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a b s t r a c t 

The increasing uncertainty due to advances in modern systems has negatively impacted system health 

and safety. System health and safety problems associated with uncertainty can be attributed to (1) in- 

adequate system design, (2) ill-suited controller and operating envelope, and (3) lack of robustness in 

system diagnostics. The latter issue (3) is the main focus of this paper. This work presents an algorithm 

for the design of active fault detection and isolation (FDI) tests that provide rigorous guarantees of robust- 

ness in safety-critical systems. A semi-infinite program with implicit functions embedded is formulated 

with the objective of maximizing FDI effectiveness at the worst-case realization of uncertainty by ma- 

nipulating admissible system inputs, while taking into account system safety constraints. This problem is 

solved locally and globally illustrating deficiencies in the performance of FDI tests designed for the mean 

values of anticipated uncertainty. The resulting solution is an optimally performing fault diagnostic test 

that guarantees system safety over the entire domain of uncertainty. This is illustrated using a benchmark 

three-tank system and further analyzed through Monte Carlo simulation and k -NN classification. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The scientific challenge of satisfying the strict requirements

associated with safety-critical systems continues to grow as sys-

tems advance and increase in complexity, introducing additional

uncertainty in boundaries, parameters, and faults. The added

uncertainty from sources such as manufacturing defects and en-

vironmental disturbances negatively impacts system performance,

reliability, and most importantly safety. Correspondingly, the accu-

racy of system fault diagnostics has also suffered from uncertainty,

commonly due to model inaccuracies. The occurrence of faults

and their missed detection due to uncertainty is problematic for

safety-critical systems with rigid safety requirements. It is impor-

tant for safety-critical systems with hazardous or fatal implications

of occurring faults to be capable of detecting faults at low rates

of false alarms, missed detections, and subsequent no fault found

(NFF) events. da Silva et al. (2012) highlighted several sensor fault

scenarios from the aerospace industry that have led to loss of

mission or life. Saha and Sadi (2012) described the catastrophic

consequences of safety violations in nuclear power plants, heart
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ace makers, and spacecraft, all of which motivate the need for

afety-critical system dependability. Therefore, significant research

ffort has been made in recent years to improve the resiliency of

afety-critical systems to faults and uncertainty ( Kim et al., 2010;

ssmann, 2014; Wisniewski et al., 2013 ). However, there is still

oom for improvement in the field of system fault diagnostics,

specially in terms of robustness. 

The robustness of fault diagnostics, in particular the system

ealth checks employed during maintenance, is highly dependent

n the method of fault detection and isolation (FDI) used and its

ccuracy amid uncertainty. Therefore, much effort is focused on

he formal design of fault diagnostics to improve FDI capability

n terms of performance, reliability, and safety. This effort has

ed to the field of FDI garnering significant research attention

ver the past couple decades ( Fekih, 2014; Hwang et al., 2010 ).

ethods of FDI can be implemented in either a passive or ac-

ive manner. Passive FDI methods are carried out during real

ime operation and detect irregularities or anomalies that occur

hrough comparison with a predicted or anticipated behavior.

owever, the robustness of these methods depends on the system

perating conditions as well as the fault severity and complexity

 Ashari et al., 2012 ). A major concern regarding today’s systems

re intermittent faults that are only present at specific moments of

n operating envelope. One of the benefits of active FDI methods
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I  
s that they overcome this issue by re-configuring the system

nto “optimal” state sequences or state trajectories that improve

he detection and isolation of faults. Furthermore, model-based

ethods of active FDI have increased in popularity due to the fact

hey leverage the increasing computational capacity of modern

ystems, while also alleviating the high costs of handling faults

ith duplicate components/systems ( Ashari et al., 2012; Niemann,

006 ). Finally, model-based active FDI methods can be leveraged

o improve the robustness of fault diagnostics during maintenance,

here system conditions can mask the fault(s) present (i.e., no

ault founds) or lead to misinterpretation of uncertainty as a fault

i.e., false alarms) ( Šimandl and Pun ̌cochář, 2009 ). No fault found

vents arise when a definitive conclusion on system health cannot

e made during maintenance (i.e., no fault is detected and/or

solated), despite an alarm being triggered during operation. This

as been attributed to incorrect and inaccurate system fault diag-

ostics, more specifically the inability to replicate the conditions

hich triggered the alarm ( Khan et al., 2014a; 2014b ). 

System diagnostic tests are typically carried out in the automo-

ive and aerospace industries through built-in tests (BITs), which

efer to system-integrated methods of FDI executed during oper-

tion and maintenance for system health checks. Of those, the

o-called initiated BITs (IBITs) are tests specifically executed dur-

ng maintenance as active FDI tests and as a result have relaxed

ystem performance requirements. Relaxation of the normal op-

rating constraints during IBITs allows for more impactful ma-

ipulation of admissible system inputs to improve FDI capabili-

ies. Khan et al. (2014a,b) cite a need for improving FDI, specif-

cally BIT, to address issues associated with uncertainty. The se-

ection of an IBIT design can significantly impact the detection

nd isolation of faults, separate them from system uncertainty,

nd consequently improve maintenance costs, system reliability

nd safety ( Venkatasubramanian et al., 2003 ). One powerful ap-

roach to IBIT design builds on the application of optimization

echniques that manipulate system admissible inputs ( Palmer and

ollas, 2018; 2019; Palmer et al., 2018 ). In previous work, Hale and

ollas (2018) mathematically formulated an active FDI method for

btaining unique system outputs that detect and isolate several

aults by optimizing system operating conditions (i.e., admissible

ystem inputs). However, the majority of prior work assumes the

ystem is free of uncertainty or operating at mean anticipated val-

es for uncertainty in system inputs, parameters, or boundaries.

or safety-critical systems, a method is needed that accounts for

ll realizations of uncertainty, so that stringent safety requirements

an be accounted for and formally addressed (e.g., zero allowed

issed detections). 

The task of designing robust FDI methods is often met with in-

ccurate system data, unknown environmental factors, limitations

n system and external resources, and other sources of uncertainty

hat need to be accounted for. Previously Hale et al. (2018) , we il-

ustrated preliminary analyses of the impact of uncertainty on FDI.

his builds upon the work by Mesbah et al. (2014) , who take a

robabilistic approach to active FDI and developed an optimal in-

ut sequence for a three-tank system, subject to input and state

onstraints, that separates the uncertain output probability distri-

utions of different fault scenarios. Mesbah et al. addressed com-

utational complexity by reducing the model equations to poly-

omial chaos expansions, and optimized the Hellinger distance, or

istributional overlap, obtained from running Monte Carlo simula-

ions at each iteration. Scott et al. (2013) developed a set-based ap-

roach to computing minimally intrusive separating inputs (i.e., in-

uts that deviate slightly from normal operation and create unique

utputs belonging to at most one fault, for all uncertainties) for

inear discrete-time systems. They illustrated the method guaran-

ees of fault diagnosis using numerical examples, highlighting the

bility to reach conclusions in finite time and the improved com-
utational efficiency. Streif et al. (2013) studied the implications of

ncertain inputs and created a method for certifying the robust-

ess of active FDI by calculating uncertain input signals that sep-

rate outputs (of different fault scenarios) in a finite number of

teps. They did so while minimizing the number of outputs and

easurement samples required for robustness in order to subse-

uently reduce costs. Palmer et al. (2016) developed a methodol-

gy for optimally designing IBIT using techniques from the field of

ptimal experimental design and a frequentist inference approach

or uncertainty. However, a drawback of all these methods is that

hey require knowledge on the probabilistic information of the un-

ertain inputs and parameters a priori . This statistical information

s not always available, especially for fault scenarios that occur in-

requently. In this case, other FDI methods are required to guaran-

ee system safety. 

