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ABSTRACT

The increasing uncertainty due to advances in modern systems has negatively impacted system health
and safety. System health and safety problems associated with uncertainty can be attributed to (1) in-
adequate system design, (2) ill-suited controller and operating envelope, and (3) lack of robustness in
system diagnostics. The latter issue (3) is the main focus of this paper. This work presents an algorithm
for the design of active fault detection and isolation (FDI) tests that provide rigorous guarantees of robust-
ness in safety-critical systems. A semi-infinite program with implicit functions embedded is formulated
with the objective of maximizing FDI effectiveness at the worst-case realization of uncertainty by ma-
nipulating admissible system inputs, while taking into account system safety constraints. This problem is
solved locally and globally illustrating deficiencies in the performance of FDI tests designed for the mean
values of anticipated uncertainty. The resulting solution is an optimally performing fault diagnostic test
that guarantees system safety over the entire domain of uncertainty. This is illustrated using a benchmark

three-tank system and further analyzed through Monte Carlo simulation and k-NN classification.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The scientific challenge of satisfying the strict requirements
associated with safety-critical systems continues to grow as sys-
tems advance and increase in complexity, introducing additional
uncertainty in boundaries, parameters, and faults. The added
uncertainty from sources such as manufacturing defects and en-
vironmental disturbances negatively impacts system performance,
reliability, and most importantly safety. Correspondingly, the accu-
racy of system fault diagnostics has also suffered from uncertainty,
commonly due to model inaccuracies. The occurrence of faults
and their missed detection due to uncertainty is problematic for
safety-critical systems with rigid safety requirements. It is impor-
tant for safety-critical systems with hazardous or fatal implications
of occurring faults to be capable of detecting faults at low rates
of false alarms, missed detections, and subsequent no fault found
(NFF) events. da Silva et al. (2012) highlighted several sensor fault
scenarios from the aerospace industry that have led to loss of
mission or life. Saha and Sadi (2012) described the catastrophic
consequences of safety violations in nuclear power plants, heart
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pace makers, and spacecraft, all of which motivate the need for
safety-critical system dependability. Therefore, significant research
effort has been made in recent years to improve the resiliency of
safety-critical systems to faults and uncertainty (Kim et al., 2010;
Ossmann, 2014; Wisniewski et al., 2013). However, there is still
room for improvement in the field of system fault diagnostics,
especially in terms of robustness.

The robustness of fault diagnostics, in particular the system
health checks employed during maintenance, is highly dependent
on the method of fault detection and isolation (FDI) used and its
accuracy amid uncertainty. Therefore, much effort is focused on
the formal design of fault diagnostics to improve FDI capability
in terms of performance, reliability, and safety. This effort has
led to the field of FDI garnering significant research attention
over the past couple decades (Fekih, 2014; Hwang et al., 2010).
Methods of FDI can be implemented in either a passive or ac-
tive manner. Passive FDI methods are carried out during real
time operation and detect irregularities or anomalies that occur
through comparison with a predicted or anticipated behavior.
However, the robustness of these methods depends on the system
operating conditions as well as the fault severity and complexity
(Ashari et al., 2012). A major concern regarding today’s systems
are intermittent faults that are only present at specific moments of
an operating envelope. One of the benefits of active FDI methods
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is that they overcome this issue by re-configuring the system
into “optimal” state sequences or state trajectories that improve
the detection and isolation of faults. Furthermore, model-based
methods of active FDI have increased in popularity due to the fact
they leverage the increasing computational capacity of modern
systems, while also alleviating the high costs of handling faults
with duplicate components/systems (Ashari et al., 2012; Niemann,
2006). Finally, model-based active FDI methods can be leveraged
to improve the robustness of fault diagnostics during maintenance,
where system conditions can mask the fault(s) present (i.e., no
fault founds) or lead to misinterpretation of uncertainty as a fault
(i.e., false alarms) (Simandl and Pun¢ochaf, 2009). No fault found
events arise when a definitive conclusion on system health cannot
be made during maintenance (i.e., no fault is detected and/or
isolated), despite an alarm being triggered during operation. This
has been attributed to incorrect and inaccurate system fault diag-
nostics, more specifically the inability to replicate the conditions
which triggered the alarm (Khan et al., 2014a; 2014b).

System diagnostic tests are typically carried out in the automo-
tive and aerospace industries through built-in tests (BITs), which
refer to system-integrated methods of FDI executed during oper-
ation and maintenance for system health checks. Of those, the
so-called initiated BITs (IBITs) are tests specifically executed dur-
ing maintenance as active FDI tests and as a result have relaxed
system performance requirements. Relaxation of the normal op-
erating constraints during IBITs allows for more impactful ma-
nipulation of admissible system inputs to improve FDI capabili-
ties. Khan et al. (2014a,b) cite a need for improving FDI, specif-
ically BIT, to address issues associated with uncertainty. The se-
lection of an IBIT design can significantly impact the detection
and isolation of faults, separate them from system uncertainty,
and consequently improve maintenance costs, system reliability
and safety (Venkatasubramanian et al., 2003). One powerful ap-
proach to IBIT design builds on the application of optimization
techniques that manipulate system admissible inputs (Palmer and
Bollas, 2018; 2019; Palmer et al., 2018). In previous work, Hale and
Bollas (2018) mathematically formulated an active FDI method for
obtaining unique system outputs that detect and isolate several
faults by optimizing system operating conditions (i.e., admissible
system inputs). However, the majority of prior work assumes the
system is free of uncertainty or operating at mean anticipated val-
ues for uncertainty in system inputs, parameters, or boundaries.
For safety-critical systems, a method is needed that accounts for
all realizations of uncertainty, so that stringent safety requirements
can be accounted for and formally addressed (e.g., zero allowed
missed detections).

The task of designing robust FDI methods is often met with in-
accurate system data, unknown environmental factors, limitations
in system and external resources, and other sources of uncertainty
that need to be accounted for. Previously Hale et al. (2018), we il-
lustrated preliminary analyses of the impact of uncertainty on FDIL
This builds upon the work by Mesbah et al. (2014), who take a
probabilistic approach to active FDI and developed an optimal in-
put sequence for a three-tank system, subject to input and state
constraints, that separates the uncertain output probability distri-
butions of different fault scenarios. Mesbah et al. addressed com-
putational complexity by reducing the model equations to poly-
nomial chaos expansions, and optimized the Hellinger distance, or
distributional overlap, obtained from running Monte Carlo simula-
tions at each iteration. Scott et al. (2013) developed a set-based ap-
proach to computing minimally intrusive separating inputs (i.e., in-
puts that deviate slightly from normal operation and create unique
outputs belonging to at most one fault, for all uncertainties) for
linear discrete-time systems. They illustrated the method guaran-
tees of fault diagnosis using numerical examples, highlighting the
ability to reach conclusions in finite time and the improved com-

putational efficiency. Streif et al. (2013) studied the implications of
uncertain inputs and created a method for certifying the robust-
ness of active FDI by calculating uncertain input signals that sep-
arate outputs (of different fault scenarios) in a finite number of
steps. They did so while minimizing the number of outputs and
measurement samples required for robustness in order to subse-
quently reduce costs. Palmer et al. (2016) developed a methodol-
ogy for optimally designing IBIT using techniques from the field of
optimal experimental design and a frequentist inference approach
for uncertainty. However, a drawback of all these methods is that
they require knowledge on the probabilistic information of the un-
certain inputs and parameters a priori. This statistical information
is not always available, especially for fault scenarios that occur in-
frequently. In this case, other FDI methods are required to guaran-
tee system safety.

