Quadratic Underestimators of Differentiable McCormick
Relaxations for Deterministic Global Optimization

Matthew Wilhelm, Matthew Stuber

2018 AIChE Annual Meeting
Pittsburgh, PA, October 30th

Process Systems and
Operations Research

Laboratory SCHOOL OF ENGINEERING



Outline

Background

Theoretical Developments

Numerical Results

A

Process Systems and
Operations Research
Laboratory



Operations Research

Optimizing Simulations c:;’rocess Systems and

Laboratory
We commonly encounter problems that can be described by simulations. These

simulations often haven a greatly reduced problem dimension compared to
problems represented explicitly as closed-form equations since intermediate
variables must be introduced in the latter approach, n, << n, < n,. Examples:

» Regressions with embedded ODE (Chemical Kinetics) [1]

> Yield optimization of flowsheets (Process Design)

Full-Space Reduced-Space
fr=_omin f(y) f7=minf(x(p).p)
st. h(y)=0 s.t. g(x(p),p) <0
gly) <0

1 Stuber, M. et al. Optimization Methods and Software, 2015, 30, 424-460



Dealing with Nonconvexity

» Many simulations exhibit significant nonconvexity.

» NP-hard and solved via branch-and-bound variations |2].

A

Function

X 1 Interval

X2 Interval

3| U= GobalUppor Beuna

Convex Relaxation

Ly, > U- Minima is not in X,

2 Horst, R. & H. Tuy. Global Optimization: Deterministic Approaches, 2013
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Relaxing Algorithms é:;’rocess Systems and

» One approach to generating these lower bounds is via the use of set-valued
arithmetics.

» Using these approaches an enclosure of the image of a function is defined along
with operators that take these objects as inputs and output a new enclosure
(method overloading).

» Approaches include are interval arithmetic [3], affine arithmetic [4], and
McCormick operators |5].

3 Moore, R.E. Introduction to Interval Analysis, 2009
4 De Figueiredo, L.H. et al. Numerical Algorithms, 2004, 37, 147-158
5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601
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McCormick Composition Rule [5]:

Let Z C R™, X C R be nonempty convex. The composite function g = ¢po fs.t. f: Z - R
is continuous, F': X — R, f(Z) C X. Let f¢, f©: Z — R be relaxations of f on Z. Let
@, 9 : X — R be relaxations of ¢ on X. Let £ . /&~ be a min/max of ¢¥/¢° on X.

min/ Smax

g Z = Rz ¢ (mid(f<, f°, Enin)
9 Z = Rz ¢ (mid(f, £, &nax))

max

> Usually second-order convergent and tighter than interval bounds [5,6].
> Desirable to minimize clustering about optima in branch and bound algorithm [7].

> Rules for propagating differentiable relaxations have been introduced [8].

Mitsos, A. et al. STAM Journal of Optimization, 2009, 20, 573-601
Bompadre, A. et al. Journal of Global Optimization, 2012, 52, 1-28

Kannan, R. et al. Journal of Global Optimization, 2017, 69, 629-676
Khan, K. et al. Journal of Global Optimization, 2017, 67(4), 687-729
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No agreement exists in the literature on the best optimization problem to construct
with these relaxations [8,9,10]. Affine relaxations may be weaker but the linear
solvers are more robust and faster which may justify evaluating more nodes.

Lower Bounds from Subproblems c:;‘focess Systems and

» Standard McCormick Operators

- Nonsmooth NLP [1] = Nonsmooth NLP solver (e.g. Proximal Methods[9])
- Relax Further [5] = Linear Program (e.g. CPLEX [10])

» Differentiable NLP [5]

- Solve with Interior point method (e.g. Ipopt [11])
- Further relax to QCQP = Interior point method

1 Stuber, M. et al. Optimization Methods and Software, 2015, 30, 424-460

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

8 Khan, K. et al. Journal of Global Optimization, 2017, 67(4), 687-729

9 L. Luksan et al. ACM Transactions on Mathematical Software 27 (2001), 193-213
10 IBM ILOG CPLEX Optimizer, 2017
11 Waéchter, A. et al. Mathematical Programming, 2006, 106(1), 25-57
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m-Convex Function [12]

Let f: Z C R™ — R be a proper, closed, m-convex, Whitney-1 differentiable,
locally Lipschitz continuous function. At every point x € int(Z) there is a
second-order quadratic expansion in the form

F9) 2 £+ V) (v — %) + Flly — I3 (1)

» In many cases, m-convexity is required for superlinear convergence of
optimization methods [12].