When uncertainty cannot be quantified probabilistically or

hen robustness certificates are required for an FDI test at the

ounds of uncertainty, a deterministic global method must be

mployed for the design of FDI tests. A useful technique for this

ase is known as worst-case optimization, of which the only re-

uirement is that the design variables be bounded finite sets. The

orst-case approach is a specific subset of semi-infinite program-

ing (SIP) that focuses on the optimization under uncertainty

 Asprey and Macchietto, 2002; Stuber and Barton, 2015 ). This ap-

roach can be leveraged for robust FDI, specifically in determining

he feasibility of detecting and isolating faults for safety-critical

ystems at the worst-case realization of uncertainty. However, the

lobal solution of SIPs is far from trivial and has garnered interest

rom a vast range of communities ( Floudas and Gounaris, 2009 ).

hese programs optimize an objective function dependent on a

nite set of design variables, subject to an infinite number of

nequality and equality constraints also dependent upon these

esign variables. The worst-case SIP approach has been explored

n many applications such as optimal experimental design, ( Asprey

nd Macchietto, 2002; Puschke et al., 2018; Walz et al., 2018 ),

rocess design ( Stuber et al., 2014 ), and parameter estimation

 Bollas et al., 2009; Mitsos et al., 2009 ); however, finding solutions

o these complex problems is still an open challenge. Kwak and

aug (1976) first addressed optimization with uncertainty by

olving a bilevel program using first-order functional approxima-

ions. Halemane and Grossmann (1983) extended this work and

xplored a special case of SIPs called max-min/min-max by form-

ng explicit functions from the equality constraints. Swaney and

rossmann (1985) developed two algorithms capable of solving

hese types of problems given specific convexity requirements.

tuber and Barton (2011) explored this further in terms of ro-

ustness for engineering applications with nonconvexities. They

resented a deterministic global optimization algorithm based

n the work of Bhattacharjee et al. (2005) that is dependent on

olving the equality constraints approximately for an implicit func-

ion with a successive-substitution fixed-point iteration technique.

loudas et al. (2001) explored the issues of differentiability that

xist for SIPs and present a rigorous deterministic algorithm that

s capable of solving SIPs with twice-differentiable inequality and

quality constraints. Mitsos et al. (2007) developed an algorithm

apable of handling nonconvexities but was restricted to inequality

onstrained bilevel programs. Stuber and Barton (2015) further

ddressed this issue, developing an algorithm capable of solving

eneral SIPs that do not rely on approximations of the objec-

ive function, inequality constraints, or equality constraints. The

nly requirements are that the objective function and inequality

onstraints are continuous, the equality constraints are once-

ifferentiable, there exists a Slater point close to a minimizer, and

 unique implicit function exists for the equality constraint. 

In this work, we design a system health maintenance test (i.e.,

BIT, referred simply as BIT herein) for active FDI through the
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formulation of a worst-case SIP. The goal of this test is to reduce,

if not eliminate, false alarms, no fault founds, and nondetections

common in uncertain systems. This is accomplished by solving

the worst-case SIP globally for a feasible FDI test that is robust

to all realizations of uncertainty. In Section 2 , we present the

mathematical formulation of our model-based active FDI method

in the form of a worst-case implicit SIP. We then discuss the

algorithms used to solve this problem and go into additional detail

about the a posteriori classification used to compare different BIT

designs. Section 3 then presents the application of this formu-

lation to a benchmark three-tank system with several faults and

uncertainties. We conclude this work by discussing the challenges

of solving worst-case SIPs globally for (even) simple systems such

as the one used in this work and show the value of the global BIT

feasible solution. 

The novelty of this work lies in the deterministic method for

providing rigorous global guarantees of robustness in FDI which is

particularly beneficial to safety-critical systems where instances of

uncertainty may hide the root cause of faults that lead to catas-

trophic failures. The presented algorithm globally solves a semi-

infinite program for the worst-case design of FDI tests that satisfy

safety constraints over the entire uncertainty domain. Contribu-

tions of this work include the mathematical formulation of a semi-

infinite program with implicit functions embedded, its application

to a benchmark three-tank system with local and global solutions

of maximum FDI effectiveness at the worst-case realization of un-

certainty, and the comparison of test designs deployment using k -

NN classification. 

2. Methods 

2.1. Model definition 

The system of steady state algebraic equations describing the

system of interest for robust FDI is defined as: 

f [ f ] ( ̃ x 

[ f ] , u , θu , θ
[ f ] 

f 
) = 0 , ∀ [ f ] ∈ { [0] , . . . , [ N f ] } (1)

where f [ f ] : D ˜ x [ f ] × D u × D θu × D 

θ
[ f ] 
f 

→ R 

N ˜ x is the system of equa-

tions that are assumed to be continuously differentiable and fac-

torable (i.e., made up of elementary and transcendental functions)

over its open domain D ˜ x [ f ] ⊂ R 

N ˜ x , D u ⊂ R 

N u , D θu ⊂ R 

N θu , D 

θ
[ f ] 
f 

⊂

R 

N θ f . The superscript [ f ] denotes the fault scenario of interest and

N f is the total number of faults studied (with [ f ] = [0] representing

the fault-free system). The variable ˜ x [ f ] ∈ D ˜ x [ f ] ⊂ R 

N ˜ x is the vector

of system states, u ∈ U = { u ∈ R 

N u : u 

L ≤ u ≤ u 

U } is the vector of

admissible system inputs, θu ∈ Θu = { θu ∈ R 

N θu : θL 
u ≤ θu ≤ θU 

u } is

the vector of uncertain parameters, and θ
[ f ] 

f 
∈ Θ

[ f ] 

f 
= { θ[ f ] 

f 
∈ R 

N θ f :

θ
[ f ] L 

f 
≤ θ

[ f ] 

f 
≤ θ

[ f ] U 

f 
} is the vector of parameters corresponding to

faults. The system outputs are expressed as: 

y [ f ] = h ( ̃ x 

[ f ] ) + w , ∀ [ f ] ∈ { [0] , . . . , [ N f ] } (2)

where y [ f ] ∈ Y ⊂ R 

N y is the vector of system outputs corresponding

to [ f ], h is the system of equations mapping the system states to

the measured outputs, and w ∈ W ⊂ R 

N y is the vector of measure-

ment noise. 

2.2. Implicit SIP formulation of worst-case BIT design 

The objective of model-based active FDI methods implemented

during system fault diagnostics (i.e., BIT) is to utilize the system

model (1) and its outputs (2) to detect and isolate faults through a

direct comparison with the measured outputs of the system. How-

ever, as discussed earlier, challenges arise when fault scenarios are
ot unique in their model outputs or are masked by uncertainty

e.g., measurement noise, input disturbances, fault severity, model

naccuracy) or control loops ( Khan et al., 2014a; 2014b; Mesbah

t al., 2014 ). It is, therefore, important to study the performance of

ault diagnostics in systems subject to uncertainty, particularly at

he worst-case realization for safety-critical systems. A worst-case

robust” BIT design shall fully detect and isolate all the potential

aults over the entirety of the aforementioned uncertainty domain.

his problem can be described mathematically as a min-max prob-

em of the following form: 

G 

∗ = min 

u ∈ U 
max 

˜ x ∈ ̃ X , θu ∈ Θu , θ f ∈ Θ f 

G ( ̃ x , u , θu , θ f ) 

s.t. f ( ̃ x , u , θu , θ f ) = 0 

(3)

here G : D ˜ x × D u × ×D θu × D θ f 
→ R is the continuous and fac-

orable feasibility criterion that defines the quality of the BIT de-

ign and f ( ̃ x , u , θu , θ f ) = (f [0] , . . . , f [ N f ] ) = 0 is the combined sys-

em of steady state algebraic equations for all fault scenarios

rom (1) with augmented state variables ˜ x = ( ̃ x [0] , . . . , ̃  x [ N f ] ) ∈
˜ 
 ⊂ R 

N ˜ x (N f +1) and parameters corresponding to faults θ f =
(θ[0] 

f 
, . . . , θ

[ N f ] 

f 
) ∈ Θ f ⊂ R 

N θ f 
(N f +1) 

. 