When uncertainty cannot be quantified probabilistically or
when robustness certificates are required for an FDI test at the
bounds of uncertainty, a deterministic global method must be
employed for the design of FDI tests. A useful technique for this
case is known as worst-case optimization, of which the only re-
quirement is that the design variables be bounded finite sets. The
worst-case approach is a specific subset of semi-infinite program-
ming (SIP) that focuses on the optimization under uncertainty
(Asprey and Macchietto, 2002; Stuber and Barton, 2015). This ap-
proach can be leveraged for robust FDI, specifically in determining
the feasibility of detecting and isolating faults for safety-critical
systems at the worst-case realization of uncertainty. However, the
global solution of SIPs is far from trivial and has garnered interest
from a vast range of communities (Floudas and Gounaris, 2009).
These programs optimize an objective function dependent on a
finite set of design variables, subject to an infinite number of
inequality and equality constraints also dependent upon these
design variables. The worst-case SIP approach has been explored
in many applications such as optimal experimental design, (Asprey
and Macchietto, 2002; Puschke et al., 2018; Walz et al., 2018),
process design (Stuber et al.,, 2014), and parameter estimation
(Bollas et al., 2009; Mitsos et al., 2009); however, finding solutions
to these complex problems is still an open challenge. Kwak and
Haug (1976) first addressed optimization with uncertainty by
solving a bilevel program using first-order functional approxima-
tions. Halemane and Grossmann (1983) extended this work and
explored a special case of SIPs called max-min/min-max by form-
ing explicit functions from the equality constraints. Swaney and
Grossmann (1985) developed two algorithms capable of solving
these types of problems given specific convexity requirements.
Stuber and Barton (2011) explored this further in terms of ro-
bustness for engineering applications with nonconvexities. They
presented a deterministic global optimization algorithm based
on the work of Bhattacharjee et al. (2005) that is dependent on
solving the equality constraints approximately for an implicit func-
tion with a successive-substitution fixed-point iteration technique.
Floudas et al. (2001) explored the issues of differentiability that
exist for SIPs and present a rigorous deterministic algorithm that
is capable of solving SIPs with twice-differentiable inequality and
equality constraints. Mitsos et al. (2007) developed an algorithm
capable of handling nonconvexities but was restricted to inequality
constrained bilevel programs. Stuber and Barton (2015) further
addressed this issue, developing an algorithm capable of solving
general SIPs that do not rely on approximations of the objec-
tive function, inequality constraints, or equality constraints. The
only requirements are that the objective function and inequality
constraints are continuous, the equality constraints are once-
differentiable, there exists a Slater point close to a minimizer, and
a unique implicit function exists for the equality constraint.

In this work, we design a system health maintenance test (i.e.,
IBIT, referred simply as BIT herein) for active FDI through the
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formulation of a worst-case SIP. The goal of this test is to reduce,
if not eliminate, false alarms, no fault founds, and nondetections
common in uncertain systems. This is accomplished by solving
the worst-case SIP globally for a feasible FDI test that is robust
to all realizations of uncertainty. In Section 2, we present the
mathematical formulation of our model-based active FDI method
in the form of a worst-case implicit SIP. We then discuss the
algorithms used to solve this problem and go into additional detail
about the a posteriori classification used to compare different BIT
designs. Section 3 then presents the application of this formu-
lation to a benchmark three-tank system with several faults and
uncertainties. We conclude this work by discussing the challenges
of solving worst-case SIPs globally for (even) simple systems such
as the one used in this work and show the value of the global BIT
feasible solution.

The novelty of this work lies in the deterministic method for
providing rigorous global guarantees of robustness in FDI which is
particularly beneficial to safety-critical systems where instances of
uncertainty may hide the root cause of faults that lead to catas-
trophic failures. The presented algorithm globally solves a semi-
infinite program for the worst-case design of FDI tests that satisfy
safety constraints over the entire uncertainty domain. Contribu-
tions of this work include the mathematical formulation of a semi-
infinite program with implicit functions embedded, its application
to a benchmark three-tank system with local and global solutions
of maximum FDI effectiveness at the worst-case realization of un-
certainty, and the comparison of test designs deployment using k-
NN classification.

2. Methods
2.1. Model definition

The system of steady state algebraic equations describing the
system of interest for robust FDI is defined as:

&/, w0, 001) =0, V[fle{[0]....[Nf]} (1

where fl/1: Dyysy x Dy x Do, x Djsy — R is the system of equa-

f
tions that are assumed to be continuously differentiable and fac-
torable (i.e.,, made up of elementary and transcendental functions)
over its open domain Dy € R, Dy ¢ RM, Do, c RMou, D iy C
f

RNef . The superscript [f] denotes the fault scenario of interest and
Ny is the total number of faults studied (with [f] = [0] representing
the fault-free system). The variable XUl € Dysy c RM is the vector
of system states, u e U = {u e RM :ul <u <uY} is the vector of
admissible system inputs, 0, € ©, = {6, € RNou : 6L <0, < oY} is
the vector of uncertain parameters, and 95,f e @lff = {S[ff le RN"f :

e[f]L <olfl < e[f]u} is the vector of parameters corresponding to
fo="f =°f
faults. The system outputs are expressed as:

WI=h&) +w, VIfle{[OL.... N} @)

where ylfl € Y ¢ RV is the vector of system outputs corresponding
to [f], h is the system of equations mapping the system states to
the measured outputs, and w e W c RV is the vector of measure-
ment noise.

