UCONN

UNIVERSITYOF CONNECTICUT

AGO.|l: Easy Advanced
g)bal Optimization in Julia

Matthew D. Stuber
Assistant Professor
stuber@alum.mit.edu

A

Process Systems and
Operations Research
aboratory

Key Contributor

Matthew Wilhelm

PhD Candidate

PSOR Lab, Dept. of Chemical and Biomolecular Eng.
University of Connecticut

EAGO.|l developer

EURO 2019 - June 24, 2019 2 ‘9

Outline

e Motivation
— Why deterministic global optimization?
e Background
— What is Julia and why’d we choose it?
« EAGO.|l: Deterministic global optimization in Julia
— Architecture, core features/capabillities
— Advanced optimization formulations
— Examples
— Performance
e Conclusions

Motivation

o Optimization problems (especially in OR) are often formulated for
convexity/concavity

EURO 2019 - June 24, 2019

Motivation

o Optimization problems (especially in OR) are often formulated for
convexity/concavity

— May limit applications of optimal decision-making

EURO 2019 - June 24, 2019

Motivation

o Optimization problems (especially in OR) are often formulated for
convexity/concavity

— We don’t always need to find global optima, but when we do, we need
fast, accessible, and flexible software

EURO 2019 - June 24, 2019

Background: Julia

What isju“il?

Background: Julia

What isju“il?
New open-source programming language built specifically for scientific and
high-performance computing

Background: Julia

What isju“il?
 New open-source programming language built specifically for scientific and
high-performance computing

— Combines ease of use of high-level languages (MATLAB) with speed of
low-level languages (C, FORTRAN)

Background: Julia

What isju“il?
 New open-source programming language built specifically for scientific and
high-performance computing

— Combines ease of use of high-level languages (MATLAB) with speed of
low-level languages (C, FORTRAN)

o Can “feel” like a scripting language (dynamically-typed, but can also
declare types) (“generic programming”)

Background: Julia

What isju“il?
 New open-source programming language built specifically for scientific and
high-performance computing

— Combines ease of use of high-level languages (MATLAB) with speed of
low-level languages (C, FORTRAN)

o Can “feel” like a scripting language (dynamically-typed, but can also
declare types) (“generic programming”)

e Paradigm: multiple dispatch
— define function behavior across argument types

Background: Julia

101 e

benchmark

® & iteration_pi_sum
miairix_multiphy
o ’ matrix_statisiics
& parse_inlegers
" print_to_file
@ recursion_fibonacci
recursion_quicksort
- userfunc_mandelbro

[
=]

10"

,_ Julia LaaJIT Rust Go Fortran Java JavaScript Matlab Mathematica Python E Cctave

Background: Julia

What isju“il?

e Written in Julia (even primitives)

e Can natively call C and FORTRAN without wrapper code or APIs
 Automatic code generation

e Metaprogramming

Background: Julia

What isju“il?
e Written in Julia (even primitives)
e Can natively call C and FORTRAN without wrapper code or APIs
 Automatic code generation
e Metaprogramming
— Julia is represented as a data structure of the language itself
— We can write a program to transform and generate its own code

Background: EAGO

Why did we choose Julia?

Background: EAGO

Why did we choose Julia?

e Global optimization algorithms must be very fast and utilize many
complicated data types

— E.qg., derivatives, bounds, relaxations

Background: EAGO

Why did we choose Julia?

e Global optimization algorithms must be very fast and utilize many
complicated data types

— E.qg., derivatives, bounds, relaxations

 [For research and prototyping purposes, we want algorithms to be easy to
Implement and test

Background: EAGO

Why did we choose Julia?

f‘/l Y -v\,_‘
{ M f)
PA_A NS

Global optimization algorithms must be very fast and utilize many
complicated data types

— E.qg., derivatives, bounds, relaxations

For research and prototyping purposes, we want algorithms to be easy to
Implement and test