The general nonconvex equality-constrained min-max problem

resented in (3) is computationally intractable and not address-

ble by existing algorithms which are guaranteed finite termina-

ion ( Stuber and Barton, 2015 ). With some mild assumptions from

mplicit function theory, if at least one ˜ x exists that satisfies (1) for

ach (u , θu , θ f ) ∈ U × Θu × Θ f ⊂ D u × D θu × D θ f 
, then it defines an

mplicit function x : U × ×Θu × Θ f → X of (u , θu , θ f ) , expressed as

˜ 
 = x (u , θu , θ f ) . Given the existence and uniqueness of the im-

licit function, such that f (x (u , θu , θ f ) , u , θu , θ f ) = 0 , ∀ (u , θu , θ f ) ∈
 × Θu × Θ f with X ⊂ D ˜ x , the equality constraints of (3) can be

liminated to formulate an equivalent and more computationally

ractable implicit min-max problem: 

G 

∗ = min 

u ∈ U 
max 

θu ∈ Θu , θ f ∈ Θ f 

G (x (u , θu , θ f ) , u , θu , θ f ) (4)

hich can then be reformulated using standard optimization con-

ention as an implicit SIP below: 

η∗ = min 

u ∈ U, η∈ H 
η

s.t. η ≥ max 
θu ∈ Θu , θ f ∈ Θ f 

G (x (u , θu , θ f ) , u , θu , θ f ) 
(5)

here η ∈ H ⊂ R is an auxiliary variable introduced for the SIP for-

ulation. The inner minimization program of (5) can be expressed

n the following way by using the standard optimization conven-

ion of inequality constraints as nonpositive: 

 ≥ max 
θu ∈ Θu , θ f ∈ Θ f 

G (x (u , θu , θ f ) , u , θu , θ f ) − η ⇐⇒ 

G (x (u , θu , θ f ) , u , θu , θ f ) − η ≤ 0 , ∀ (θu , θ f ) ∈ Θu × Θ f , 

(6)

hich is referred to as the (implicit) semi-infinite constraint.

urthermore, through algebraic manipulation of the inequal-

ty constraint of (5) with (6) and the following identity,

(x (u , θu , θ f ) , u , θu , θ f , η) = G (x (u , θu , θ f ) , u , θu , θ f ) − η, the previ-

us implicit SIP (5) can be formulated as: 

η∗ = min 

u ∈ U, η∈ H 
η

s.t. g(x (u , θu , θ f ) , u , θu , θ f , η) ≤ 0 , ∀ (θu , θ f ) ∈ Θu × Θ f 

(7)

here g is the continuous and factorable semi-infinite constraint.

his finalized formulation is in the “standard form” required by the

mplicit SIP algorithm used in this work. A feasible optimal solu-

ion to (7) coincides with g ≤ 0 for all realizations of uncertainty.
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urthermore, an optimal solution η∗ ≤ 0 implies G 

∗ ≤ 0, and con-

ersely η∗ > 0 implies G 

∗ > 0. 

.3. Local and global solutions of implicit SIPs 

The program (7) has a finite number of variables yet an

nfinite number of constraints, due to g being indexed by the

ompact parameter sets of the uncertainty and fault domains. The

nfinite number of constraints introduces significant complexity

ver standard nonlinear programs (NLPs) and as such, SIPs are

xtremely difficult to solve, and often intractable. Hettich and

ortanek (1993) highlighted that these problems are typically con-

tructed into finite equivalents and solved using conventional algo-

ithms. A similar type of problem was solved by Asprey and Mac-

hietto (2002) using Algorithm 1 . This algorithm is the general al-

lgorithm 1 SIP Min-Max Algorithm. 

equire: θ(1) 
u ∈ Θu , θ

(1) 
f 

∈ Θ f , K ← 1 

1: while ˆ η(K) < η(K) ∧ K ≤ K max do 

2: Solve (7) while satisfying its semi-infinite constraint at

(θ(k ) 
u , θ

(k ) 
f 

) , ∀ k ∈ { 1 , . . . , K} . 
Store the optimal solution and objective as (η(K) , u 

(K) ) . 

3: ( ̂ η(K) , θ
(K+1) 
u , θ

(K+1) 
f 

) ← max 
θu ∈ Θu , θ f ∈ Θ f 

G (x (u 

(K) , θu , θ f ) , u 

(K) , 

θu , θ f ) 

4: K ← K + 1 

5: end 

6: if K ≤ K max then 

7: (η∗, u 

∗, θ∗
u , θ

∗
f 
) ← ( ̂ η(K−1) , u 

(K−1) , θ
(K) 
u , θ

(K) 
f 

) 

8: Terminate : Feasible Design 

9: else 

10: Terminate : Infeasible Design 

11: end 

ernating procedure presented by Blankenship and Falk (1976) that

onsists of utilizing cutting planes to approximate the solution

f (7) . By solving a sequence of auxiliary optimization problems,

onlinear cuts are generated (i.e., new constraints are added)

ased on the most violating constraint at the current approximate

olution until the algorithm converges to a solution to (7) . This

lgorithm requires an assumption on convexity, as the objective

unction of Asprey and Macchietto (2002) is convex in nature

 DeCock et al., 2016 ), and this assumption is tested in this work to

xplore the algorithm’s finite convergence. Algorithm 1 holds for

ystems with bounded uncertainties, which is often the case for

ngineered systems and the system studied here. 

Algorithm 1 solves (7) by first taking an initial set of values for

he uncertain parameters and finding the optimal BIT design at the

iven uncertainty. It then uses the optimal BIT design of that iter-

tion to try and find a new set of uncertain parameter values that

erforms worse than the initial set, adding this set to an overall

ncertainty set comprised of the previous parameter sets. At each

teration, the optimal BIT must satisfy its constraints for the cur-

ent set of uncertain parameters and all other parameter sets in

he overall uncertainty set. The algorithm terminates at an optimal

orst-case BIT design when no new set of uncertain parameters

hat performs worse than all previous sets can be found. If the al-

orithm iterates to its maximum K max and no feasible solution has

een found, then the system design space, uncertainties, and con-

traints should be reconsidered. 

Although the assumption on convexity made for

lgorithm 1 seems to be sufficient for the application pre-

ented in Section 3 , global methods are required to guarantee

easibility in cases when this assumption fails. Global meth-

ds avoid potentially suboptimal local solutions caused by
onconvexities in SIPs. Falk and Hoffman (1977) extend upon

lankenship and Falk (1976) ’s cutting-plane algorithm for solving

onlinear explicit SIPs to examine large classes of nonconvex

unctions. Mitsos (2011) improved upon the Blankenship and

alk (1976) algorithm by utilizing an upper-bounding procedure

hat perturbs the right-hand side of the semi-infinite constraint in

7) , guaranteeing the generation of SIP-feasible points in a finite

anner for continuous NLPs that contain Slater points. Stuber and

arton (2015) adapted the work of Mitsos (2011) to allow for

ts application to implicit SIPs, and is the method used here for

he worst-case-scenario design of FDI tests in systems under

ncertainty. In general, the algorithm depends on the capability

f solving three nonconvex NLPs to global optimality at each

teration. The extension of this algorithm to implicit SIPs follows

he same Slater point requirement and was guaranteed to finitely

onverge to a global optimal by Stuber et al. (2015) for each

mplicit NLP subproblem. These three subproblems are referred

erein as the lower-bounding program, the inner program, and the

pper-bounding program, and their application to implicit SIPs is

ummarized in Algorithm 2 and explained below. 

.3.1. Lower-bounding program 

The lower-bounding program discussed above is the first of the

hree subproblems solved in the global implicit SIP algorithm of

tuber et al. (2014) . This program is a relaxation of the original

mplicit SIP to an implicit NLP with a finite number of constraints.

hese constraints correspond to the finite number of uncertainty

ealizations (θu , θ f ) ∈ ΘLBP 
u × ΘLBP 

f 
⊂ Θu × Θ f in the reduced set of

he lower-bounding program. The lower-bounding program is for-

ulated as: 

LBP = min 

u ∈ U, η∈ H 
η

s.t. g(x (u , θu , θ f ) , u , θu , θ f , η) ≤ 0 , 

∀ (θu , θ f ) ∈ ΘLBP 
u × ΘLBP 

f ⊂ Θu × Θ f (8) 

 global solution of (8) guarantees that ηLBP is a rigorous bound. 

.3.2. Inner program 

The second program of Algorithm 2 is the inner program. The

nner program is equivalent to the semi-infinite constraint of the

riginal SIP (7) and defines the SIP feasible region given a candi-

ate point ( ̄u , ̄η) ∈ U × H, formulated as: 

ḡ ( ̄u , ̄η) = max 
θ f ∈ Θ f , θu ∈ Θu 

g(x ( ̄u , θu , θ f ) , ū , θu , θ f , ̄η) (9) 

he candidate point ( ̄u , ̄η) is determined to be a feasible point of

7) if ḡ ( ̄u , ̄η) ≤ 0 , provided that the nonconvex NLP (9) is solved to

lobal optimality. 