2.2. Implicit SIP formulation of worst-case BIT design

The objective of model-based active FDI methods implemented
during system fault diagnostics (i.e., BIT) is to utilize the system
model (1) and its outputs (2) to detect and isolate faults through a
direct comparison with the measured outputs of the system. How-
ever, as discussed earlier, challenges arise when fault scenarios are

not unique in their model outputs or are masked by uncertainty
(e.g., measurement noise, input disturbances, fault severity, model
inaccuracy) or control loops (Khan et al., 2014a; 2014b; Mesbah
et al., 2014). It is, therefore, important to study the performance of
fault diagnostics in systems subject to uncertainty, particularly at
the worst-case realization for safety-critical systems. A worst-case
“robust” BIT design shall fully detect and isolate all the potential
faults over the entirety of the aforementioned uncertainty domain.
This problem can be described mathematically as a min-max prob-
lem of the following form:

G* = min max G(X,u,0y,0f)
uel %eX,0,€0,.07€0; (3)

st f(X,u,6,,08,) =0

where G: Dy x Dy x xDg, x Def — R is the continuous and fac-
torable feasibility criterion that defines the quality of the BIT de-
sign and f(X,u,0,.0f) = (f01, ... fi%1) = 0 is the combined sys-
tem of steady state algebraic equations for all fault scenarios
from (1) with augmented state variables % = (%(°],... %" ¢
X c MWD g parameters corresponding to faults 6y =
@ . eﬂ,Nf]) co;c RN,

The general nonconvex equality-constrained min-max problem
presented in (3) is computationally intractable and not address-
able by existing algorithms which are guaranteed finite termina-
tion (Stuber and Barton, 2015). With some mild assumptions from
implicit function theory, if at least one X exists that satisfies (1) for
each (u,0y,05) € U x @y x O C Dy x Dy, x Def, then it defines an
implicit function x : U x x@, x Of — X of (u, 0y, ef), expressed as
X =x(u,0y,0f). Given the existence and uniqueness of the im-
plicit function, such that f(x(u, 6,, ef), u, 0y, ef) =0, V(u, 0y, ef) €
U x By x ©5 with X c Dg, the equality constraints of (3) can be
eliminated to formulate an equivalent and more computationally
tractable implicit min-max problem:

G = r&llgleuegul,aée@fc(x(u, Bu.6f).1,0,,67) (4)
which can then be reformulated using standard optimization con-
vention as an implicit SIP below:

*

n*= min 7

uel, neH
(5)
s.t.n> max

G(x(u,0,,07),u,0,,0
0, X, GX(1.8,,07). u. 04, 0))

where n € H C R is an auxiliary variable introduced for the SIP for-
mulation. The inner minimization program of (5) can be expressed
in the following way by using the standard optimization conven-
tion of inequality constraints as nonpositive:

0> max
eue@u,e,e@f

G(x(u, Ou, ef),ll, Oy, ef) —-_n=< 0,

G(x(u, 0y,60f),1,0,,0f) —1 —

V (84,0f) €O, x Oy,
(6)

which is referred to as the (implicit) semi-infinite constraint.
Furthermore, through algebraic manipulation of the inequal-
ity constraint of (5) with (6) and the following identity,
g(x(u, 0y,67),u,6y,07,m) =G(X(u,0y,0f),u,0y,6f) —n, the previ-
ous implicit SIP (5) can be formulated as:

*

n*= min 7

uel, neH

s.t. g(x(u, 0y, 05), 1, 04,07,1) <0, V (64,0f) € Oy x O

(7
where g is the continuous and factorable semi-infinite constraint.
This finalized formulation is in the “standard form” required by the

implicit SIP algorithm used in this work. A feasible optimal solu-
tion to (7) coincides with g <0 for all realizations of uncertainty.
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Furthermore, an optimal solution n* <0 implies G* <0, and con-
versely n* > 0 implies G* > 0.

2.3. Local and global solutions of implicit SIPs

The program (7) has a finite number of variables yet an
infinite number of constraints, due to g being indexed by the
compact parameter sets of the uncertainty and fault domains. The
infinite number of constraints introduces significant complexity
over standard nonlinear programs (NLPs) and as such, SIPs are
extremely difficult to solve, and often intractable. Hettich and
Kortanek (1993) highlighted that these problems are typically con-
structed into finite equivalents and solved using conventional algo-
rithms. A similar type of problem was solved by Asprey and Mac-
chietto (2002) using Algorithm 1. This algorithm is the general al-

Algorithm 1 SIP Min-Max Algorithm.
Require: e,(}) € Oy, e}” €05, K1
1: while 35 < 1 A K < Knax do
2: Solve (7) while satisfying its semi-infinite constraint at
(e§k>,s<f’<>), Vke{1,...K}.
Store the optimal solution and objective as (n®, u®),

FUO gUk+T) gU+T) max  Gxu®, o, 05),uld
™. 0,7, 0 )eeueeu,efecaf (x(u'™, 0y,0), .

w

0u. 0f)
4 K<« K+1
5: end
6: if K < Kmax then
7 (n*,u*,ez,e}) - (ﬁ(l(—l)’u(Kfl)’el(lK)’e;K))
8 Terminate: Feasible Design
9: else
10: Terminate: Infeasible Design
11: end

ternating procedure presented by Blankenship and Falk (1976) that
consists of utilizing cutting planes to approximate the solution
of (7). By solving a sequence of auxiliary optimization problems,
nonlinear cuts are generated (i.e., new constraints are added)
based on the most violating constraint at the current approximate
solution until the algorithm converges to a solution to (7). This
algorithm requires an assumption on convexity, as the objective
function of Asprey and Macchietto (2002) is convex in nature
(DeCock et al., 2016), and this assumption is tested in this work to
explore the algorithm’s finite convergence. Algorithm 1 holds for
systems with bounded uncertainties, which is often the case for
engineered systems and the system studied here.

Algorithm 1 solves (7) by first taking an initial set of values for
the uncertain parameters and finding the optimal BIT design at the
given uncertainty. It then uses the optimal BIT design of that iter-
ation to try and find a new set of uncertain parameter values that
performs worse than the initial set, adding this set to an overall
uncertainty set comprised of the previous parameter sets. At each
iteration, the optimal BIT must satisfy its constraints for the cur-
rent set of uncertain parameters and all other parameter sets in
the overall uncertainty set. The algorithm terminates at an optimal
worst-case BIT design when no new set of uncertain parameters
that performs worse than all previous sets can be found. If the al-
gorithm iterates to its maximum Kpyax and no feasible solution has
been found, then the system design space, uncertainties, and con-
straints should be reconsidered.

