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Optimizing Simulations

We commonly encounter problems that can be described by simulations. These
simulations often haven a greatly reduced problem dimension compared to
problems represented explicitly as closed-form equations since intermediate
variables must be introduced in the latter approach, np << nx < ny. Examples:

I Regressions with embedded ODE (Chemical Kinetics) [1]
I Yield optimization of flowsheets (Process Design)

Full-Space Reduced-Space
f∗ = min

y∈Y⊂Rny
f(y) f∗ = min

p∈P
f(x(p),p)

s.t. h(y) = 0 s.t. g(x(p),p) ≤ 0

g(y) ≤ 0

1 Stuber, M. et al. Optimization Methods and Software, 2015, 30, 424-460
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Dealing with Nonconvexity

I Many simulations exhibit significant nonconvexity.
I NP-hard and solved via branch-and-bound variations [2].
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Relaxing Algorithms

I One approach to generating these lower bounds is via the use of set-valued
arithmetics.

I Using these approaches an enclosure of the image of a function is defined along
with operators that take these objects as inputs and output a new enclosure
(method overloading).

I Approaches include are interval arithmetic [3], affine arithmetic [4], and
McCormick operators [5].

3 Moore, R.E. Introduction to Interval Analysis, 2009

4 De Figueiredo, L.H. et al. Numerical Algorithms, 2004, 37, 147-158

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601
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McCormick Operators

McCormick Composition Rule [5]:
Let Z ⊂ Rn, X ⊂ R be nonempty convex. The composite function g = φ ◦ f s.t. f : Z → R
is continuous, F : X → R, f(Z) ⊂ X. Let f cv, f cc : Z → R be relaxations of f on Z. Let
φcv, φcc : X → R be relaxations of φ on X. Let ξ∗min/ξ

∗
max be a min/max of φcv/φcc on X.

gcv : Z → R : z 7→ φcv(mid(f cv, fcc, ξ∗min))

gcc : Z → R : z 7→ φcc(mid(f cv, f cc, ξ∗max))

I Usually second-order convergent and tighter than interval bounds [5,6].
I Desirable to minimize clustering about optima in branch and bound algorithm [7].
I Rules for propagating differentiable relaxations have been introduced [8].

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

6 Bompadre, A. et al. Journal of Global Optimization, 2012, 52, 1-28

7 Kannan, R. et al. Journal of Global Optimization, 2017, 69, 629-676

8 Khan, K. et al. Journal of Global Optimization, 2017, 67(4), 687-729
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Lower Bounds from Subproblems

No agreement exists in the literature on the best optimization problem to construct
with these relaxations [8,9,10]. Affine relaxations may be weaker but the linear
solvers are more robust and faster which may justify evaluating more nodes.

I Standard McCormick Operators
- Nonsmooth NLP [1] ⇒ Nonsmooth NLP solver (e.g. Proximal Methods[9])
- Relax Further [5] ⇒ Linear Program (e.g. CPLEX [10])

I Differentiable NLP [5]
- Solve with Interior point method (e.g. Ipopt [11])
- Further relax to QCQP ⇒ Interior point method

1 Stuber, M. et al. Optimization Methods and Software, 2015, 30, 424-460

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

8 Khan, K. et al. Journal of Global Optimization, 2017, 67(4), 687-729

9 L. Luksan et al. ACM Transactions on Mathematical Software 27 (2001), 193-213

10 IBM ILOG CPLEX Optimizer, 2017

11 Wächter, A. et al. Mathematical Programming, 2006, 106(1), 25-57



8/24

Outline

Background

Theoretical Developments

Numerical Results



9/24

Quadratic Bounds of Functions

m-Convex Function [12]

Let f : Z ⊂ Rn → R be a proper, closed, m-convex, Whitney-1 differentiable,
locally Lipschitz continuous function. At every point x ∈ int(Z) there is a
second-order quadratic expansion in the form

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
||y − x||22 (1)

I In many cases, m-convexity is required for superlinear convergence of
optimization methods [12].