.3.3. Upper-bounding program 

The third and final program of Algorithm 2 is the novel upper-

ounding program ( Mitsos, 2011 ). Similar to the lower-bounding

rogram, the original SIP is reduced to an implicit NLP with a finite

umber of constraints corresponding to realizations of uncertainty

n its own reduced set (θu , θ f ) ∈ ΘUBP 
u × ΘUBP 

f 
⊂ Θu × Θ f . However,

he upper-bounding program also contains a restricting parameter
g > 0 that perturbs the right-hand side of the semi-infinite con-

traint away from zero, formulated as: 

UBP = min 

u ∈ U, η∈ H 
η

s.t. g(x (u , θu , θ f ) , u , θu , θ f , η) ≤ −εg , 

∀ (θu , θ f ) ∈ ΘUBP 
u × ΘUBP 

f ⊂ Θu × Θ f (10) 

f there exists an SIP-Slater point, the algorithm is guaranteed to

enerate a sequence of feasible points and converge to an εg -

ptimal feasible solution in finitely-many iterations. 
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Algorithm 2 Implicit SIP Global Optimization Algorithm. 

Require: LB = −∞ , UB = + ∞ , εtol > 0 , K ← 0 , θLBP 
u = θLBP, 0 

u , θUBP 
u = 

θUBP, 0 
u , θLBP 

f 
= θLBP, 0 

f 
, θUBP 

f 
= θUBP, 0 

f 
, εg ← εg, 0 > 0 , and r > 1 

1: while UB − LB ≥ εtol do 

2: solve LBP (8) for optimal solution u 

LBP and objective value 

ηLBP 

3: LB ← ηLBP , ū ← u 

LBP , η̄ ← ηLBP 

4: if LB > 0 then 

5: Terminate : Infeasible Design 

6: else 

7: Solve IP (9) for optimal objective value ḡ ( ̄u , ̄η) and un- 

certainty θIP 
u , θ

IP 
f 

8: end 

9: if ḡ ( ̄u , ̄η) ≤ 0 then 

10: u 

∗ ← ū , η∗ ← η̄

11: if η∗ ≤ 0 then 

12: Terminate : Feasible Design 

13: else 

14: Terminate : Infeasible Design 

15: end 

16: else 

17: θIP 
u → ΘLBP 

u , θIP 
f 

→ ΘLBP 
f 

18: end 

19: solve UBP (10) for optimal solution u 

UBP and objective value 

ηUBP 

20: if UBP (10) is feasible then 

21: ū ← u 

UBP , η̄ ← ηUBP 

22: Solve IP (9) for optimal objective value ḡ ( ̄u , ̄η) and un- 

certainty θIP 
u , θ

IP 
f 

23: if ḡ ( ̄u , ̄η) < 0 then 

24: if ηUBP ≤ 0 then 

25: Terminate : Feasible Design 

26: else 

27: if η̄ < UB then 

28: u 

∗ ← ū , UB ← η̄

29: end 

30: εg,K+1 ← εg,K /r 

31: end 

32: else 

33: θIP 
u → ΘUBP 

u , θIP 
f 

→ ΘUBP 
f 

34: end 

35: else 

36: εg,K+1 ← εg,K /r 

37: end 

38: K ← K + 1 

39: end 

40: Terminate : Unknown 
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2.3.4. Implicit SIP global algorithm 

The three subproblems above are all used in the implicit global

SIP algorithm, Algorithm 2 . The solutions to subproblems (8) and

(10) maintain the following relationship, 

LB = ηLBP ≤ η∗ ≤ ηUBP = UB. 

The algorithm solves the original SIP (7) to εtol optimality in a fi-

nite number of iterations given the mild assumptions laid out by

Stuber and Barton (2015) . Algorithm 2 overviews the procedure

used for solving the implicit SIP of this work with the early ter-

mination criteria used in Stuber et al. (2014) . The addition of these

criteria significantly improves the algorithm efficiency by prevent-

ing the unnecessary effort of solving (7) to global optimality in

cases where guarantees of feasibility or infeasibility can be made
rior. It is noteworthy to clarify that “Terminate : Unknown” indi-

ates the rare case when η∗ = 0 and the algorithm converges with

tol − opt imalit y after finitely many iterations. In this case, no rig-

rous guarantees of design feasibility can be made and further in-

estigation is required. 

.4. k -NN classification for FDI deployment 

After design of the FDI test, a robust and computationally effi-

ient method is deployed for the classification of the faults under

onsideration. As discussed in the introduction, there exist ample

assive FDI techniques to choose from such as neural networks,

rincipal component analysis, and support vector machines ( Gajjar

t al., 2018; Moosavian et al., 2013; Najjar et al., 2016; Onel et al.,

018a; 2018b; Shahnazari et al., 2018; Tamura and Tsujita, 2007;

u, 2013 ). The k -nearest neighbors ( k -NN) algorithm was chosen

or this work because of its simple procedure and the dimension-

lity of the data being processed is minimal. For data sets that

re large in dimension, additional measures (e.g., PCA) need to be

aken to reduce the number of features analyzed in k -NN, such as

he work done by Gajjar et al. (2018) and Onel et al. (2018a,b) on

ault detection and diagnosis for Big Data. 

The k -NN method of classification can be described as a

ethod of supervised learning that attempts to classify a given

bservation y = (y 1 , . . . , y N y ) to the class c [ f ] with the highest

stimated probability, where y is a sampled system observation

f unknown class c y (i.e., fault scenario) used for FDI. This is

ccomplished by first obtaining a training data set of historical

bservations Y train ⊂ R 

N train (N f +1) ×N y and their respective classes

 

train = { c train 
1 

, . . . , c train 
N train (N f +1) 

} . The training data set used in this

ork is obtained from running N train Monte Carlo simulations over

he uncertainty domain. Afterwards, a positive integer k (usually

dd to avoid ties in classification decisions) and y is provided. The

 -NN classifier then finds the k training data points Y k -NN ⊂ R 

k ×N y 

f class C k -NN = { c k -NN 
1 

, . . . , c k -NN 
k 

} closest to y . A standard met-

ic used to determine how close points are to the observation

s the Euclidean distance; however, other metrics such as the

anhattan, Chebyshev, and Hamming distances can be used in

pecial circumstances for k -NN. Next, the conditional probability of

ach class c [ f ] , [ f ] = [0] , . . . , [ N f ] , for each individual observation

 i , i = 1 , . . . , N y , is estimated as the fraction of points in Y k -NN

ith c k -NN = c [ f ] : 

 i (c y = c [ f ] | y i ) = 

1 

k 

k ∑ 

j=1 

{ 

1 , if c k -NN 
j 

= c [ f ] 

0 , otherwise , 

∀ ([ f ] , i ) ∈ { [0] , . . . , [ N f ] } × { 1 , . . . , N y } , (11)

astly, the class that y belongs to is estimated using a majority

ote of the individual observation’s conditional probabilities P i , i =
 , . . . , N y , each weighted with their respective predetermined fac-

or αi , i = 1 , . . . , N y . The concluding class is the one with the high-

st majority vote based on conditional probability, defined as: 

ˆ 
 

[ j ] : j ∈ arg max 
[ f ] ∈ { [ 0 ] , ... , [ N f ] } P 

(
c y = c [ f ] | y ) = 

N y ∑ 

i =1 

αi P i 
(
c y = c [ f ] | y i 

)
, 

(12 )

n this work we use equal voting (i.e., αi = N 

−1 
y , i = 1 , . . . , N y )

ut this may not always be ideal in situations where some

bservations are more reliable than others. 

The overall accuracy of the k -NN classification is then

auged by running N test Monte Carlo simulations to create a

ew set of observations Y test ⊂ R 

N test (N f +1) ×N y of class C test =
 c test 

1 
, . . . , c test 

N test (N f +1) 
} , independent from the training data Y train .
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ach test observation is classified using the trained k -NN accord-

ng to (12) , and the percentage of correct classifications is calcu-

ated as: 

 cc = 

1 

N test (N f + 1) 

N test (N f +1) ∑ 

n =1 

{
1 , if ˆ c [ j] n = c test 

n 

0 , otherwise 
(13) 

here ˆ c 
[ j] 
n is the estimated class of test observation y n from

12) and c test 
n is the actual class of y n . 