Although the assumption on convexity made for
Algorithm 1 seems to be sufficient for the application pre-
sented in Section 3, global methods are required to guarantee
feasibility in cases when this assumption fails. Global meth-
ods avoid potentially suboptimal local solutions caused by

nonconvexities in SIPs. Falk and Hoffman (1977) extend upon
Blankenship and Falk (1976)’s cutting-plane algorithm for solving
nonlinear explicit SIPs to examine large classes of nonconvex
functions. Mitsos (2011) improved upon the Blankenship and
Falk (1976) algorithm by utilizing an upper-bounding procedure
that perturbs the right-hand side of the semi-infinite constraint in
(7), guaranteeing the generation of SIP-feasible points in a finite
manner for continuous NLPs that contain Slater points. Stuber and
Barton (2015) adapted the work of Mitsos (2011) to allow for
its application to implicit SIPs, and is the method used here for
the worst-case-scenario design of FDI tests in systems under
uncertainty. In general, the algorithm depends on the capability
of solving three nonconvex NLPs to global optimality at each
iteration. The extension of this algorithm to implicit SIPs follows
the same Slater point requirement and was guaranteed to finitely
converge to a global optimal by Stuber et al. (2015) for each
implicit NLP subproblem. These three subproblems are referred
herein as the lower-bounding program, the inner program, and the
upper-bounding program, and their application to implicit SIPs is
summarized in Algorithm 2 and explained below.

2.3.1. Lower-bounding program

The lower-bounding program discussed above is the first of the
three subproblems solved in the global implicit SIP algorithm of
Stuber et al. (2014). This program is a relaxation of the original
implicit SIP to an implicit NLP with a finite number of constraints.
These constraints correspond to the finite number of uncertainty
realizations (6y,6) € O x @?BP C ©y x Oy in the reduced set of
the lower-bounding program. The lower-bounding program is for-
mulated as:

LBP

N = min 7

uel, neH
s.t. g(x(u, 0,,0;),u,0,,07,m) <0,
VY (64,0y) € 0 x 8 Cc Oy x O (8)

A global solution of (8) guarantees that n'8” is a rigorous bound.

2.3.2. Inner program

The second program of Algorithm 2 is the inner program. The
inner program is equivalent to the semi-infinite constraint of the
original SIP (7) and defines the SIP feasible region given a candi-
date point (u,71) € U x H, formulated as:
g(u,mn) = u u n
g(u,n) 0,ca™X o, g(x(u, 6y, 05), W, Oy, 0, 7) 9)
The candidate point (u,7n) is determined to be a feasible point of
(7) if g(u,m) < 0, provided that the nonconvex NLP (9) is solved to
global optimality.

2.3.3. Upper-bounding program
The third and final program of Algorithm 2 is the novel upper-
bounding program (Mitsos, 2011). Similar to the lower-bounding
program, the original SIP is reduced to an implicit NLP with a finite
number of constraints corresponding to realizations of uncertainty
in its own reduced set (6,.0y) € OB x @?’3” C Oy x Of. However,
the upper-bounding program also contains a restricting parameter
€% > 0 that perturbs the right-hand side of the semi-infinite con-
straint away from zero, formulated as:
UBP

n = ue{]I,HT?GH n
s.t. g(x(u,0,,07),1,0,,07,m) < —€5,
VY (84, 05) € 03 x 87 c @, x Oy (10)

If there exists an SIP-Slater point, the algorithm is guaranteed to
generate a sequence of feasible points and converge to an e2-
optimal feasible solution in finitely-many iterations.
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Algorithm 2 Implicit SIP Global Optimization Algorithm.

Require: LB = —co, UB = 400, €,y > 0, K < 0, 0LBP = gLBP0 gUBP —
gUBPO, 0LBP — e?B”-O, oy — elf’BRO,eg < €800, andr> 1
1: while UB — LB > ¢, do

2:  solve LBP (8) for optimal solution u'B” and objective value

LBP
n

LBP

3: IB <8P a«—ulBP 7y

4 if LB > 0 then

5: Terminate: Infeasible Design

6: else

7: Solve IP (9) for optimal objective value g(u,n) and un-
certainty 0ff, 0f

8: end

9: if g(,n) < 0 then

10: Ut <~ u,n* <1

11: if n* <0 then

12: Terminate: Feasible Design

13: else

14: Terminate: Infeasible Design

15: end

16: else

17: olP — QLBP, G'fp — @I}BP

18: end

19:  solve UBP (10) for optimal solution uUB” and objective value
nUBP

20: if UBP (10) is feasible then

21: u < uUbP [ — nUBP

22: Solve IP (9) for optimal objective value g(u,7n) and un-
certainty 0ff, of

23: if g(u,n) < 0 then

24: if nU8P < 0 then

25: Terminate: Feasible Design

26: else

27: if 1 < UB then

28: u* <~u, UB<«nq

29: end

30: 8K+ 8Ky

31 end

32: else

33: o — o™, of — e}

34: end

35: else

36: eSK+1 8Ky

37: end

38: K« K+1

39: end

40: Terminate: Unknown

2.3.4. Implicit SIP global algorithm

The three subproblems above are all used in the implicit global
SIP algorithm, Algorithm 2. The solutions to subproblems (8) and
(10) maintain the following relationship,

LB = T]LBP < n* < T]UBP —UB.

The algorithm solves the original SIP (7) to €, optimality in a fi-
nite number of iterations given the mild assumptions laid out by
Stuber and Barton (2015). Algorithm 2 overviews the procedure
used for solving the implicit SIP of this work with the early ter-
mination criteria used in Stuber et al. (2014). The addition of these
criteria significantly improves the algorithm efficiency by prevent-
ing the unnecessary effort of solving (7) to global optimality in
cases where guarantees of feasibility or infeasibility can be made

prior. It is noteworthy to clarify that “Terminate: Unknown” indi-
cates the rare case when n* = 0 and the algorithm converges with
€0l — Optimality after finitely many iterations. In this case, no rig-
orous guarantees of design feasibility can be made and further in-
vestigation is required.

2.4. k-NN classification for FDI deployment

After design of the FDI test, a robust and computationally effi-
cient method is deployed for the classification of the faults under
consideration. As discussed in the introduction, there exist ample
passive FDI techniques to choose from such as neural networks,
principal component analysis, and support vector machines (Gajjar
et al., 2018; Moosavian et al., 2013; Najjar et al., 2016; Onel et al.,
2018a; 2018b; Shahnazari et al., 2018; Tamura and Tsujita, 2007;
Yu, 2013). The k-nearest neighbors (k-NN) algorithm was chosen
for this work because of its simple procedure and the dimension-
ality of the data being processed is minimal. For data sets that
are large in dimension, additional measures (e.g., PCA) need to be
taken to reduce the number of features analyzed in k-NN, such as
the work done by Gajjar et al. (2018) and Onel et al. (2018a,b) on
fault detection and diagnosis for Big Data.

