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Motivation

I Simulation is a primary task for chemical engineers. Generally, optimization
problems involving simulation have the following special form[1]:

f∗ =min
p∈P

f(x(p),p) (1)

s.t. g(x(p),p) ≤ 0

I Kinetic parameter estimation: solve a system ODEs for fixed parameters
then calculate sum-square-error [1]

I Engineering design: Engineering tasks naturally lead to optimization
problems

1 Stuber, M. et al. Optimization Methods and Software, 2015, 30, 424-460
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Factorable Programming

I Nonconvex problems are typically
solved via variations on branch-and
-bound algorithms [2].

I Generally we need to solve the
relaxed problem to construct the
lower bound

fLBD =min
p∈P

f cv(x̂(p),p)

s.t. gcv(x̂(p),p) ≤ 0

Example:

fLBD =min
p∈P

(p× exp (−p))3 + exp (−p)

Factorable decomposition:

fLBD = min
z∈Z

z6

z1 = p z4 = z1z3

z2 = −z1 z5 = z34

z3 = exp(z2) z6 = z5 + z3

Each constraint in the model is then
relaxed using function in library.

2 Horst, R. & Toy. H. Global Optimization: Deterministic Approaches, 2013
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Relaxations using Set-Valued Mappings

I Auxiliary variable methods (AVM)
introduce a significant number of
variables and constraints not present
in original problem [3].

I Set-valued mappings can be used to
progressively build valid bounds as
an alternative without introducing
additional variables [4].

Example:

fLBD =min
p∈P

(p× exp(−p))3 + exp (−p)

Factorable decomposition:

fLBD = min
p∈P

z6(p)
cv

z
cv/cc
1 ← pcc/cv z4 ← (z1z3)

cv/cc

z
cv/cc
2 ← (−z1)cv/cc z5 ← (z34)

cv/cc

z
cv/cc
3 ← exp(z2)

cv/cc z6 ← (z5 + z3)
cv/cc

3 Horst, R. & Toy. H. Global Optimization: Deterministic Approaches, 2013

4 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601
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McCormick Relaxations

McCormick Composition Rule [5]:
Let Z ⊂ Rn, X ⊂ R be nonempty convex. The composite function g = φ ◦ f s.t. f : Z → R
is continuous, F : X → R, f(Z) ⊂ X. Let f cv, f cc : Z → R be relaxations of f on Z. Let
φcv, φcc : X → R be relaxations of φ on X. Let ξ∗min/ξ

∗
max be a min/max of φcv/φcc on X.

gcv : Z → R : z 7→ φcv(mid(f cv, fcc, ξ∗min))

gcc : Z → R : z 7→ φcc(mid(f cv, f cc, ξ∗max))

I McCormick relaxation approach for algorithm introduced in [5] provides a series of
composition rules expressing inequalities in form of bounding functions.

I Usually second-order convergent and tighter than interval bounds [5,6].
I Desirable to minimize clustering in branch-and-bound algorithm [7].

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

6 Bompadre, A. et al. Journal of Global Optimization, 2012, 52, 1-28

7 Kannan, R. et al. Journal of Global Optimization, 2017, 69, 629-676
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Prior Work - Global Optimization

McCormick Operator Methods:
- Multiplication, Addition, and Maximization [5,8]
- Concavoconvex and Convexoconcave Relaxations [5]
- Reverse Operator Propagation [9]

Auxiliary Variable Methods:
- Incorporation of Convexity Detection (DCP) [10]
- Convex Transformable Intermediate Expressions [11]
- Multilinear and Constrained McCormick Relaxations [12]
5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

8 Khan, K. et al. J Glob Optim, 2017, 67, 687-729

9 Wechsung, A. J Glob Optim, 2015, 63 (1), 1-36

10 Khajavirad, A. et al. Math Prog Computation, 2018, 10 (3), 383-421

11 Khajavirad, A. et al. Math Prog, 2014, 1-2, 107-140

12 Bao, X. et al. Math Prog Computation, 2015, 7(1), 1-37
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DAG Manipulation in Global Optimization

I One of the most common uses for directed graph manipulation is during
presolve for convexity detection and cut generation [13].

I These techniques commonly require bounds on variables and the first four
rearrangements reduce the directed graph to a single operator which envelopes
may be known.

log(ax) = x log(a) (2)

alog(x) = xlog(a) (3)

(ax)b = (ab)x (4)

(xa)b = xab (5)
(x1, . . . , xn)

a = xa1, . . . , x
a
n (6)

13 Khajavirad, A. et al. Math Prog Comp, 2018, 10, 383-421
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Subexpression Tightening
I Common univariate subexpressions that appear in modeling: Polynomials,
x log(x), sigmoid functions, solutions to ODEs, series approximations

I Known envelopes are often tighter than composite relaxations. Consider:

f(x) =
(exp(3x)− exp(−3x))
(exp(3x) + exp(−3x))

(7)
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14 Schweidtmann, AM., Mitsos Journal of Optimization Theory and Applications (2018) 1-24.
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Extending Set-Valued Mapping
with DAG Approaches

I McCormick operators embed many disciplined convex programming rules
(DCP) while calculating relaxations[15].

I Currently, no simple logical rules exist for identifying concavoconvex and
convexoconcave subexpressions.

I The principle purpose of this work is to provide a method for identifying these
subexpressions and minimizing the number of composition steps needed in
these calculations.