. Results and discussion 

As discussed earlier, the instantiation of uncertainty, particu-

arly at its worst-case scenario, during system operation and main-

enance plays a major role in negatively impacting system health

nd safety. A timely example (at the time of writing) of this chal-

enge is discussed by NASA ( Belcastro, 2011 ), in their study on air-

raft loss of control (LOC) scenarios. Belcastro (2011) assessed that

5.2% of LOC accidents in aircraft is due to system faults, which

ranslates to 46.1% of fatalities due to these accidents. Effective de-

ection under off-nominal conditions is cited as a future solution

o mitigate these issues. Specifically, in-situ estimation methods

or distinguishing between anomalous system behavior and exter-

al disturbances are discussed as critical in future health manage-

ent systems for aircraft. The role of robustness to uncertainty,

itigation of false alarms and misclassifications, is highlighted as

 critical need for the aerospace industry, wherein systems are of-

en safety-critical. For these type of systems, the methodology of

ection 2 can provide rigorous global guarantees on system safety,

hich is critical for the certification of these systems. In this sec-

ion we illustrate the application and benefits of the method in

 relevant open-literature case study of the benchmark three-tank

ystem. The “safety-critical” fault in this scenario is a tank leak and

ump degradation, with the system affected by many sources of

ncertainty which can lead to overflow and system shut-down. 

.1. Three-tank system model equations 

The methods described are applied for FDI in a benchmark

hree-tank system, studied in Mesbah et al. (2014) , to illustrate ro-

ustness. This system has N ˜ x = 3 , N u = 2 , N θu = 3 , N θ f 
= 2 , N y =

 , and N f = 3 . The layout of the three-tank system and its re-

pective inputs u , states ˜ x , uncertain parameters θu , and param-

ters representing fault θ f are shown in Fig. 1 . The cylindrical

anks, Tank 1, Tank 2, and Tank 3, have equal cross-sectional area

 T = 0 . 0154 m 

2 and height ˜ x max = 0 . 75 m . The two admissible sys-

em inputs are the assigned flow rates of Pump 1 and Pump 2:

 1 and u 2 (m 

3 s −1 ) . The tank connecting pipes and exiting pipe

ave equal cross-sectional area A p = 0 . 0 0 0 05 m 

2 . The flow of liq-

id through these pipes is characterized by the nondimensional

ow coefficients k c 1 , k c 2 , and k c 3 . The system state ˜ x 
[ f ] 
i 

(m ) cor-

 T 
˙ ˜ x 

[ f ] = f [ f ] ( ̃ x 

[ f ] , u , θu , θ
[ f ] 

f 
) 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− k c 1 A P sgn ( ̃  x [ f ] 
1 

− ˜ x [ f ] 
3 

) 

√ 

2 g 

∣∣∣ ˜ x [ f ] 
1 

− ˜ x [ f ] 
3 

∣∣∣ + u 1 + (β[ f ] − 1

− k c 3 A P sgn ( ̃  x [ f ] 
2 

− ˜ x [ f ] 
3 

) 

√ 

2 g 

∣∣∣ ˜ x [ f ] 
2 

− ˜ x [ f ] 
3 

∣∣∣ − k c 2 A P 

√ 

2 g ̃  x [ f
2 

k c 1 A P sgn ( ̃  x [ f ] 
1 

− ˜ x [ f ] 
3 

) 

√ 

2 g 

∣∣∣ ˜ x [ f ] 
1 

− ˜ x [ f ] 
3 

∣∣∣ − k c 3 A P sgn ( ̃  x [ f ] 
3 

− x

∀ [ f ] ∈ { [0] , [1] , [2] , [3] } 
esponds to the liquid height of Tank i for the given fault sce-

ario [ f ]. The system is studied at the fault-free case ([ f ] = [0])

ith uncertainties present. Additionally, three uncertain fault sce-

arios are studied: Pump 1 degradation ([ f ] = [1]) , Tank 2 leak

([ f ] = [2]) , and simultaneous Pump 1 degradation and Tank 2 leak

([ f ] = [3]) . The Pump 1 degradation fault scenario is character-

zed by the nondimensional coefficient β[ f ] (β [0] , [2] = 1) . The flow

ate supplied to Tank 1 is proportional to u 1 and β[ f ] . The Tank

 leak fault scenario is characterized by the circular hole radius

 

[ f ] (r [0] , [1] = 0 m ) . It is assumed that this leak has the same flow

haracteristics as the liquid exiting Tank 2. 

To recap, the liquid heights of Tank 1, Tank 2, and Tank 3

re the system states ˜ x [ f ] = ( ̃  x 
[ f ] 
1 

, ̃  x 
[ f ] 
2 

, ̃  x 
[ f ] 
3 

) , [ f ] = [0] , . . . , [3] . The

ssigned liquid flow rates of Pump 1 and Pump 2 are the ad-

issible system inputs u = (u 1 , u 2 ) . The flow coefficients are the

ncertain parameters θu = (k c 1 , k c 2 , k c 3 ) . The pump degradation

oefficient and leak radius are the parameters representing faults
[ f ] 

f 
= (β[ f ] , r [ f ] ) . In addition, the outputs are assumed to be void

f noise (w = 0 ) , augmented for each fault scenario as such

 

[ f ] = (y 
[ f ] 
1 

, y 
[ f ] 
2 

, y 
[ f ] 
3 

) = 

˜ x [ f ] , [ f ] = [0] , . . . , [3] . 

The dynamic model of the three-tank system studied was de-

ived from Torricelli’s law, and is the system of equations shown

elow for each fault scenario: 

 c 2 π r [ f ] 2 
√ 

2 g ̃  x [ f ] 
2 

+ u 2 

 

2 g 

∣∣∣ ˜ x [ f ] 
3 

− ˜ x [ f ] 
2 

∣∣∣

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

(14) 

here ˙ ˜ x [ f ] ∈ D ˙ ˜ x [ f ] ⊂ R 

N ˜ x is the vector of state variable time deriva-

ives. To obtain the steady state equations used in this work, the

eft-hand side derivative term A T 
˙ ˜ x [ f ] was set to zero. In order to

se the solvers and algorithms that provide global guarantees, ap-

roximations of (14) must be introduced to ensure continuity and

ifferentiability (i.e., the signum and absolute value functions must

e replaced by continuously differentiable approximations). The

pdated equations with sufficiently accurate approximations are

resented in (15) in their steady state form: 

f [ f ] ( ̃ x 

[ f ] , u , θu , θ
[ f ] 

f 
) = 0 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

− k c 1 A P tanh (δ� ˜ x [ f ] 
13 

) 

√ 

2 g 

√ 

(� ˜ x [ f ] 
13 

) 2 + ε2 

+ u 1 + (β[ f ] − 1) u 1 

− k c 3 A P tanh (δ� ˜ x [ f ] 
23 

) 

√ 

2 g 

√ 

(� ˜ x [ f ] 
23 

) 2 + ε2 

− k c 2 A P 

√ 

2 g ̃  x [ f ] 
2 

− k c 2 π r [ f ] 2 
√ 

2 g ̃  x [ f ] 
2 

+ u 2 

k c 1 A P tanh (δ� ˜ x [ f ] 
13 

) 

√ 

2 g 

√ 

(� ˜ x [ f ] 
13 

) 2 + ε2 

− k c 3 A P tanh (δ� ˜ x [ f ] 
32 

) 

√ 

2 g 

√ 

(� ˜ x [ f ] 
32 

) 2 + ε2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

∀ [ f ] ∈ { [0] , [1] , [2] , [3] } (15) 
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Fig. 1. Three-tank system model architecture from Mesbah et al. (2014) with labeled system states ˜ x [ f ] = ( ̃ x [ f ] 
1 

, ̃  x [ f ] 
2 

, ̃  x [ f ] 
3 

) , inputs u = (u 1 , u 2 ) , uncertain parameters θu = 

(k c 1 , k c 2 , k c 3 ) , and fault parameters θ[ f ] 

f 
= (β[ f ] , r [ f ] ) . 
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where � ˜ x 
[ f ] 
i j 

≡ ˜ x 
[ f ] 
i 

− ˜ x 
[ f ] 
j 

, tanh (δ� ˜ x 
[ f ] 
i j 

) is a continuously differen-

tiable approximation of the signum function, and 

√ 

(� ˜ x 
[ f ] 
i j 

) 2 + ε is

a continuously differentiable approximation of the absolute value

function. These approximations were chosen based on their high

accuracy and low order-of-magnitude derivatives when compared

to their counterparts. It is important to note that to avoid numer-

ical issues, a trade-off analysis between the error and stiffness of

each approximation is required when determining the parametric

values of δ and ε. For example, the error of the absolute value ap-

proximation is on the order of ε and converges to ε as � ˜ x 
[ f ] 
i j 

→ 0 .