The k-NN method of classification can be described as a
method of supervised learning that attempts to classify a given
observation y = (y1,....yn,) to the class 1 with the highest
estimated probability, where y is a sampled system observation
of unknown class ¢¥ (i.e., fault scenario) used for FDI. This is
accomplished by first obtaining a training data set of historical
observations Ytrain ¢ RNwain(MNr+DxNy and their respective classes

train __ {train train ini 7 7
ctramn = {cf ""’CNcrain(Nf+1)}' The training data set used in this

work is obtained from running N, Monte Carlo simulations over
the uncertainty domain. Afterwards, a positive integer k (usually
odd to avoid ties in classification decisions) and y is provided. The
k-NN classifier then finds the k training data points Y¥NN  RkxNy
of class CKNN = {ck-NN_ ckNN} closest to y. A standard met-
ric used to determine how close points are to the observation
is the Euclidean distance; however, other metrics such as the
Manhattan, Chebyshev, and Hamming distances can be used in
special circumstances for k-NN. Next, the conditional probability of

each class cl/l, [f]=[0],....[Ny]. for each individual observation
yi, i=1,..., Ny, is estimated as the fraction of points in Y¢-NN
with ckNN — (/1

1k (1 if ckNN — (lf]
P(cY =y = % ; 0, otherwise

V(LD e {I0L . INST} x {1, Ny}, (11)

Lastly, the class that y belongs to is estimated using a majority
vote of the individual observation’s conditional probabilities P, i =
1,...,Ny, each weighted with their respective predetermined fac-
tor o, i=1,..., Ny. The concluding class is the one with the high-
est majority vote based on conditional probability, defined as:

Ny
E[J] :jeal‘g max P Cy:C[f]|y — oiP Cy:C[f]b/‘ ,
{101 [V} ( ) ; i ( )
(12)

In this work we use equal voting (i.e., «; =Ny‘1, i=1,..., Ny)
but this may not always be ideal in situations where some
observations are more reliable than others.

The overall accuracy of the k-NN classification is then
gauged by running Ness Monte Carlo simulations to create a
new set of observations Ytest c RMestN1xNy of clags ctest —

test test i ini rain
{ct ""’CNtest(NfH)}’ independent from the training data Yan,
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Each test observation is classified using the trained k-NN accord-
ing to (12), and the percentage of correct classifications is calcu-
lated as:

Niest (Ny+1) :
W1 1) = e )
“ 7 Neest(Np+1) 0, otherwise

where E,[f] is the estimated class of test observation y, from
(12) and ctest is the actual class of y;.

3. Results and discussion

As discussed earlier, the instantiation of uncertainty, particu-
larly at its worst-case scenario, during system operation and main-
tenance plays a major role in negatively impacting system health
and safety. A timely example (at the time of writing) of this chal-
lenge is discussed by NASA (Belcastro, 2011), in their study on air-
craft loss of control (LOC) scenarios. Belcastro (2011) assessed that
45.2% of LOC accidents in aircraft is due to system faults, which
translates to 46.1% of fatalities due to these accidents. Effective de-
tection under off-nominal conditions is cited as a future solution
to mitigate these issues. Specifically, in-situ estimation methods
for distinguishing between anomalous system behavior and exter-

AT = &), u, 0, 01/1)

- ke Arsgn ()~ ) 2 @) |+ w1 + B - D

VIfle{[0].[1]. [2]. 3]}

nal disturbances are discussed as critical in future health manage-
ment systems for aircraft. The role of robustness to uncertainty,
mitigation of false alarms and misclassifications, is highlighted as
a critical need for the aerospace industry, wherein systems are of-
ten safety-critical. For these type of systems, the methodology of
Section 2 can provide rigorous global guarantees on system safety,
which is critical for the certification of these systems. In this sec-
tion we illustrate the application and benefits of the method in
a relevant open-literature case study of the benchmark three-tank
system. The “safety-critical” fault in this scenario is a tank leak and
pump degradation, with the system affected by many sources of
uncertainty which can lead to overflow and system shut-down.

3.1. Three-tank system model equations

The methods described are applied for FDI in a benchmark
three-tank system, studied in Mesbah et al. (2014), to illustrate ro-
bustness. This system has Ny =3, Ny, =2, Ng, =3, Nef =2, Ny=
3, and Ny =3. The layout of the three-tank system and its re-
spective inputs u, states X, uncertain parameters 0,, and param-
eters representing fault 6y are shown in Fig. 1. The cylindrical
tanks, Tank 1, Tank 2, and Tank 3, have equal cross-sectional area
Ar = 0.0154 m? and height ™ = 0.75 m. The two admissible sys-
tem inputs are the assigned flow rates of Pump 1 and Pump 2:
uy and u, (m3s~1). The tank connecting pipes and exiting pipe
have equal cross-sectional area A, = 0.00005 m?. The flow of lig-
uid through these pipes is characterized by the nondimensional
flow coefficients k¢,, kc,, and kc,. The system state il[f ! (m) cor-

A A A ] ~ 2 ~
_| - ke,Apsgn(R1 — 21y /2 g‘xlzf] — &N — ke, Apr/2 g8V — ke, 2 il 4w,
kersen R — 1), [2 glf) 2| — ke Apsn (A -2 2 gl - 2|

responds to the liquid height of Tank i for the given fault sce-
nario [f]. The system is studied at the fault-free case ([f]=[0])
with uncertainties present. Additionally, three uncertain fault sce-
narios are studied: Pump 1 degradation ([f]=[1]), Tank 2 leak
([f]1=12]), and simultaneous Pump 1 degradation and Tank 2 leak
([f1=1[3]). The Pump 1 degradation fault scenario is character-
ized by the nondimensional coefficient lf1 (BI0}2] = 1). The flow
rate supplied to Tank 1 is proportional to u; and Blfl. The Tank
2 leak fault scenario is characterized by the circular hole radius
rlf1 10111 = 0 m). It is assumed that this leak has the same flow
characteristics as the liquid exiting Tank 2.

To recap, the liquid heights of Tank 1, Tank 2, and Tank 3
are the system states %l/1 = (illf],ilzf],ﬁgf]), [f1=10],....[3]. The
assigned liquid flow rates of Pump 1 and Pump 2 are the ad-
missible system inputs u = (uq, uy). The flow coefficients are the
uncertain parameters 8y = (k¢,, kc,, kc;). The pump degradation
coefficient and leak radius are the parameters representing faults
e[ff] = (Bl/1, vy, In addition, the outputs are assumed to be void
of noise (w=0), augmented for each fault scenario as such
wW = oYL =& 1= (0. 13]

The dynamic model of the three-tank system studied was de-
rived from Torricelli’s law, and is the system of equations shown
below for each fault scenario:

(14)

where X/l € Dy  RM is the vector of state variable time deriva-
tives. To obtain the steady state equations used in this work, the
left-hand side derivative term ArXl/l was set to zero. In order to
use the solvers and algorithms that provide global guarantees, ap-
proximations of (14) must be introduced to ensure continuity and
differentiability (i.e., the signum and absolute value functions must
be replaced by continuously differentiable approximations). The
updated equations with sufficiently accurate approximations are
presented in (15) in their steady state form:

f71& 1, u, 0. 01/1) = 0

— ke Ap tanh (s ARL) \/ 28/ (At + e

+up + (YT = Dy

— ke,Ap tanh (5 ARL)) \/ 2 g\/m
= — kCZAp\/@ — kCanmz\/Egﬂ—k U
ke, Ap tanh(m)zgf;l)\/ 2 g/ (ARl2 4 €2