12 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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QCQP Relaxations

The quadratically-constrained quadratic programming (QCQP) relaxation of a
nonlinear program is given below:

min 7
y:n

st f(y0) + (y —y0)" VI (y0) + 7|Iy yoll3 <7
h(yo) + (y — yo)" Vh*(y0) + mh“ ly = yoll3 >0
h (y0) + (¥ — o) Vh* (y0) + mhw ly = yoll3 <0

g% (y0) + (v — ¥0) T Ve (yo) + gw ly — yoll2 <0
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Addition of m-Convex Function [12]

Let f: Z C R®™ — R be a m-convex and g : Z C R™ — R be convex on Z then f +g¢g
is p-convex on Z with p > m.

Linearity of m-Convex Function [12]

Let f1, fo: Z C R™ — R be mj-convex and msg-convex, respectively. Let oy, as be
positive real numbers then a; f1 + aafo is (aymy + aama)-convex.

Additive Inverse of m-Convex Function [12]

The function f: Z C R™ — R is m-concave on Z if and only if —f is m-convex on
Z.

12 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Composition of m-Convex Function

Let f: Z C R™ — R be a m-convex and g : Z C R — R be a monotone convex
increasing function on Z. Suppose ¢’ is bounded below by 8 then go f is
mf(-convex.

Basic McCormick Scheme Fails

We know that  — x isn’t m-convex. The composition rule fails to imply
m-convexity.

Need to Track Linearity Properties to Start

For z; = f(z;) such that z; is affine, calculate m by rule for f then propagate m
values using previously defined rules.

13 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Composition with Affine Functions

Let f: Z C R" — R be a m-convex and g : Z C R" — R is affine then f og is
m-convex on Z.

» Define point, gradient, monotonicity flag, convexity flag, and interval bounds
for variable.

» Define ruleset for computing m for each operator based on convexity flag and
monotonicity.

» Propagate further bounds by composition rules.

13 Vial, J.P. et al. Mathematics of Operations Research,8(2), 231-259
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Theorem: Second-Order Pointwise Convergence

Consider a nonempty open set Z C R™, a nonempty compact set Q C Z, and a ¢! function f : Z — R. For each interval
w € IR" UQ = IQ, a convex underestimator fg :w — R of f on w, suppose that there exists a scalar 7€ > 0 for which

sup (£(2) = £5(2)) < rwid(w)?, vw € 1Q
zEW
Then, for each o € [0, 1), there exists 7o > 0 for which

sup £(2) - (SO +(Vi(2),z— ) + (3)

(A(z —€),z—€) < ‘rcwid(w)2,
vw € 1Q, Ve € sa(w))

That is to say, the quadratic underestimator inherits second-order point-wise convergence
from the second-order point-wise convergence of the subdifferential.
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Convergence Order of Subdifferential |1

Consider a nonempty open set Z C R™, a nonempty compact set Q@ C Z, and a ¢! function f : Z — R. For each interval
w € IR™ UQ = IQ, a convex underestimator fg :w — R of f on w, suppose that there exists a scalar PR > 0 for which

sup (f(z) — f‘g(z)) < Tcwid(w)Z, Vw € IQ
zEW
Then, for each o € [0, 1), there exists 7o > 0 for which

sup (£(2) = (£G(O) + (5,2 — ))) < Twid(w)?,
zeEwW

vYw € IQ, Ve € sq(w), Vs € Bf“(’;(e)

Note that V f(x) € af‘s(e) and (A(z — €),z — €) > 0 since A is positive semidefinite. Then

f(z) — (fg(e) + (s, z—€) + (A(z —€),z —€)) < f(z) — (fg(e) + (s, z — €)) and the quadratic underestimator inherits
second-order pointwise convergence.