However, choosing small values of ε to minimize error can lead

to large magnitude derivatives that diverge to + ∞ as ε → 0 which

may introduce numerical issues for gradient-based optimizers. 

3.2. SIP formulation of worst-case BIT design 

It is crucial in fault diagnostics, particularly when designing BIT,

to discern between a fault-free system with frequent disturbances

and noise, and a system with fault(s). Thus, having a test that pro-

duces unique outputs in the presence of uncertainty for a fault-

free system and all its potential faults is desirable. In this work,

the objective function G used for designing BIT is the separation of

outputs recorded for each fault scenario, defined as the sum of the

squared differences below: 

G (x (u , θu , θ f ) , u , θu , θ f ) = η f eas −
N y ∑ 

i =1 

N f −1 ∑ 

f=0 

N f ∑ 

g= f+1 

(y [ f ] 
i 

− y [ g] 
i 

) 2 , (16)

where η f eas ∈ H 

f eas ⊂ R is the feasibility parameter that specifies a

desired FDI performance. The goal of the following method is to

find an objective that is at least as great as this parameter (i.e.,

G 

∗ ≥ η f eas ). Therefore, (16) is written using standard optimization

convention so that a feasible solution found by Algorithm 2 results

in G 

∗ ≤ 0. Updating the finalized implicit SIP formulation (7) with

the objective (16) results in the finalized problem formulation

solved in this work: 

min 

u ∈ U, η∈ H 
η

s.t. η f eas −
[ 

N y ∑ 

i =1 

N f −1 ∑ 

f=0 

N f ∑ 

g= f+1 

(y [ f ] 
i 

− y [ g] 
i 

) 2 

] 

−η ≤ 0 ∀ (θu , θ f ) ∈ Θu × Θ f , (17)

An η∗ > 0 implies that no feasible worst-case BIT design exists

which is capable of producing the desired separation η f eas for

all realizations of uncertainty in Θu × Θ f . On the contrary, η∗ ≤ 0

means that a feasible worst-case BIT design exists and the solution
ound is guaranteed to satisfy the BIT performance for all realiza-

ions of uncertainty. 

The respective variable domains used in (17) are as fol-

ows: the augmented state interval is ˜ X = [0 , 0 . 75] 12 , bounded

y the physical design constraint ˜ x max , the BIT design interval

s U = [10 −5 , 10 −4 ] 2 , the uncertain parameter interval is Θu =
0 . 85 , 1 . 15] × [0 . 65 , 0 . 95] × [0 . 85 , 1 . 15] , the fault parameter inter-

al is Θ f = [0 . 54 , 0 . 66] × [0 . 0 0 05 , 0 . 0 05] , the SIP auxiliary vari-

ble interval is H = [ −0 . 1 , 10] , and the FDI performance pa-

ameter is η f eas = 0 . 25 . It is assumed that an implicit function

 : U × Θu × Θ f → X is enclosed upon these intervals, such that

 (x (u , θu , θ f ) , u , θu , θ f ) = 0 , ∀ (u , θu , θ f ) ∈ U × Θu × Θ f . The upper

nd lower bounds of the parameter domains were calculated as

hree sigma deviations from the mean μ ± 3 σ, using the proba-

ilistic information presented in Table 1 . The only exception was

he lower bound of the Tank 2 leak radius, whose three sigma de-

iation becomes negative which does not make physical sense. A

ole size an order of magnitude smaller than the upper bound was

ecided upon as the lower bound. 

.3. Comparison of BIT designs for FDI 

The three-tank system model Eqs. (15) were programmed

sing Julia ( Bezanson et al., 2017 ). A simulation-based approach

f obtaining an implicit function was implemented, and a robust

orst-case BIT design solution to (17) was obtained using the

uMP interface and Algorithm 1 . Additionally, this solution was

erified globally for its SIP feasibility using the package EAGO

 Wilhelm and Stuber, 0 0 0 0 ) and Algorithm 2 . For the sake of

llustrating the benefit of the robust worst-case BIT design, labeled

Worst-Case’, three other BIT designs were analyzed and are

resented in Table 2 . The first BIT design, labeled as ‘Nominal’,

onsisted of equal inputs u = (4 . 1 · 10 −5 , 4 . 1 · 10 −5 ) near the mid-

oint of the original BIT design interval U . This design illustrates an

xample of a sub-optimal test that is heuristically chosen for main-

enance. The worst-case realization of uncertainty at the ‘Nominal’

IT design was solved from (17) with the restricted input domain

 = 

[
4 . 1 · 10 −5 , 4 . 1 · 10 −5 

]2 
. The second BIT design, labeled as

Mean’, represents a maintenance test intended for the anticipated

aults and uncertainty. The mean μ parameter values of the faults

nd uncertainty can be found in Table 1 . The ‘Mean’ BIT design was

olved from (17) with the restricted uncertain and fault parameter

omains Θu × Θ f = [ 1 . 0 0 , 1 . 0 0 ] × [ 0 . 80 , 0 . 80 ] × [ 1 . 0 0 , 1 . 0 0 ] ×
 

0 . 60 , 0 . 60 ] × [ 0 . 0 02 , 0 . 0 02 ] . The third BIT design, labeled as ‘Con-

ervative’, represents a test that was developed iteratively after

bserving realizations of uncertainty at the ‘Mean’ design that led

o constraint violations (this can be seen in Fig. 5 (b)). An updated

ank height constraint ˜ x max was used in the ‘Conservative’ BIT
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Fig. 2. Dynamic simulations of the three-tank system heights for the 4 BIT designs in Table 2 and the 4 fault scenarios at the worst-case realizations of uncertainty shown 

in Table 3 . The black solid line represents the actual tank height constraint ˜ x max = 0 . 75 . The black dashed line in the ‘Conservative’ design plot represents the updated tank 

height constraint ˜ x max = 0 . 40 . The dotted shaded regions represent the ranges in tank heights for the different fault scenarios at other realizations of uncertainty. 

Fig. 3. Dynamic simulations of the three-tank system heights for the 4 BIT designs in Table 2 and the 4 fault scenarios at the anticipated realizations of uncertainty μ shown 

in Table 1 . The black solid line represents the actual tank height constraint ˜ x max = 0 . 75 . The black dashed line in the ‘Conservative’ design plot represents the updated tank 

height constraint ˜ x max = 0 . 40 . The dotted shaded regions represent the ranges in tank heights for the different fault scenarios at other realizations of uncertainty. 
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esign to reduce the risk of violation, based on the largest vi-

lation observed at the ‘Mean’ design. The new constraint was

educed from 0.75 to 0.40 for all three tanks due to a max-

mum violation of ≈ 0.35. The ‘Conservative’ BIT was solved

rom (17) with the same uncertain and fault parameter domains

u × Θ f used for the ‘Mean’ design and the updated state do-

ain 

˜ x ∈ 

˜ X = [0 , 0 . 40] 12 , given the new tank height constraint

˜  max = 0 . 40 (shown in Figs. 2 , 3 , and 5 (c)). 
The worst-case realizations of uncertainty and faults (in terms

f FDI performance) for the 4 BIT designs were obtained and dis-

layed in Table 3 . Using (14) , the three-tank system was dynam-

cally simulated for the 4 different BIT designs at their worst-

ase realizations of uncertainty and faults. The outputs of the 4

ault scenarios studied (i.e., fault-free, Pump 1 degradation, Tank 2

eak, and simultaneous) are shown in Fig. 2 . Once steady state is

chieved, these outputs are equivalent to the ones obtained from
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Table 1 

Description of the uncertainties θu = (k c 1 , k c 2 , k c 3 ) and faults θ[ f ] 

f 
= (β[ f ] , r [ f ] ) 

studied and their normally distributed N (μ, σ2 ) values with mean μ and vari- 

ance σ 2 ( Mesbah et al., 2014 ). 