12 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Problem Formulation

QCQP Relaxations
The quadratically-constrained quadratic programming (QCQP) relaxation of a
nonlinear program is given below:

min
y,η

η

s.t. fcv(y0) + (y − y0)
T∇f cv(y0) +

mfcv

2
||y − y0||22 ≤ η

hcc(y0) + (y − y0)
T∇hcc(y0) +

mhcc

2
||y − y0||22 ≥ 0

hcv(y0) + (y − y0)
T∇hcv(y0) +

mhcv

2
||y − y0||22 ≤ 0

gcv(y0) + (y − y0)
T∇gcv(y0) +

mgcv

2
||y − y0||22 ≤ 0



11/24

Quadratic Bounds Algebra

Addition of m-Convex Function [12]

Let f : Z ⊂ Rn → R be a m-convex and g : Z ⊂ Rn → R be convex on Z then f + g
is p-convex on Z with p ≥ m.

Linearity of m-Convex Function [12]

Let f1, f2 : Z ⊂ Rn → R be m1-convex and m2-convex, respectively. Let α1, α2 be
positive real numbers then α1f1 + α2f2 is (α1m1 + α2m2)-convex.

Additive Inverse of m-Convex Function [12]

The function f : Z ⊂ Rn → R is m-concave on Z if and only if −f is m-convex on
Z.

12 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Propagating m-Convexity Bounds [12]

Composition of m-Convex Function

Let f : Z ⊂ Rn → R be a m-convex and g : Z ⊂ R→ R be a monotone convex
increasing function on Z. Suppose g′ is bounded below by β then g ◦ f is
mβ-convex.

Basic McCormick Scheme Fails
We know that x→ x isn’t m-convex. The composition rule fails to imply
m-convexity.

Need to Track Linearity Properties to Start

For zj = f(zi) such that zi is affine, calculate m by rule for f then propagate m
values using previously defined rules.

13 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Generating m-values

Composition with Affine Functions

Let f : Z ⊂ Rn → R be a m-convex and g : Z ⊂ Rn → R is affine then f ◦ g is
m-convex on Z.

I Define point, gradient, monotonicity flag, convexity flag, and interval bounds
for variable.

I Define ruleset for computing m for each operator based on convexity flag and
monotonicity.

I Propagate further bounds by composition rules.

13 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Convergence Order: Spoilers!

Theorem: Second-Order Pointwise Convergence
Consider a nonempty open set Z ⊂ Rn, a nonempty compact set Q ⊂ Z, and a C1,1 function f : Z → R. For each interval
w ∈ IRn ∪ Q = IQ, a convex underestimator fCw : w → R of f on w, suppose that there exists a scalar τC > 0 for which

sup
z∈w

(
f(z)− fCw (z)

)
≤ τCwid(w)

2
, ∀w ∈ IQ

Then, for each α ∈ [0, 1), there exists τα > 0 for which

sup
z∈w

f(z)− (f
C
w (ε) + 〈∇f(z), z − ε〉) + (3)

〈A(z − ε), z − ε〉 ≤ τCwid(w)
2
,

∀w ∈ IQ, ∀ε ∈ sα(w))

That is to say, the quadratic underestimator inherits second-order point-wise convergence
from the second-order point-wise convergence of the subdifferential.
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Convergence Proof

Convergence Order of Subdifferential [13]
Consider a nonempty open set Z ⊂ Rn, a nonempty compact set Q ⊂ Z, and a C1,1 function f : Z → R. For each interval
w ∈ IRn ∪ Q = IQ, a convex underestimator fCw : w → R of f on w, suppose that there exists a scalar τC > 0 for which

sup
z∈w

(
f(z)− fCw (z)

)
≤ τCwid(w)

2
, ∀w ∈ IQ

Then, for each α ∈ [0, 1), there exists τα > 0 for which

sup
z∈w

(
f(z)− (f

C
w (ε) + 〈s, z − ε〉)

)
≤ τCwid(w)

2
,

∀w ∈ IQ, ∀ε ∈ sα(w), ∀s ∈ ∂fCw (ε)

Proof.
Note that ∇f(x) ∈ ∂fCw (ε) and 〈A(z − ε), z − ε〉 ≥ 0 since A is positive semidefinite. Then
f(z)− (fCw (ε) + 〈s, z − ε〉 + 〈A(z − ε), z − ε〉) ≤ f(z)− (fCw (ε) + 〈s, z − ε〉) and the quadratic underestimator inherits
second-order pointwise convergence.

