Recent Advances in EAGO: Global
and Robust Optimization in Julia

Matthew Wilhelm, Matthew D. Stuber

2018 AIChE Annual Meeting
Pittsburgh, PA, October 28th

Process Systems and
Operations Research

Laboratory SCHOOL OF ENGINEERING

Outline

Introduction to EAGO
Motivation
EAGO Optimization
EAGO Toolkit

Algorithm Development
Main Algorithm
Relaxations
Domain Reduction

FAGO

Motivation

FAGO

» We often model systems in terms of simulations.

» The resulting optimization problems are complex (nonsmooth, nonconvex).

» In development, we want to do things other than optimize.

Simulation

A large literature has developed
around optimizing simulations.
Can we provide enough flexibility
to address these specialized
forms?

No Barrier to Entry

Can we make a fast global solver
that works like fmincon but
provides strong guarantees?

The Julia Language E&GO

®

2
w
[}

8
benchmark
» Speed of C/Fortran) 8
1o A : g ° o rand_mat_stat
. . . pi_sum
» Distributed Computing & e 0 opm
Parallelism 0! « 0 e $ | onumdid
quicksort
. . . e o ® 8 L : ° ;ﬁh
» Extensive Compile Time . 8 : . . o parse_int
10
. . . []
Optimization !
[
107!

Julia Fortran Go JavaScript Python Mathematica R Matlab Octave
Performance comparison of various languages performing simple microbenchmarks. Bench-

mark ezecution time relative to €. (Smaller is belter; C performance = 1.0.)

1 Bezanson, J, et al. SIAM Review, 59, (2017), p65-98

EAGO Optimization

78
79

80
81
82

90
91
92

93

96

97

99
100
101

struct Storage

end

+(x:

val::Float64

:Storage,y: :Storage) = x.val + y.val

function objective(x::Float64)

end

Type assertions in definition and storage
y = zeros(Float64,2)

Operators nested in structures

sto = Storage(x[1])

sto += sto

Collection operators

a=1[]

push!(a,y[1]*2)

Control flow elements

if (x > @)

y[1] = x*2 + x
else

y[1] = sin(x)
end

Access from array structure
y[1] + y[2] + sto.val + pop!(a)

FAGO

Original Scope: A general script-based
solver that constructs McCormick relaxations
by method overloading.

Issue: "General" overloading approaches
aren’t adequately general.

Issue: Introducing auxiliary variables,
rearranging expressions, and presolving can
be quite beneficial.

@D

Toolkit E &G O

EAGO Formulation Tools

)

Standard Form (LP, Q

N

Input: 1
JuMP AML
B ——

Input:
Julia

Reformulation Relaxation Search
Rules Library Heuristics

User-Defined or From Standard Library

Interface - Script E Q&@O
Consider the kinetic parameter estimation problem given in [1]. Parameters a i

that minimize the sum-square error.

min Z ((ZA + 7ZB + 7ZD) -1)2

peP i
Decision parameters are the reaction rate constants
p = (kag, kag, ka) € [100,1200] x [100,1200] x [0.001, 40]

The explicit Euler discretization of the kinetic mechanism is given by:
i+1 i i i iy b2y oo kag
z T, + At klzyzz7CQQ(k2f+k3f)zA+KizD+ %
2 3
. ar
(orconss= (12 +12))
(kaCOZIi‘ — ifz7’D>
wij—l = z; + At(klsz;ziz)

Ky
ziZ+1 = zZZ + At

~ ks(ai)?)

aciB+l = ac}g + At

zgl = z7’D + At
klzyzz)

2 Mitsos A. et al. SIAM Journal on Optimization, STAM, 20, (2009), 573-601 @

Interface - Script E&GO

X = zeros(1000,typeof(p)); SSE = @ # data storage array
x[4] = 0.4; x[5] = 140 # sets initial condition

sets known parameter values

T = 273; delT = 0.01; c02 = 2e-3; k1 = 53; kis = ki*le-6
K2 = 46exp(-6500/T-18); K3 = 2%K2;

for i=1:200

Advances one time-step
templ = delT*(k1s*x[5i-1]*x[5i]-c02*(p[1]+p[2])*x[5i-4])
temp2 = delT*(p[1]*x[51-4]/K2+p[2]1*x[5i-3]1/K3-k5*x[51-4]"2)

v

The global optimal solution, within a

x[5i+1] = x[5i-4] + templ + temp2 .

X(55+2] = A[53-3] + deLT* (p[217c02 A [53-41-(pL21/K3+pLA]x[53-31) 5 difference between lower and upper
x[5i+3] = x[5i-2] + delT*(p[1]*c02*x[5i-4]-p[1]/K2) . . .