Faults and uncertainties Parameters Uncertainty distribution 

Tank 1 Flow Coefficient θu, 1 = k c 1 N (1 . 0 , 2 . 5 · 10 −3 ) 

Tank 2 Flow Coefficient θu, 2 = k c 2 N (0 . 8 , 2 . 5 · 10 −3 ) 

Tank 3 Flow Coefficient θu, 3 = k c 3 N (1 . 0 , 2 . 5 · 10 −3 ) 

Pump 1 Degradation Coefficient θ
[ f ] 

f, 1 
= β[ f ] N (0 . 6 , 4 . 0 · 10 −4 ) 

Tank 2 Leak Radius θ
[ f ] 

f, 2 
= r [ f ] N (2 . 0 · 10 −2 , 1 . 0 · 10 −6 ) 

Table 2 

The input bounds and solutions to (17) for the dif- 

ferent BIT designs. 

Inputs (m 

3 s −1 · 10 −4 ) u ∗1 u ∗2 G ∗

Minimum 0.10 0.10 –

Nominal 0.41 0.41 0.204 

Mean 0.97 0.10 −0.314 

Conservative 0.70 0.10 0.090 

Worst-Case 0.80 0.10 −0.016 

Maximum 1.00 1.00 –
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(15) . The three-tank system was also simulated at the anticipated

uncertainty of Table 1 to observe the most likely FDI performance

and is shown in Fig. 3 . In addition to the simulated tank heights,

Figs. 2 and 3 display the tank height constraint plotted as the black

solid line, the updated constraint for the ‘Conservative’ design plot-

ted as the black dashed line, and the ranges of each tank height

due to different realizations of uncertainty plotted as dotted lines

filled in with the corresponding fault scenario color. Looking at the

outputs for the worst-case realization of uncertainty in Fig. 2 , the

‘Nominal’ design shows little to no separation in the 4 fault scenar-

ios for all three of its outputs. The reason for this is that at these

‘Nominal’ conditions uncertainty causes the fault scenarios to be

indistinguishable from each other. This is problematic when diag-

nosing the system for faults, as false alarms will be triggered when

a fault-free system is mistaken to be one of the other fault scenar-

ios. Even worse, this lack of separation can result in nondetections

when a fault is present and the system is mistakenly assumed to

be fault-free. The ‘Mean’ design shows significant improvement in

separation over the ‘Nominal’ design, but the ranges of the Fault-

Free and Tank 2 Leak scenarios violate the tank height constraint

in Tanks 1 & 3. This is because the ‘Mean’ BIT was designed to sat-

isfy the constraint at the anticipated uncertainty and did not ac-

count for other realizations of uncertainty. Fig. 3 illustrates this, as

the simulated output of the ‘Mean’ design at the anticipated un-

certainty lies on the tank height constraint for Tank 1. The ‘Con-

servative’ design fixes this problem by satisfying the updated tank

height constraint, which is a buffer to the actual tank height con-

straint for potential deviations in tank height due to other realiza-

tions of uncertainty. However, this design underperforms in terms

of FDI as there is still space before the actual tank height con-

straint is active that can be utilized for additional separation. The
Table 3 

Respective worst-case realizations of uncertainty for

Table 2 . 

Uncertain parameters Min Nominal Me

θ∗
u, 1 (−) 0.85 1.15 1.1

θ∗
u, 2 (−) 0.65 0.95 0.9

θ∗
u, 3 (−) 0.85 1.15 1.1

θ∗
f, 1 

(−) 0.54 0.66 0.6

θ∗
f, 2 

( m ) 0.0 0 05 0.0 0 08 0.0
Worst-Case’ design tackles this issue, as the actual constraint is

ctive for the realization of uncertainty that occurs at the upper

ound of its range. In this ‘Worst-Case’ FDI test, all three outputs

f the 4 fault scenarios have adequate separation for the purposes

f detection and isolation and adhere to the system tank height

onstraints for all realizations of uncertainty. 

The objective function, calculated as the euclidean distance be-

ween all of the fault scenarios, is shown in Fig. 4 at the worst-

ase realization of uncertainty for each design. The bottom axes

f Fig. 4 are the pump flow rates; the black solid line depicts

he tank height constraint, indicating that for inputs above this

ine a realization of uncertainty exists that violates this constraint;

nd the red xy-plane through z = 0 indicates SIP feasibility, above

hich designs satisfy the semi-infinite constraint of (17) . It is im-

ortant to note that following the max-min inequality, the result

hown in Fig. 4 is a lower bound of the feasible region. Looking

imply at the surface of this lower bound, the objective function

eems to be convex, verifying the assumption made on convexity

or Algorithm 1 . Therefore, Algorithm 1 can be used in this case for

 computationally efficient robust FDI design. This does not reduce

he significance of global methods, such as those described earlier.

lobal methods are important and necessary for providing rigor-

us guarantees to safety-critical applications, especially in systems

here the FDI problem is nonconvex. For these problems, global

ethods are capable of overcoming localities to find improved BIT

esigns that local solvers cannot converge to. The global method

f Algorithm 2 used in this work converged to the same solution

s Algorithm 1 and confirms its SIP-feasibility, guaranteeing the ro-

ust BIT design. 

When looking at the ‘Worst-Case’ design point in Fig. 4 , it is

lear why both inputs did not reach their interval bounds, as the

esign lies on the tank height constraint at the lower bound of in-

ut 2 and altering input 1 would degrade the FDI performance or

iolate the tank height constraint. Adjusting the physical system

esign by increasing the tank height or widening the input bounds

ould allow the inputs to be altered further and improve the FDI

erformance. For example, if no tank height constraint was present

i.e., the tanks were sufficiently large) then the greatest perform-

ng BIT of Fig. 4 lies at the upper bounds of inputs 1 and 2. The

Worst-Case’ design is the only design that satisfies both SIP feasi-

ility (i.e., lies above the SIP feasible plane) and the system con-

traint. 

Figs. 5 (a)–(d) display the data of each fault scenario used to

rain the k -NN classifier. This data was obtained by running 10,0 0 0

onte Carlo simulations with the normally distributed parameters

n Table 1 . Each of these 3-D plots shows a clearer view of how

uch overlap occurs between the fault scenarios at different re-

lizations of uncertainty. A common occurrence between designs,

xaggerated the most in Fig. 5 (a), is the overlap between the fault-

ree and the Tank 2 leak (Fault 2) scenarios and the Pump 1 degra-

ation (Fault 1) and the simultaneous (Fault 3) scenarios. The main

ause of this is that for the Tank 2 leak scenario, the radius of the

eak hole becomes minimal for some realizations of uncertainty,

esulting in Fault 2 mimicking the fault-free scenario and Fault 3

imicking the Fault 2 scenario. Furthermore, the 3-D plots also
 the three-tank system BIT designs studied in 

an Conservative Worst-case Max 

5 1.15 1.15 1.15 

5 0.95 0.95 0.95 

5 1.15 1.15 1.15 

6 0.66 0.66 0.66 

018 0.0017 0.0018 0.005 
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Fig. 4. The upper bound of program (17) showing the objective function (16) , G , calculated for the worst-case realization of uncertainty without consideration of the state 

constraint. The red xy-plane at z = 0 displays the SIP feasible region of FDI performance, where any point laying on or above it signifies a satisfactory worst-case BIT design. 

The black dotted line represents the tank height constraint, where any point on or below it signifies the constraint is satisfied. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Steady state tank heights for 10,0 0 0 realizations of uncertainty (i.e., 40,0 0 0 data points given 4 fault scenarios) used to train k -NN classification. The axes indicate the 

heights of Tanks 1, 2, and 3. The individual circles represent the tank heights for a given realization of uncertainty at each fault scenario: blue corresponding to fault-free, 

red corresponding to Pump 1 degradation, yellow corresponding to Tank 2 leak, and purple corresponding to simultaneous faults. The bold circles and squares indicate 

the mean/anticipated and worst-case realizations of uncertainty, respectively. The red planes indicate the actual tank height constraint. The black dashed lines indicate the 

updated tank height constraint of the ‘Conservative’ BIT design. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Table 4 

Confusion matrices with equal weighted sensor fusion and a k -NN value of 21. 