13 K. Khan, Subtangent-Based Approaches for Optimization of Parametric Process Systems, AIChE Annual Meeting
October 30, 2018



Tightening Interval Bounds

> Subgradients may be used to contract interval bounds [14].

» For univariate and bivariate functions these hulls can tighten interval bounds.
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14 Najman, J et al. arXiv preprint arXiv:1710.09188, 2017

Bound Tightening using Affine

[ — {(x) = X 2€XP(-X)
o (0 P
fAﬂme.cv(x) /'
LELL fAlﬂne,L ’
~, R
\Q "
L ~. e
N r——
1 15 2 25 3

X

A

> We know closed form envelopes for univariate and bivariate quadratics [15,16].

Bound Tl ing using m-Convexity

0.6
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— 0V ()
'mconvex.cv(x)

=muan gmConvexl

—fx) = xzexp(-x)

15 S. Vigerske, Ph.D. diss., Humboldt-UniversitAd't zu Berlin, 2013
16 F. Domes and A. Neumaier, Constraints 15 (2010), pp. 404-429
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We selected twelve problems from the GLOBAL library and literature
examples and each subproblem relaxation was compared. The standard EAGO
settings were used for all other parameters.
An absolute tolerance of 10~* was selected as the termination criteria. Ran
single threaded on a 3.60GHz Intel Xeon E3-1270 v5 processor with 32GB in
Ubuntu 16.04LTS and Julia v1.0. Ipopt v3.12 [11] was used to solve the NLP
upper bound problem.

» Linear lower-problem solved using CPLEX 12.8.0 [10].

» Quadratic lower-problem solved using Ipopt v3.12.

» Smooth NLP lower-problem solved using Ipopt v3.12.

IBM ILOG CPLEX Optimizer, 2017
Wichter, A. et al. Mathematical Programming, 2006, 106(1), 25-57
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Problem Variables | Inequalities [ Equalities [[ CPU[s] CPUJs] CPUJs] CPUJs] (Con-
(Affine) (Affine (Quadratic) vex NLP)
 QBT)

exd 17 1 0 0 1.0 0.7 0.6 35
ex6 2 10 6 0 3 95.2 54.3 81.3 253.2
growthls 3 0 0 5.1 1.2 1.01 15.2
filter 2 0 1 0.6 0.5 2.9 3.1
hydro 30 0 25 0.9 0.4 3.2 6.4
hs62 3 0 1 4.5 4.1 4.7 16.1
st_phl 6 5 0 0.1 0.1 1.2 2.3
tre 2 0 0 0.15 0.09 0.45 4.4
kinetic[5] 3 0 0 95.1% 96.1% 95.5% 89.2%
heat[5] 1 0 0 1.2 1.01 1.01 15.2
CS I [12] 2 0 9 0.7 0.6 1.6 8.6
CS II [12] 5 12 1 60.7 42.1 28.6 90.4
CS III [12] 8 1 22 71.8% 78.6% 81.3% 51.2%

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

12 Bongartz, D. et al. Journal of Global Optimization, 2017, 20, 761-796
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» For simulations with an extremely large number of intermediate terms, the
m-convexity of the objective and constraints tends to vanish (kinetic/heat)
models. M-convexity based bound tighten yields a small improvement in
solution times in these cases.

» For smaller problems, with a significant number of quadratic constraints the
NLP-subproblem form provides faster solution times.

» For mid-range problems, and simulations with constraints arising from simple
intermediate terms the M-convexity problem formulation provides fast solution
times.
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» We can construct tighter than linear relaxations by propagating strong
convexity information.

» Tighter than linear relaxations inherit second-order convergence properties
from the McCormick relaxation.

» In general, relaxations that minimize the number of simulation evaluations
tend to reduce computational burden for McCormick operator-based
optimization.
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» Evaluate full incorporation into global algorithms
» Develop the notion of numerically safe inequalities
» Evaluate rules for selecting between nonlinear, quadratic and linear
outer-estimators

» Further theoretical developments

» Multiplication operator that propagates m-convexity.

» Composition operator that propagates m-convexity generally.

» Explore second-order nonsmooth methods for generating quadratic
underestimators.
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