X[5i+4] = x[5i-1] + delT*(-k1s*x[5i-1]*x[5i]) bounds, is found within 3 seconds.

x[51+5] = x[51] + delT*(k1*x[5i-1]1*x[5i])
Updates the SSE value

SSE += ((x[i+1] + (2/21)*x[i+2] + (2/21)*x[i+5]) - data[i])"~2

end » Times comparable to C++
return SSE

implementation in literature.

load data from file to variable d
using JLD2, FileIO
@load "KineticData.jld2" d

makes function with data fixed to file contents

£(x) -> fd(x,d)

solve optimality problem
objective, solution, feasibility = ScriptSolve(f,1b,ub)

Interface - JuMP

» Consider the flooded bed

bioreactor process

optimization problem in [3].

» x; input variables. The
weight between variables j
and hidden layer node ¢ are
Wi;; and the weight for the
hidden node i’s output D;.

3 Cheema, J. et al. Biotechnology progress 18(6), 2002 p1356-1365.
4 Schweidtmann, AM., Mitsos Journal of Optimization Theory and Applications, 2018, p1-24.

FAGO

2D;
o Ba Z 15 op(—21)

xeX xp(—2Y;)
Yi=Bi+ Z Z Wij;
i=1 j=1

Input Hidden Output

Interface

2

JuMP

using JuMP
using EAGO

Box constraints for input variables
XLBD = [0.623, 0.093, 0.259, 6.56, 1114, ©.013, 0.127, ©0.004]
xUBD = [5.89, 0.5, 1, 90, 25000, 0.149, 0.889, 0.049]

Weights associated with the hidden Layer
= [0.54, -1.97, 0.09, -2.14, 1.01, -0.58, 0.45, 0.26;
-0.81, -0.74, 0.63, -1.60, -0.56, -1.05, 1.23, 0.93;
-0.11, -0.38, -1.19, 0.43, 1.21, 2.78, -0.06, 0.40)

Weights associated with the output Layer
D = [-0.91 0.11 0.52]

Bias associated with the hidden Layer
= [-2.698 0.012 2.926]

Bias associated with the output Layer
B2 = -0.46

Model construction

model = Model (with_optimizer(EAGO.Optimizer()))
@variable(model, xLBD[i] <= x[i=1:8] <= xUBD[i])
@NLexpression(m, prop[i], B1[i] + sum(W[i,3]*x[i] for i=1:
@iiLobjective(model, Max, B2 + sum(D[3]*(2/ (1rexp(-2%prop[ily) for i=1:3))

Solves the model
optimize! (model)

Access functions for the solution
ObjectiveValue = getobjectivevalue(model)
Feasibility = getfeasibility(model)
Solution = getvalue(x)

4 Dunning, I. et al. STAM Review, 59, 2017, 295-320

5 Hart, W. et al. Mathematical Programming Computation, 3, 2011, 219

FAGO

» EAGO provides native support for
the JuMP AML [4].

» JuMP provides automatic
differentiation utilities and
expression input via syntactic
mMacros.

» Similiar complexity to Pyomo [5].

» Example is solved in under less than
one second.

Outline

Algorithm Development
Main Algorithm
Relaxations
Domain Reduction

FAGO

Solver Routine

,
l

1
Presolve |
prmp——

End

Infeasible '
r

Update | Check
Incumbent |_Termination |
(BT b)
N R i Postprocess N check |
(o=~ Preprocess Infeasible — =" —— r l ________
| Analyze Process | | Branch | [RPTTTERRS e :
| Infeasibility ETE— Node)l_'l Check ! Check !
SRS Integer }—»: Nonlinear ———
MINLP Feasible Feasibility | :\ Feasibility
v ¥

|
¥

» EAGO now supports a Branch-and-Cut [6] framework.
» Individual subroutines can be set using a simple API.

#Sets preprocessing rule
@SetPreprocessingRule (s, f)

of s to function f

6 Rustem, B. et al. Optimization Methods and Software, 2001, 16, 21-47

Relaxations - Framework E&GO

New framework for organizing relaxations

» All relaxations now generated from tape and parsed into expression graph via
source-code transformation.
» Relaxations are registered with properties
» Differentiable
» MILP, etc.
» Schemes contain rules for composing relaxations using directed acyclic graph

» Full AVM: Generate relaxation at each node.
» SetValue: Propagate from user input.
» User-defined schemes supported.