— ke,Ap tanh (5 ARLS]) \/ 2 g/ (AR2 4 e2

VIfle{[0l.[1].[2]. 3]} (15)
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Fig. 1. Three-tank system model architecture from Mesbah et al. (2014) with labeled system states %l/1 = (,?[]f],)z[zf],,?g”), inputs u = (uq, uy), uncertain parameters 0, =

(e, » ke, , ke, ), and fault parameters G[ff] = (U1, 7M1y,

where A)?l[jf] E)?E»f] —)?5.”, tanh(éAﬁl[jf]) is a continuously differen-

tiable approximation of the signum function, and,/ (A)?E{])Z +eis

a continuously differentiable approximation of the absolute value
function. These approximations were chosen based on their high
accuracy and low order-of-magnitude derivatives when compared
to their counterparts. It is important to note that to avoid numer-
ical issues, a trade-off analysis between the error and stiffness of
each approximation is required when determining the parametric
values of & and e. For example, the error of the absolute value ap-
proximation is on the order of ¢ and converges to € as Aig.]f] — 0.

However, choosing small values of ¢ to minimize error can lead
to large magnitude derivatives that diverge to +oco as € — 0 which
may introduce numerical issues for gradient-based optimizers.

3.2. SIP formulation of worst-case BIT design

It is crucial in fault diagnostics, particularly when designing BIT,
to discern between a fault-free system with frequent disturbances
and noise, and a system with fault(s). Thus, having a test that pro-
duces unique outputs in the presence of uncertainty for a fault-
free system and all its potential faults is desirable. In this work,
the objective function G used for designing BIT is the separation of
outputs recorded for each fault scenario, defined as the sum of the
squared differences below:

Ny Nj-1 Ny

G(X(u,0,,07).1.6,,0) =1/ — > > 3 (/1 - yl¥)2, (16)

i=1 f=0 g=f+1

where n/¢% ¢ Hf¢% R is the feasibility parameter that specifies a
desired FDI performance. The goal of the following method is to
find an objective that is at least as great as this parameter (i.e.,
G* > nfe5). Therefore, (16) is written using standard optimization
convention so that a feasible solution found by Algorithm 2 results
in G* <0. Updating the finalized implicit SIP formulation (7) with
the objective (16) results in the finalized problem formulation
solved in this work:

uemlgeH n
N, N-1 N
s.t. T]feas _ Z Z Z (yzl'f] _y'[g])2
i=1 f=0 g=f+1
—T]EOV (Bu,ef) €0y X@f, (17)

An n* > 0 implies that no feasible worst-case BIT design exists
which is capable of producing the desired separation nf®® for
all realizations of uncertainty in ®, x ®;. On the contrary, n* <0
means that a feasible worst-case BIT design exists and the solution

found is guaranteed to satisfy the BIT performance for all realiza-
tions of uncertainty.

The respective variable domains used in (17) are as fol-
lows: the augmented state interval is X =[0,0.75]'2, bounded
by the physical design constraint ¥™M3X the BIT design interval
is U=[10"5,10"%]2, the uncertain parameter interval is ©, =
[0.85,1.15] x [0.65, 0.95] x [0.85, 1.15], the fault parameter inter-
val is ©; =[0.54,0.66] x [0.0005,0.005], the SIP auxiliary vari-
able interval is H=[-0.1,10], and the FDI performance pa-
rameter is mgeq = 0.25. It is assumed that an implicit function
x:Ux0Oy xOr — X is enclosed upon these intervals, such that
f(x(u, 9y, ef),u, eu,ef) =0, V(u,0,, ef) €U x Oy x Oy. The upper
and lower bounds of the parameter domains were calculated as
three sigma deviations from the mean u+ 30, using the proba-
bilistic information presented in Table 1. The only exception was
the lower bound of the Tank 2 leak radius, whose three sigma de-
viation becomes negative which does not make physical sense. A
hole size an order of magnitude smaller than the upper bound was
decided upon as the lower bound.

3.3. Comparison of BIT designs for FDI

The three-tank system model Eqs. (15) were programmed
using Julia (Bezanson et al., 2017). A simulation-based approach
of obtaining an implicit function was implemented, and a robust
worst-case BIT design solution to (17) was obtained using the
JuMP interface and Algorithm 1. Additionally, this solution was
verified globally for its SIP feasibility using the package EAGO
(Wilhelm and Stuber, 0000) and Algorithm 2. For the sake of
illustrating the benefit of the robust worst-case BIT design, labeled
‘Worst-Case’, three other BIT designs were analyzed and are
presented in Table 2. The first BIT design, labeled as ‘Nominal’,
consisted of equal inputs u = (4.1-107°,4.1-107?) near the mid-
point of the original BIT design interval U. This design illustrates an
example of a sub-optimal test that is heuristically chosen for main-
tenance. The worst-case realization of uncertainty at the ‘Nominal’
BIT design was solved from (17) with the restricted input domain

U=[41-107541. 10*5]2. The second BIT design, labeled as
‘Mean’, represents a maintenance test intended for the anticipated
faults and uncertainty. The mean p parameter values of the faults
and uncertainty can be found in Table 1. The ‘Mean’ BIT design was
solved from (17) with the restricted uncertain and fault parameter
domains Oy x ©f =[1.00, 1.00] x [0.80, 0.80] x [1.00, 1.00] x
[0.60, 0.60] x [0.002, 0.002]. The third BIT design, labeled as ‘Con-
servative’, represents a test that was developed iteratively after
observing realizations of uncertainty at the ‘Mean’ design that led
to constraint violations (this can be seen in Fig. 5(b)). An updated
tank height constraint ¥™® was used in the ‘Conservative’ BIT
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Fig. 2. Dynamic simulations of the three-tank system heights for the 4 BIT designs in Table 2 and the 4 fault scenarios at the worst-case realizations of uncertainty shown
in Table 3. The black solid line represents the actual tank height constraint Xy.x = 0.75. The black dashed line in the ‘Conservative’ design plot represents the updated tank
height constraint £y.x = 0.40. The dotted shaded regions represent the ranges in tank heights for the different fault scenarios at other realizations of uncertainty.
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Fig. 3. Dynamic simulations of the three-tank system heights for the 4 BIT designs in Table 2 and the 4 fault scenarios at the anticipated realizations of uncertainty p shown
in Table 1. The black solid line represents the actual tank height constraint %ya.x = 0.75. The black dashed line in the ‘Conservative’ design plot represents the updated tank
height constraint &y« = 0.40. The dotted shaded regions represent the ranges in tank heights for the different fault scenarios at other realizations of uncertainty.

design to reduce the risk of violation, based on the largest vi-
olation observed at the ‘Mean’ design. The new constraint was
reduced from 0.75 to 0.40 for all three tanks due to a max-
imum violation of ~0.35. The ‘Conservative’ BIT was solved
from (17) with the same uncertain and fault parameter domains
Oy x ©f used for the ‘Mean’ design and the updated state do-
main % € X =[0,0.40]'2, given the new tank height constraint
Xmax — (.40 (shown in Figs. 2, 3, and 5(c)).

