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Motivation

FAGO

» We often model systems in terms of simulations.

» The resulting optimization problems are complex (nonsmooth, nonconvex).

» In development, we want to do things other than optimize.

Simulation

A large literature has developed
around optimizing simulations.
Can we provide enough flexibility
to address these specialized
forms?

No Barrier to Entry

Can we make a fast global solver
that works like fmincon but
provides strong guarantees?



The Julia Language E&GO
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1 Bezanson, J, et al. SIAM Review, 59, (2017), p65-98



EAGO Optimization
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struct Storage

end

+(x:

val::Float64

:Storage,y: :Storage) = x.val + y.val

function objective(x::Float64)

end

# Type assertions in definition and storage
y = zeros(Float64,2)

# Operators nested in structures

sto = Storage(x[1])

sto += sto

# Collection operators

a=1[]

push!(a,y[1]*2)

# Control flow elements

if (x > @)

y[1] = x*2 + x
else

y[1] = sin(x)
end

# Access from array structure
y[1] + y[2] + sto.val + pop!(a)

FAGO

Original Scope: A general script-based
solver that constructs McCormick relaxations
by method overloading.

Issue: "General" overloading approaches
aren’t adequately general.

Issue: Introducing auxiliary variables,
rearranging expressions, and presolving can
be quite beneficial.

@D



Toolkit E &G O

EAGO Formulation Tools
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Interface - Script E Q&@O
Consider the kinetic parameter estimation problem given in [1]. Parameters a i

that minimize the sum-square error.

min Z ((ZA + 7ZB + 7ZD) -1 )2

peP i
Decision parameters are the reaction rate constants
p = (kag, kag, ka) € [100,1200] x [100,1200] x [0.001, 40]

The explicit Euler discretization of the kinetic mechanism is given by:
i+1 i i i iy b2y oo kag
z T, + At klzyzz7CQQ(k2f+k3f)zA+KizD+ %
2 3
. ar
(orconss= (12 +12) )
(kaCOZIi‘ — ifz7’D>
wij—l = z; + At( klsz;ziz)

Ky
ziZ+1 = zZZ + At

~ ks(ai)?)

aciB+l = ac}g + At

zgl = z7’D + At
klzyzz)

2 Mitsos A. et al. SIAM Journal on Optimization, STAM, 20, (2009), 573-601 @



Interface - Script E&GO

X = zeros(1000,typeof(p)); SSE = @  # data storage array
x[4] = 0.4; x[5] = 140 # sets initial condition

# sets known parameter values

T = 273; delT = 0.01; c02 = 2e-3; k1 = 53; kis = ki*le-6
K2 = 46exp(-6500/T-18); K3 = 2%K2;

for i=1:200

# Advances one time-step
templ = delT*(k1s*x[5i-1]*x[5i]-c02*(p[1]+p[2])*x[5i-4])
temp2 = delT*(p[1]*x[51-4]/K2+p[2]1*x[5i-3]1/K3-k5*x[51-4]"2)

v

The global optimal solution, within a

x[5i+1] = x[5i-4] + templ + temp2 .

X(55+2] = A[53-3] + deLT* (p[217c02 A [53-41-(pL21/K3+pLA]x[53-31) 5 difference between lower and upper
x[5i+3] = x[5i-2] + delT*(p[1]*c02*x[5i-4]-p[1]/K2) . . .

X[5i+4] = x[5i-1] + delT*(-k1s*x[5i-1]*x[5i]) bounds, is found within 3 seconds.

x[51+5] = x[51] + delT*(k1*x[5i-1]1*x[5i])
# Updates the SSE value

SSE += ((x[i+1] + (2/21)*x[i+2] + (2/21)*x[i+5]) - data[i])"~2

end » Times comparable to C++
return SSE

implementation in literature.

# load data from file to variable d
using JLD2, FileIO
@load "KineticData.jld2" d

# makes function with data fixed to file contents

£(x) -> fd(x,d)

# solve optimality problem
objective, solution, feasibility = ScriptSolve(f,1b,ub)



Interface - JuMP

» Consider the flooded bed

bioreactor process

optimization problem in [3].

» x; input variables. The
weight between variables j
and hidden layer node ¢ are
Wi;; and the weight for the
hidden node i’s output D;.

3 Cheema, J. et al. Biotechnology progress 18(6), 2002 p1356-1365.
4 Schweidtmann, AM., Mitsos Journal of Optimization Theory and Applications, 2018, p1-24.

FAGO

2D;
o Ba Z 15 op(—21)

xeX xp(—2Y;)
Yi=Bi+ Z Z Wij;
i=1 j=1

Input Hidden Output




Interface
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JuMP

using JuMP
using EAGO

# Box constraints for input variables
XLBD = [0.623, 0.093, 0.259, 6.56, 1114, ©.013, 0.127, ©0.004]
xUBD = [5.89, 0.5, 1, 90, 25000, 0.149, 0.889, 0.049]

# Weights associated with the hidden Layer
= [0.54, -1.97, 0.09, -2.14, 1.01, -0.58, 0.45, 0.26;
-0.81, -0.74, 0.63, -1.60, -0.56, -1.05, 1.23, 0.93;
-0.11, -0.38, -1.19, 0.43, 1.21, 2.78, -0.06, 0.40)