13 K. Khan, Subtangent-Based Approaches for Optimization of Parametric Process Systems, AIChE Annual Meeting,
October 30, 2018



16/24

Tightening Interval Bounds
I Subgradients may be used to contract interval bounds [14].
I We know closed form envelopes for univariate and bivariate quadratics [15,16].
I For univariate and bivariate functions these hulls can tighten interval bounds.
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14 Najman, J et al. arXiv preprint arXiv:1710.09188, 2017

15 S. Vigerske, Ph.D. diss., Humboldt-UniversitÃďt zu Berlin, 2013

16 F. Domes and A. Neumaier, Constraints 15 (2010), pp. 404-429
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Numerical Results

I We selected twelve problems from the GLOBAL library and literature
examples and each subproblem relaxation was compared. The standard EAGO
settings were used for all other parameters.

I An absolute tolerance of 10−4 was selected as the termination criteria. Ran
single threaded on a 3.60GHz Intel Xeon E3-1270 v5 processor with 32GB in
Ubuntu 16.04LTS and Julia v1.0. Ipopt v3.12 [11] was used to solve the NLP
upper bound problem.

I Linear lower-problem solved using CPLEX 12.8.0 [10].
I Quadratic lower-problem solved using Ipopt v3.12.
I Smooth NLP lower-problem solved using Ipopt v3.12.

10 IBM ILOG CPLEX Optimizer, 2017

11 Wächter, A. et al. Mathematical Programming, 2006, 106(1), 25-57
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Numerical Results

Problem Variables Inequalities Equalities CPU[s]
(Affine)

CPU[s]
(Affine
+ QBT)

CPU[s]
(Quadratic)

CPU[s] (Con-
vex NLP)

ex4_1_7 1 0 0 1.0 0.7 0.6 3.5
ex6_2_10 6 0 3 95.2 54.3 81.3 253.2
growthls 3 0 0 5.1 1.2 1.01 15.2
filter 2 0 1 0.6 0.5 2.9 3.1
hydro 30 0 25 0.9 0.4 3.2 6.4
hs62 3 0 1 4.5 4.1 4.7 16.1
st_ph1 6 5 0 0.1 0.1 1.2 2.3
tre 2 0 0 0.15 0.09 0.45 4.4
kinetic[5] 3 0 0 95.1% 96.1% 95.5% 89.2%
heat[5] 1 0 0 1.2 1.01 1.01 15.2
CS I [12] 2 0 9 0.7 0.6 1.6 8.6
CS II [12] 5 12 1 60.7 42.1 28.6 90.4
CS III [12] 8 1 22 71.8% 78.6% 81.3% 51.2%

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

12 Bongartz, D. et al. Journal of Global Optimization, 2017, 20, 761-796
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Numerical Results - Trends

I For simulations with an extremely large number of intermediate terms, the
m-convexity of the objective and constraints tends to vanish (kinetic/heat)
models. M-convexity based bound tighten yields a small improvement in
solution times in these cases.

I For smaller problems, with a significant number of quadratic constraints the
NLP-subproblem form provides faster solution times.

I For mid-range problems, and simulations with constraints arising from simple
intermediate terms the M-convexity problem formulation provides fast solution
times.



21/24

Conclusions

I We can construct tighter than linear relaxations by propagating strong
convexity information.

I Tighter than linear relaxations inherit second-order convergence properties
from the McCormick relaxation.

I In general, relaxations that minimize the number of simulation evaluations
tend to reduce computational burden for McCormick operator-based
optimization.
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Future Work

I Evaluate full incorporation into global algorithms
I Develop the notion of numerically safe inequalities
I Evaluate rules for selecting between nonlinear, quadratic and linear

outer-estimators

I Further theoretical developments
I Multiplication operator that propagates m-convexity.
I Composition operator that propagates m-convexity generally.
I Explore second-order nonsmooth methods for generating quadratic

underestimators.
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