The worst-case realizations of uncertainty and faults (in terms
of FDI performance) for the 4 BIT designs were obtained and dis-
played in Table 3. Using (14), the three-tank system was dynam-
ically simulated for the 4 different BIT designs at their worst-
case realizations of uncertainty and faults. The outputs of the 4
fault scenarios studied (i.e., fault-free, Pump 1 degradation, Tank 2
leak, and simultaneous) are shown in Fig. 2. Once steady state is
achieved, these outputs are equivalent to the ones obtained from
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Table 1

Description of the uncertainties 8, = (ke,, ke, kc,) and faults 95!] = (U1, /1)
studied and their normally distributed A'(w, o) values with mean p and vari-
ance o2 (Mesbah et al., 2014).

Faults and uncertainties Parameters  Uncertainty distribution
Tank 1 Flow Coefficient 0u1 = ke, N(1.0,2.5-1073)
Tank 2 Flow Coefficient 0u2 = ke, N(0.8,2.5-1073)
Tank 3 Flow Coefficient 0u3 = ke, N(1.0,2.5-1073)
Pump 1 Degradation Coefficient e[{} =gl AN(0.6,4.0-107%)
Tank 2 Leak Radius eff; =l N(2.0-1072,1.0-10-5)

Table 2
The input bounds and solutions to (17) for the dif-
ferent BIT designs.

Inputs (m3s~1.1074)  u ub G*
Minimum 0.10 0.10 -
Nominal 0.41 0.41 0.204
Mean 097 010 -0314
Conservative 070 0.10 0.090
Worst-Case 0.80 0.10 —0.016
Maximum 1.00 1.00 -

(15). The three-tank system was also simulated at the anticipated
uncertainty of Table 1 to observe the most likely FDI performance
and is shown in Fig. 3. In addition to the simulated tank heights,
Figs. 2 and 3 display the tank height constraint plotted as the black
solid line, the updated constraint for the ‘Conservative’ design plot-
ted as the black dashed line, and the ranges of each tank height
due to different realizations of uncertainty plotted as dotted lines
filled in with the corresponding fault scenario color. Looking at the
outputs for the worst-case realization of uncertainty in Fig. 2, the
‘Nominal’ design shows little to no separation in the 4 fault scenar-
ios for all three of its outputs. The reason for this is that at these
‘Nominal’ conditions uncertainty causes the fault scenarios to be
indistinguishable from each other. This is problematic when diag-
nosing the system for faults, as false alarms will be triggered when
a fault-free system is mistaken to be one of the other fault scenar-
ios. Even worse, this lack of separation can result in nondetections
when a fault is present and the system is mistakenly assumed to
be fault-free. The ‘Mean’ design shows significant improvement in
separation over the ‘Nominal’ design, but the ranges of the Fault-
Free and Tank 2 Leak scenarios violate the tank height constraint
in Tanks 1 & 3. This is because the ‘Mean’ BIT was designed to sat-
isfy the constraint at the anticipated uncertainty and did not ac-
count for other realizations of uncertainty. Fig. 3 illustrates this, as
the simulated output of the ‘Mean’ design at the anticipated un-
certainty lies on the tank height constraint for Tank 1. The ‘Con-
servative’ design fixes this problem by satisfying the updated tank
height constraint, which is a buffer to the actual tank height con-
straint for potential deviations in tank height due to other realiza-
tions of uncertainty. However, this design underperforms in terms
of FDI as there is still space before the actual tank height con-
straint is active that can be utilized for additional separation. The
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‘Worst-Case’ design tackles this issue, as the actual constraint is
active for the realization of uncertainty that occurs at the upper
bound of its range. In this ‘Worst-Case’ FDI test, all three outputs
of the 4 fault scenarios have adequate separation for the purposes
of detection and isolation and adhere to the system tank height
constraints for all realizations of uncertainty.

The objective function, calculated as the euclidean distance be-
tween all of the fault scenarios, is shown in Fig. 4 at the worst-
case realization of uncertainty for each design. The bottom axes
of Fig. 4 are the pump flow rates; the black solid line depicts
the tank height constraint, indicating that for inputs above this
line a realization of uncertainty exists that violates this constraint;
and the red xy-plane through z = 0 indicates SIP feasibility, above
which designs satisfy the semi-infinite constraint of (17). It is im-
portant to note that following the max-min inequality, the result
shown in Fig. 4 is a lower bound of the feasible region. Looking
simply at the surface of this lower bound, the objective function
seems to be convex, verifying the assumption made on convexity
for Algorithm 1. Therefore, Algorithm 1 can be used in this case for
a computationally efficient robust FDI design. This does not reduce
the significance of global methods, such as those described earlier.
Global methods are important and necessary for providing rigor-
ous guarantees to safety-critical applications, especially in systems
where the FDI problem is nonconvex. For these problems, global
methods are capable of overcoming localities to find improved BIT
designs that local solvers cannot converge to. The global method
of Algorithm 2 used in this work converged to the same solution
as Algorithm 1 and confirms its SIP-feasibility, guaranteeing the ro-
bust BIT design.

When looking at the ‘Worst-Case’ design point in Fig. 4, it is
clear why both inputs did not reach their interval bounds, as the
design lies on the tank height constraint at the lower bound of in-
put 2 and altering input 1 would degrade the FDI performance or
violate the tank height constraint. Adjusting the physical system
design by increasing the tank height or widening the input bounds
would allow the inputs to be altered further and improve the FDI
performance. For example, if no tank height constraint was present
(i.e., the tanks were sufficiently large) then the greatest perform-
ing BIT of Fig. 4 lies at the upper bounds of inputs 1 and 2. The
‘Worst-Case’ design is the only design that satisfies both SIP feasi-
bility (i.e., lies above the SIP feasible plane) and the system con-
straint.

