute Transport Model
 Transient diffusion-convection equation

 Source term
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• Numerical Methods
 Model discretization: fluid transport: finite difference method; 
                              solute transport: upwind scheme.
 PDEs: 4th-order Runge-Kutta method
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• Fluid Transport Model
 Darcy’s law 
 Continuity equation 
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• Pore Theory
 Cylindrical pores
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• Confocal intravital 
microscopy images of 4T1 
tumors treated with 
control (A), low-dose(B), 
or high-dose (C) 
chemotherapy adjunct one 
hour after co-injection of 
70 kDa (13 nm,red) and 
500 kDa (32 nm, green) 
fluorescent dextrans.

3. Differential Inequalities for Discrete-Time Systems

• (D) Low-dose (orange 
squares) highly increase 
the effective permeability 
of the tumor vessels;
• (E) Schematic of 
effective permeability: a 
measure of the rate that 
nanocarriers extravasate 
blood vessels.

• (F) Prediction of vessel 
wall pore size from the 
tumor model;
• (G) The small pore size 
after high-dose treatment 
sterically hinders 
extravasation.

• (H) Prediction of 
interstitial hydraulic 
conductivity from the 
tumor model;
• (I) Schematic of 
interstitial hydraulic 
conductivity: a measure 
of the rate that fluids 
traverse the extravascular 
space.

• Parameter Estimation Optimization
 Minimize the SSE between the average 
concentration of the model and data over the 
whole time horizon;
 Characterize the vascular normalization 
process after pretreatment chemotherapy 
adjunct;
 Local solve       global solve

• Lower bound and upper bound are derived from interval extensions using the standard error from 
experiments;
• The effective permeability, determined by the experiments and used for obtaining the average 
interstitial concentration, significantly overestimates the diffusive contribution.

• Global optimization requires efficient tight interval enclosures of time-dependent nonlinear systems
• Differential inequalities (DI) can be applied to discrete-time nonlinear systems to provide valid reachable set  
 enclosures by forward Euler methods
• Discrete-time DI shows significant advantages compared with traditional interval extension methods
•  Implementing Discrete-time DI in Julia programming language
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• Nonlinear continuous-time systems

• Explicit Euler discretization
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• State bounding approach 
 Directly apply interval arithmetic using Explicit Euler

• standard DI method (SDI)

• SDI method with a prior enclosure
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[6] X. Yang and J. K. Scott, “Efficient reachability bounds for discrete-time nonlinear systems by extending the continuous-time theory of differential inequalities,” 2018 Annual American Control Conference

1 Establish physical transport model in tumor to characterize nanomedicine delivery
• Study the mass transfer in tumor and establish a 1-dimensional spherical transport model
• Apply the pore theory to characterize nanomedicine transport
• Employ numerical methods to discretize the system and solve PDEs
• Analyze the transient convective and diffusive transport over the tumor space domain

2 Implement optimization to estimate critical parameters in tumor model
• Use multistart local optimization to obtain preliminary results for parameter values
• Analyze transport in tumor before and after treatment to validate vascular normalization
• Establish and implement global optimization for the parameter estimation problem
• Manuscript under review[5]

3 Use differential inequalities to provide rigorous enclosure for global solve
• Establish discrete-time differential inequalities algorithms in Julia language
• Apply differential inequalities to the tumor model (PDEs) for rigorous global bounds

[5] J. D. Martin, M. Panagi, C. Wang, T. T. Khan, M. R. Martin, C. Voutouri, K. Toh, P. Papageorgis, F. Mpekris, C. Polydorou, G. Ishii, S. Takahashi, N. Gotohda, T. Suzuki, M. Wilhelm, V. A. Melo, S. Quader, 
J. Norimatsu, R. M. Lanning, M. Kojima, M. D. Stuber, T. Stylianopoulos, H. Cabral, and K. Kataoka, “A low-dose of chemotherapy adjunct increases nanocarrier delivery and efficacy against metastatic breast cancer 
by normalizing the tumor microenvironment,” ACS Nano
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• Vascular Permeability
• IFP

Delivery of drug

• Uncertain parameters -
 Permeability of tumor vessels    : pore size
 Interstitial hydraulic conductivity    :   
 extracellular matrix (ECM) normalization
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State bounds
Standard differential inequalities (SDI)
SDI with a prior enclosure
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