15 Shen, X. et al. IEEE 55th Conference on Decision and Control (CDC), 2016, 1009-1014



12/23

Directed Acyclic Graph of Functions

Consider the function below
f(x, y, z) = log (xyz) +

√
xyz

x y z

∗

log
√

+

Factorable Function [16]
A function F is factorable if it can be expressed in
terms of a finite number of factors v1, . . . , vm, s.t.
given p ∈ S, vi = pi for i = 1, . . . , np, and vk is defined
for np ≤ k ≤ m as either

1. vk = vi + vj , with, i, j < k

2. vk = vivj , with, i, j < k

3. vk = Uk(vi), with, i < k, where Uk : X → R is a
univariate intrinsic function

and F (p) = vm.

16 Scott, J. et al. J. Global Optim, 2011, 51, p569-606
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Directed Acyclic Graph of Functions

x y z

∗

log
√

+

− sin

DAG of a Function [16]

The graph has the representation, G = (V,E,f),
were v ∈ V , e ∈ E is a two-tuple of (v1, v2),
mappings fs, ft : E → V × V such that ∀e ∈ E,
we have fs(e) 6= ft(e).

Articulation Point or Bicut of a Graph[17]

A pair v1, v2 ∈ V × V is a bicut of a directed
graph G = (V,E,F) iff G− v1, v2 has more
components than G, G− v1, or G− v2.

16 Vu, X. et al., J. Global Optim, 2005, 33(4), p541-562

17 Tarjan, R. et al., SIAM J. Comput. 1985, 14(4): p862-874
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SQPR Tree Representation [18]

I All bicuts can be computed in linear time using well-known algorithms.
I The DAG is represented by a tree that linear subgraphs containing: (S) three

or greater cycle graphs, (Q) dipole graphs, (P) single edge graphs, or (R) any
other triconnected graph.

I Enumerating all tricuts or higher cuts poses significantly more difficulty.
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18 Tarjan, R. et al., SIAM J. Comput. 1985, 14(4): p862-874
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Classification via Root Finding
I Identify envelopes by finding the number of roots of the second derivative to

identify convex and concave regions.
I We sequential then sequentially find points connecting supporting line

segments and the original function.
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19 Maranas, C.D. et al., J Global Optim, 1995, 7, 143-182.
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Interval Root-Finding [20]

Interval Newton Iteration
Let x̃ ∈ X ∈ IR the interval Newton operator is defined by
N(X, x̃) = x̃− F ′(X)−1F (x̃). Then let X ′ = X

⋂
N(X, x̃).

Existence and Uniqueness of Roots

I Every zero x∗ ∈ X of F is in X ′.
I If X ′ = ∅ then F contains no zero in X.
I If x̃ ∈ int(X) and X ′ ⊂ X then F contains a unique zero.

Analogous methods exist for providing validated bounds on nonsmooth functions.
20 Moore, R.E. et al., Methods and Applications of Interval Analysis, 1979
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Identifying Candidate Nodes

1 Set maximum number of roots to check for, k, and maximum number of child
nodes to search.

2 Preprocess graph to eliminate tertiary and higher-arity functions.
3 Identify all bicut verticies.
4 For each parent bicut vertex, create a list A of all child bicut vertices in order

of path length.
5 Starting with the parent vertex, check for a reformulation with fewer than k

roots. If no reformulation exists, perform a binary search of all child nodes.
Terminate with highest child found.
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Benchmarking Setup

I For all cases in the GLOBAL/BCP benchmarking library, bicut identification
was performed in under 0.01 seconds (quadratic terms omitted).

I We selected ten problems from the GLOBAL/BCP and literature libraries to
compare McCormick relaxation tightening method purposed with the
branch-and-bound routines in EAGO.

I Only problems with at least one identified bicut were considered.
I An absolute tolerance of 10−4 was selected as the termination criteria. Ran

single threaded on a 3.60GHz Intel Xeon E3-1270 v5 processor with 32GB in
Ubuntu 16.04LTS and Julia v1.0. The affine lower bounding problem was
solved using CPLEX 12.8.0. Ipopt v3.12 [21] was used to solve the NLP
upper-bound problem.

21 Wächter, A. et al., Mathematical Programming, 2006, 106(1), p25-57
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Benchmarking Results

Problem Variables Inequalities Equalities CPU[s]
(EAGO)

CPU[s]
(+Algo)

ex4_1_7 1 0 0 1.0 0.2
ex6_2_10 6 0 3 95.2 37.1
growthls 3 0 0 5.1 5.1
filter 2 0 1 0.6 0.6
hydro 30 0 25 0.9 0.9
hs62 3 0 1 4.5 4.5
st_ph1 6 5 0 0.1 0.07
tre 2 0 0 0.15 0.07
heat[5] 1 0 0 1.2 0.5
CS I [12] 2 0 9 0.7 0.3
CS II [12] 5 12 1 60.7 31.4

5 Mitsos, A. et al. SIAM Journal of Optimization, 2009, 20, 573-601

12 Bongartz, D. et al. Journal of Global Optimization, 2017, 20, 761-796
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Future Work & Conclusions

I For the explored problems, an average speed up of approximately 40 percent
was obtained.

I Future work, will focus on developing simple checks for implicitly-defined
functions.

I Development of multivariate approaches presents some challenges:
I Unknown if linear time classification of n-cut vertices with n > 2 exists.
I Need to develop specialized approximations of envelopes described by convex

programs [22,23].

22 Khajavirad, A. et al., Sahinidis, N.V. J Glob. Optim. 52, 391-409 (2012)

23 Khajavirad, A. et al., Sahinidis, N.V. Math. Program. 137, 371-408 (2013)
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