Design: Nominal, A cc = 0 . 7040 Design: Mean, A cc = 0 . 8452 

Actual Actual 

c [0] c [1] c [2] c [3] c [0] c [1] c [2] c [3] 

Predicted ˆ c [0] 0.93 0.00 0.22 0.00 Predicted ˆ c [0] 0.94 0.00 0.23 0.00 

ˆ c [1] 0.00 0.85 0.29 0.24 ˆ c [1] 0.00 0.93 0.00 0.24 

ˆ c [2] 0.07 0.10 0.28 0.01 ˆ c [2] 0.06 0.00 0.76 0.00 

ˆ c [3] 0.00 0.05 0.21 0.75 ˆ c [3] 0.00 0.07 0.01 0.76 

Design: Conservative, A cc = 0 . 8273 Design: Worst-Case, A cc = 0 . 8377 

Actual Actual 

c [0] c [1] c [2] c [3] c [0] c [1] c [2] c [3] 

Predicted ˆ c [0] 0.92 0.00 0.24 0.00 ˆ c [0] 0.93 0.00 0.24 0.00 

ˆ c [1] 0.00 0.90 0.00 0.27 ˆ c [1] 0.00 0.92 0.00 0.29 

ˆ c [2] 0.08 0.01 0.76 0.00 ˆ c [2] 0.07 0.01 0.76 0.00 

ˆ c [3] 0.00 0.09 0.00 0.73 ˆ c [3] 0.00 0.07 0.00 0.74 

Fig. 6. Classification rates of each BIT design calculated from (13) . 
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provide a clearer view of the tank height constraint violations that

occur in the ‘Mean’ design and how the updated constraint of the

‘Conservative’ design helps solve this issue. The ‘Worst-Case’ de-

sign improves upon the ‘Conservative’ design by exploring the en-

tire state domain, which activates but not violates the actual tank

height constraint at a single realization of uncertainty. 

After the k -NN classifier was trained, 10 0 0 additional Monte

Carlo simulation test data were generated to cross-validate the

classifier in accordance to its overall accuracy and analyze the

number of false alarms, nondetections, and incorrect classifica-

tions. Several values of k ∈ { 1 , 3 , . . . , 21 } were tested and com-

pared, with k = 21 chosen because it produced the highest cor-

rect classification rate in the validation test data set. Alternatively,

other methods of cross-validation such as the more thorough k -

fold cross-validation can be utilized to better tune the number of

neighbors used in classification ( Mullin and Sukthankar, 20 0 0 ). A

confusion matrix was created that quantifies these events and is

shown in Table 4 . Each column in Table 4 denotes the simulated

test class and each row denotes the estimated class from the k -

NN classifier (12) . The elements of Table 4 correspond to the per-
entage of tests that were calculated to belong to that class, with

he diagonal elements reporting the percentage of correct classifi-

ations. For example, 93% of the fault-free tests ( c [0] ) at the ‘Worst-

ase’ design were correctly estimated as ˆ c [0] , leading to a 7% false

larm rate with the remaining tests estimated as the Tank 2 leak

 ̂ c [2] ). As expected from the overlap of fault scenarios shown ear-

ier, most of the incorrect classifications in Table 4 occur for the

ank 2 leak ( c [2] ) and the simultaneous ( c [3] ) fault scenarios. The

ank 2 leak scenario has a 24% nondetection rate where it is in-

orrectly classified as the fault-free scenario ˆ c [0] . The simultaneous

ault scenario has a 29% misclassification rate where it is incor-

ectly classified as the Pump 1 degradation scenario c [1] . The over-

ll correct classification rates of each FDI test design were calcu-

ated using (13) and are shown in Fig. 6 . The classification rate for

ach of the individual outputs is shown next to the combined ma-

ority vote classification rate. As expected, the ranking of FDI test

esigns in terms of correct classification rates coincides with their

bjective function ranking, with the best performing FDI test de-

ign being the ‘Mean’ and the worst performing being the ‘Nom-

nal’. However, enforcing that the system constraints are met for

ll realizations of uncertainty, the ‘Worst-Case’ FDI test design pro-

ides the best possible correct classification rate. 

. Conclusions 

We presented a method for the design of robust maintenance

ests using local and global optimization of the admissible system

nputs subject to constraints relating to the worst-case realization

f uncertainty. The semi-infinite program presented was shown to

e robust to all realizations of uncertainty. The global solution to

his problem provides certifiable guarantees valuable in application

o safety-critical systems. This problem was solved locally using

he Blankenship and Falk cutting plane algorithm ( Blankenship and

alk, 1976 ) presented by Asprey and Macchietto (2002) and its SIP

easibility was confirmed globally using a cutting plane algorithm

resented by Stuber and Barton (2015) . The method and programs

eveloped were applied on the three-tank benchmark system.

everal FDI test designs were compared to the SIP-optimal ‘Worst-

ase’ test design. The SIP-optimal test was capable of distinguish-

ng between a fault-free system and three separate fault scenarios,

hich was not possible with a ‘Nominal’ test. The ‘Worst-Case’ FDI

est also satisfied the system safety constraint that other designs

iolated while performing at its best possible feasible point. This

as illustrated a posteriori using k -NN classification with the

Worst-Case’ FDI test design having higher correct classification

ates than both the ‘Nominal’ and ‘Conservative’ designs. 



W.T. Hale, M.E. Wilhelm and K.A. Palmer et al. / Computers and Chemical Engineering 126 (2019) 218–230 229 

A

 

S  

a  

h  

s

R

A  

A  

B  

 

B  

B  

 

B  

B  

 

D  

F  

F  

 

 

F  

F  

 

G  

 

H  

 

H  

 

 

H  

H  

H  

K  

 

K  

 

K  

 

K  

M  

 

M  

M  

 

M  

 

M  

 

 

M  

 

N  

 

N  

O  

 

 

O  

 

 

 

 

O  

 

P  

 

P  

 

P  

 

P  

 

P  

 

 

S  

 

S  

 

S  

 

d  

 

S  

 

 

S  

 

S  

S  

 

S  

 

S  

 

Š  

 

cknowledgments 

This project was sponsored by the UTC Institute for Advanced

ystems Engineering (UTC-IASE) of the University of Connecticut

nd the United Technologies Corporation . Any opinions expressed

erein are those of the authors and do not represent those of the

ponsor. 

eferences 

shari, A.E., Nikoukhah, R., Campbell, S.L., 2012. Effects of feedback on active fault

detection. Automatica 48 (5), 866–872. doi: 10.1016/j.automatica.2012.02.020 . 
sprey, S.P. , Macchietto, S. , 2002. Designing robust optimal dynamic experiments. J.

Process Control 12 (4), 545–556 . 
elcastro, C.M. , 2011. Aircraft loss of control: Analysis and requirements for future

safety-critical systems and their validation. In: 2011 8th Asian Control Confer-

ence (ASCC), pp. 399–406 . 
ezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: a fresh approach to

numerical computing. SIAM Rev. 59 (1), 65–98. doi: 10.1137/1410 0 0671 . 
hattacharjee, B., Lemonidis, P., Green Jr., W.H., Barton, P.I., 2005. Global solu-

tion of semi-infinite programs. Math. Program. 103 (2), 283–307. doi: 10.1007/
s10107- 005- 0583- 6 . 

lankenship, J.W. , Falk, J.E. , 1976. Infinitely constrained optimization problems. J.

Optim. Theory Appl. 19 (2), 261–281 . 
ollas, G.M. , Barton, P.I. , Mitsos, A. , 2009. Bilevel optimization formulation for pa-

rameter estimation in vapor–liquid (–liquid) phase equilibrium problems. Chem.
Eng. Sci. 64 (8), 1768–1783 . 

eCock, A. , Gevers, M. , Schoukens, J. , 2016. D-Optimal input design for nonlinear
FIR-type systems: a dispersion-based approach. Automatica 73, 88–100 . 

alk, J.E. , Hoffman, K. , 1977. A nonconvex max-min problem. Naval Res. Logist. Q. 24
(3), 441–450 . 

ekih, A., 2014. Fault diagnosis and Fault Tolerant Control design for aerospace sys-

tems: a bibliographical review. In: Proceedings of 2014 Annual American Con-
trol Conference (ACC). Portland, Oregon, pp. 1286–1291. doi: 10.1109/ACC.2014.

6859271 . 
loudas, C.A. , Gounaris, C.E. , 2009. A review of recent advances in global optimiza-

tion. J. Global Optim. 45, 3–38 . 
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