Figs. 5(a)-(d) display the data of each fault scenario used to
train the k-NN classifier. This data was obtained by running 10,000
Monte Carlo simulations with the normally distributed parameters
in Table 1. Each of these 3-D plots shows a clearer view of how
much overlap occurs between the fault scenarios at different re-
alizations of uncertainty. A common occurrence between designs,
exaggerated the most in Fig. 5(a), is the overlap between the fault-
free and the Tank 2 leak (Fault 2) scenarios and the Pump 1 degra-
dation (Fault 1) and the simultaneous (Fault 3) scenarios. The main
cause of this is that for the Tank 2 leak scenario, the radius of the
leak hole becomes minimal for some realizations of uncertainty,
resulting in Fault 2 mimicking the fault-free scenario and Fault 3
mimicking the Fault 2 scenario. Furthermore, the 3-D plots also

Table 3

Respective worst-case realizations of uncertainty for the three-tank system BIT designs studied in

Table 2.
Uncertain parameters  Min Nominal Mean Conservative ~ Worst-case ~ Max
0;, (-) 0.85 115 115 115 115 115
8;, (=) 0.65 0.95 0.95 0.95 0.95 0.95
0: 5 (-) 0.85 115 115 115 115 115
07, (=) 0.54 0.66 0.66 0.66 0.66 0.66

0.0005  0.0008 0.0018  0.0017 0.0018 0.005

e*f_z (m)
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Fig. 4. The upper bound of program (17) showing the objective function (16), G, calculated for the worst-case realization of uncertainty without consideration of the state
constraint. The red xy-plane at z=0 displays the SIP feasible region of FDI performance, where any point laying on or above it signifies a satisfactory worst-case BIT design.
The black dotted line represents the tank height constraint, where any point on or below it signifies the constraint is satisfied. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Steady state tank heights for 10,000 realizations of uncertainty (i.e., 40,000 data points given 4 fault scenarios) used to train k-NN classification. The axes indicate the
heights of Tanks 1, 2, and 3. The individual circles represent the tank heights for a given realization of uncertainty at each fault scenario: blue corresponding to fault-free,
red corresponding to Pump 1 degradation, yellow corresponding to Tank 2 leak, and purple corresponding to simultaneous faults. The bold circles and squares indicate
the mean/anticipated and worst-case realizations of uncertainty, respectively. The red planes indicate the actual tank height constraint. The black dashed lines indicate the

updated tank height constraint of the ‘Conservative’ BIT design. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Table 4

Confusion matrices with equal weighted sensor fusion and a k-NN value of 21.

Design: Nominal, A, = 0.7040

Design: Mean, A, = 0.8452

Actual

ol i 2] 3]
Predicted ¢ 093 000 022 0.00
dl 000 085 029 024
éd2 007 010 028 001

Actual

ol 1 2] 3]

Predicted ¢ 094 000 023 0.00
¢l 000 093 000 024

2 006 000 076 0.00

e’ 000 005 021 0.75 é3l 000 007 001 0.76
Design: Conservative, A, = 0.8273 Design: Worst-Case, A.. = 0.8377
Actual Actual
o] Al 2l 3l o] 1l 2l 3l

Predicted &° 092 000 024 0.0
¢l 000 090 000 027
¢ 008 001 0.76  0.00
e 000 009 000 073

¢o 093 000 024 000
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Fig. 6. Classification rates of each BIT design calculated from (13).

provide a clearer view of the tank height constraint violations that
occur in the ‘Mean’ design and how the updated constraint of the
‘Conservative’ design helps solve this issue. The ‘Worst-Case’ de-
sign improves upon the ‘Conservative’ design by exploring the en-
tire state domain, which activates but not violates the actual tank
height constraint at a single realization of uncertainty.

After the k-NN classifier was trained, 1000 additional Monte
Carlo simulation test data were generated to cross-validate the
classifier in accordance to its overall accuracy and analyze the
number of false alarms, nondetections, and incorrect classifica-
tions. Several values of ke {1,3,...,21} were tested and com-
pared, with k =21 chosen because it produced the highest cor-
rect classification rate in the validation test data set. Alternatively,
other methods of cross-validation such as the more thorough k-
fold cross-validation can be utilized to better tune the number of
neighbors used in classification (Mullin and Sukthankar, 2000). A
confusion matrix was created that quantifies these events and is
shown in Table 4. Each column in Table 4 denotes the simulated
test class and each row denotes the estimated class from the k-
NN classifier (12). The elements of Table 4 correspond to the per-

centage of tests that were calculated to belong to that class, with
the diagonal elements reporting the percentage of correct classifi-
cations. For example, 93% of the fault-free tests (cl%!) at the ‘Worst-
Case’ design were correctly estimated as ¢l%, leading to a 7% false
alarm rate with the remaining tests estimated as the Tank 2 leak
(é12). As expected from the overlap of fault scenarios shown ear-
lier, most of the incorrect classifications in Table 4 occur for the
Tank 2 leak (cl2]) and the simultaneous (cl3!) fault scenarios. The
Tank 2 leak scenario has a 24% nondetection rate where it is in-
correctly classified as the fault-free scenario ¢l°l. The simultaneous
fault scenario has a 29% misclassification rate where it is incor-
rectly classified as the Pump 1 degradation scenario cl!l. The over-
all correct classification rates of each FDI test design were calcu-
lated using (13) and are shown in Fig. 6. The classification rate for
each of the individual outputs is shown next to the combined ma-
jority vote classification rate. As expected, the ranking of FDI test
designs in terms of correct classification rates coincides with their
objective function ranking, with the best performing FDI test de-
sign being the ‘Mean’ and the worst performing being the ‘Nom-
inal’. However, enforcing that the system constraints are met for
all realizations of uncertainty, the ‘Worst-Case’ FDI test design pro-
vides the best possible correct classification rate.

4. Conclusions

We presented a method for the design of robust maintenance
tests using local and global optimization of the admissible system
inputs subject to constraints relating to the worst-case realization
of uncertainty. The semi-infinite program presented was shown to
be robust to all realizations of uncertainty. The global solution to
this problem provides certifiable guarantees valuable in application
to safety-critical systems. This problem was solved locally using
the Blankenship and Falk cutting plane algorithm (Blankenship and
Falk, 1976) presented by Asprey and Macchietto (2002) and its SIP
feasibility was confirmed globally using a cutting plane algorithm
presented by Stuber and Barton (2015). The method and programs
developed were applied on the three-tank benchmark system.
Several FDI test designs were compared to the SIP-optimal ‘Worst-
Case’ test design. The SIP-optimal test was capable of distinguish-
ing between a fault-free system and three separate fault scenarios,
which was not possible with a ‘Nominal’ test. The ‘Worst-Case’ FDI
test also satisfied the system safety constraint that other designs
violated while performing at its best possible feasible point. This
was illustrated a posteriori using k-NN classification with the
‘Worst-Case’ FDI test design having higher correct classification
rates than both the ‘Nominal’ and ‘Conservative’ designs.
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