Relaxations - Currently Supported

» Outer-Approximations(LP/MIP) [§]
» aBB-Type Relaxations [9]
» Interval Arithmetic |7]

» Convex/Concave Envelopes

-20

FAGO

ions of f(x) = x(x-5)sin(x)

L p———
——— ——

- S———
.

o -
-
B — .-
- -
Se——— —
———

== == Convex Relaxation

— ==Concave Relaxation
Function

C == = Lower Interval Bound

— = Upper Interval Bound

1 15 2 25 3 35 4

7 Moore, R. Methods and Application of Interval Analysis, SIAM, 1979
8 Tawarmalani, M. et al. Mathematical Programming, 99, 2004, 563-591
9 Adjiman, C.S et al. Computers & Chemical Engineering, 20, 1996, 419-424

Relaxations - GPU Programming E&GO

» Source-code transformation approach builds functions that additional Julia
code can manipulate.

» Integrates with Cassette.jl, Intel’s Parallel Accelerator or Cuda (CudaNative.jl
[10]) utilities to generate relaxation functions into code that can be run on a

GPU.
Preprocessing (CPU) Each Iteration
Construct Solve
Relaxation Julia (Cuda)
B5-8-8-8-E
(GPU) (CPU/GPU)

10 Besard, T. et al. IEEE Transactions on Parallel and Distributed Systems, 2018

Domain Reduction - OBBT

» Optimization-based bound
tightening with filtering and
greedy-ordering [11].
» Additional algorithms for: Poor
Man’s LP/NLP [12],
Newton/Krawczyk methods [13], and :
more.

> Integrates with new relaxation
framework.

11 Gleixner, A. et al. J. Global Optim, 67, 2017, 731-757

12 Puranik, Y. et al. Constraints, 22, 2017, 338-376
13 Stuber, M. et al. Optimization Methods & Software, 30, 2015, 424-460

Domain Reduction - Constraint Walking

FAGO

Tape DAG

» Wengert tape storage for

structures § I @
» Adaptive methods or 3 t, ty ' -

function built from DAG for e | sniz) @ .

constraint propagation (CP) -]

[14] zin[23] °
» Supports for validated :n 2] e e /

interval arithmetic CP [15] - e

xin [1,2] e

14 Vu, X. et al. J. Global Optim, 45, 2008, 499
15 Moore, R. et al. Intro to Interval Analysis, STAM 2009, 110

Meta Data:

Graph
Attributes:

- Parents

- Connectivity

Labels:
- Convexity
- Constraints

Values:

- Interval

- Convex

- Concave

Future Work E &G O

13

JuMP extension for DAE models: Enabled by new MathOptInterface Bridge
feature.

Automatic recognition of implicit functions in explicit forms.

Incorporation of fixed-point routines for relaxing implicitly-defined functions
for forming relaxations and domain reduction [13].

Stuber, M. et al. Optimization Methods & Software, 30, 2015, 424-460

Acknowledgements E &G O
UCONN s

SCHOOL OF ENGINEERING Laboratory
. . . \

» Kamil Khan for the discussion on

nonsmooth AD methods and

differentiable McCormick

relaxations N @
» Huiyi Cao for feedback on using ! MA |

EAGO Prof. Matthew Stuber Chenyu Wang ‘William Hale

» University of Connecticut for
providing funding

» The other members of the PSOR
group at UCONN

2

Connor Dion Jacob Chicano Abiha Jafri

Shameless Promotion...

FAGO

Other EAGO Talks at AIChE

Session: Advances in Determininstic Global Optimization
Date: Tuesday, October 30, 2018
Session Time: 8:00 AM - 10:30 AM

Presentation Title: Quadratic Underestimators of Differentiable Mccormick R for Deterministic Global Optimization
Presentation Time: 9:35 AM - 9:54 AM
Location: David L. Lawrence Convention Center, 409

Session: Advances in Computational Methods and Numerical Analysis
Date: Tuesday, October 30, 2018
Gession Time: 12:30 PM - 3:00 PM

Presentation Title: Tightening Mccormick Relaxations Via Reformulation of Intermediate Functions into Schema
Presentation Time: 2:05 PM - 2:24 PM

Location: David L. Lawrence Convention Center, 410

Fin... E&GO

» The EAGO suite is a registered Julia 1.0 package and can be installed as
follows:

Pkg . add ("FACO")

» Development versions, examples, and documentation may be accessed from the
Processing System and Engineering Lab’s Github website:

https://github.com /PSORLab/EAGO.jl

Questions?

	Introduction to EAGO
	Motivation
	EAGO Optimization
	EAGO Toolkit

	Algorithm Development
	Main Algorithm
	Relaxations
	Domain Reduction