# Weights associated with the output Layer
D = [-0.91 0.11 0.52]

# Bias associated with the hidden Layer
= [-2.698 0.012 2.926]

# Bias associated with the output Layer
B2 = -0.46

# Model construction

model = Model (with_optimizer(EAGO.Optimizer()))
@variable(model, xLBD[i] <= x[i=1:8] <= xUBD[i])
@NLexpression(m, prop[i], B1[i] + sum(W[i,3]*x[i] for i=1:
@iiLobjective(model, Max, B2 + sum(D[3]*(2/ (1rexp(-2%prop[ily) for i=1:3))

# Solves the model
optimize! (model)

# Access functions for the solution
ObjectiveValue = getobjectivevalue(model)
Feasibility = getfeasibility(model)
Solution = getvalue(x)

4 Dunning, I. et al. STAM Review, 59, 2017, 295-320

5 Hart, W. et al. Mathematical Programming Computation, 3, 2011, 219

FAGO

» EAGO provides native support for
the JuMP AML [4].

» JuMP provides automatic
differentiation utilities and
expression input via syntactic
mMacros.

» Similiar complexity to Pyomo [5].

» Example is solved in under less than
one second.
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Solver Routine
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» EAGO now supports a Branch-and-Cut [6] framework.
» Individual subroutines can be set using a simple API.

#Sets preprocessing rule
@SetPreprocessingRule (s, f)

of s to function f

6 Rustem, B. et al. Optimization Methods and Software, 2001, 16, 21-47



Relaxations - Framework E&GO

New framework for organizing relaxations

» All relaxations now generated from tape and parsed into expression graph via
source-code transformation.
» Relaxations are registered with properties
» Differentiable
» MILP, etc.
» Schemes contain rules for composing relaxations using directed acyclic graph

» Full AVM: Generate relaxation at each node.
» SetValue: Propagate from user input.
» User-defined schemes supported.



Relaxations - Currently Supported

» Outer-Approximations(LP/MIP) [§]
» aBB-Type Relaxations [9]
» Interval Arithmetic |7]

» Convex/Concave Envelopes

-20

FAGO
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7 Moore, R. Methods and Application of Interval Analysis, SIAM, 1979
8 Tawarmalani, M. et al. Mathematical Programming, 99, 2004, 563-591
9 Adjiman, C.S et al. Computers & Chemical Engineering, 20, 1996, 419-424



Relaxations - GPU Programming E&GO

» Source-code transformation approach builds functions that additional Julia
code can manipulate.

» Integrates with Cassette.jl, Intel’s Parallel Accelerator or Cuda (CudaNative.jl
[10]) utilities to generate relaxation functions into code that can be run on a

GPU.
Preprocessing (CPU) Each Iteration
Construct Solve
Relaxation Julia (Cuda)
B5-8-8-8-E
(GPU) (CPU/GPU)

10 Besard, T. et al. IEEE Transactions on Parallel and Distributed Systems, 2018



Domain Reduction - OBBT

» Optimization-based bound
tightening with filtering and
greedy-ordering [11].
» Additional algorithms for: Poor
Man’s LP/NLP [12],
Newton/Krawczyk methods [13], and :
more.

> Integrates with new relaxation
framework.

11 Gleixner, A. et al. J. Global Optim, 67, 2017, 731-757

12 Puranik, Y. et al. Constraints, 22, 2017, 338-376
13 Stuber, M. et al. Optimization Methods & Software, 30, 2015, 424-460



Domain Reduction - Constraint Walking

FAGO

Tape DAG

» Wengert tape storage for

structures § I @
» Adaptive methods or 3 t,  ty ' -

function built from DAG for e | sniz) @ .

constraint propagation (CP) - ]

[14] zin[23] °
» Supports for validated :n 2] e e /

interval arithmetic CP [15] - e

xin [1,2] e

14 Vu, X. et al. J. Global Optim, 45, 2008, 499
15 Moore, R. et al. Intro to Interval Analysis, STAM 2009, 110

Meta Data:

Graph
Attributes:

- Parents

- Connectivity

Labels:
- Convexity
- Constraints

Values:

- Interval

- Convex

- Concave




Future Work E &G O

13

JuMP extension for DAE models: Enabled by new MathOptInterface Bridge
feature.

Automatic recognition of implicit functions in explicit forms.

Incorporation of fixed-point routines for relaxing implicitly-defined functions
for forming relaxations and domain reduction [13].

Stuber, M. et al. Optimization Methods & Software, 30, 2015, 424-460
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Shameless Promotion...

FAGO

Other EAGO Talks at AIChE

Session: Advances in Determininstic Global Optimization
Date: Tuesday, October 30, 2018
Session Time: 8:00 AM - 10:30 AM

Presentation Title: Quadratic Underestimators of Differentiable Mccormick R for Deterministic Global Optimization
Presentation Time: 9:35 AM - 9:54 AM
Location: David L. Lawrence Convention Center, 409

Session: Advances in Computational Methods and Numerical Analysis
Date: Tuesday, October 30, 2018
Gession Time: 12:30 PM - 3:00 PM

Presentation Title: Tightening Mccormick Relaxations Via Reformulation of Intermediate Functions into Schema
Presentation Time: 2:05 PM - 2:24 PM

Location: David L. Lawrence Convention Center, 410



Fin... E&GO

» The EAGO suite is a registered Julia 1.0 package and can be installed as
follows:

Pkg . add ("FACO")

» Development versions, examples, and documentation may be accessed from the
Processing System and Engineering Lab’s Github website:

https://github.com /PSORLab/EAGO.jl

Questions?
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