We often encounter optimization formulations which are difficult to represent
In standard modeling languages (GAMS, AMPL)

— E.g., embedded simulation

Background: EAGO

Why did we choose Julia?

f‘/l Y -v\,_‘
{ - ()
PA_A NS

Global optimization algorithms must be very fast and utilize many
complicated data types

— E.qg., derivatives, bounds, relaxations

For research and prototyping purposes, we want algorithms to be easy to
Implement and test

We often encounter optimization formulations which are difficult to represent
In standard modeling languages (GAMS, AMPL)

— E.g., embedded simulation
We may want to invoke a global solver as part of another algorithm
— E.g., semi-infinite programming

Background: EAGO

Why did we choose Julia?
It's open-source and free for non-commercial use!

Background: EAGO

Why did we choose Julia?
* |t's open-source and free for non-commercial use!
 There exists an open-source advanced modeling language: JUuMP.||

7% JUMP

Background: EAGO

Why did we choose Julia?
* |t's open-source and free for non-commercial use!
 There exists an open-source advanced modeling language: JUuMP.||

%) U
How do you get EAGO? oo JUMP

From Julia package manager:

using Pkg

Pkg.add{“EgEg"}D

EURO 2019 - June 24, 2019 22 ‘9

Background: EAGO

Why did we choose Julia?
* |t's open-source and free for non-commercial use!
 There exists an open-source advanced modeling language: JUuMP.||

@
How do you get EAGO? % J U MP

From Julia package manager:

using Pkg

Pkg.add{“EgEg"}D

From GitHub:
https://www.github.com/PSORLab/EAGO.||

EURO 2019 - June 24, 2019 23 ‘9

EAGO.|l: Architecture and Features

EAGO Formulation Tools

Standard Form (LP, QP, ...)

Reformulation Relaxation Search
Rules Library Heuristics

User-Defined or From Standard Library

Input:
JuMP AML

. _ ‘9
E(j’) EURO 2019 - June 24, 2019 ”

c
e__

EAGO.|l: Advanced Formulations

« User-defined functions

User-Defined Function (UDF) Internal DAG Structure of UDF
o — —————— ————— e m= = = = = — -~
/’ =) %\ ,, A
'I N % \\ | \
I
: L, I ! I Combined DAG Structure
1 L
| |_> | I _) of Optimization Problem
K T ..'
I £-) 1 \.‘_ ________ /
1 !
Y
\\ N ,/
e -

JuMP AML Problem 4 RN
Specification { \
1 ’
1
|
|
I
| /

EAGO.|l: Architecture and Features

e Core solver: branch-and-bound

A) Infeasibl
e s e
l ——- e Preprocess

- _:l ________________ |
C Check | C lower I ________)
3| =necK <= Lower Problem |
| Termination | N { ________)
]; (T ——— S
P S } Upper Problem J

| Select : S { ————————

I
\ Node N e .
o]:_ Il Postprocess
| Branch | Process

EAGO.|l: Architecture and Features

 Bounds and Relaxations
— Interval arithmetic
— McCormick-based relaxations
e Multivariate, generalized, and differentiable
 Implicit functions
— oBB & Auxiliary variables coming soon to latest version

EAGO.|l: Architecture and Features

« Constraint propagation on directed graphs

« Optimization-based bound tightening
— Aggressive bound tightening
— Greedy ordering for solutions
— Readily extendable to non-affine relaxations
* Interval Newton & Parametric Interval
Newton Contractors in software library

 Specialized contractors for linear and :
guadratic forms \

Convex
Relaxation

Variable (x;)

Original Variable Bounds

Variable (x1)

F4GO (6
A/ ® ©®

EAGO.|l: Ex. CST Hybridization

Unutilizable/
Lost
Solar

Solar Energy
System

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

EﬁGO EURO 2019 - June 24, 2019 79

EAGO.|l: Ex. CST Hybridization

e Custom bounding routines

— User-defined convex relaxation provides
convex hull of nonconvex objective

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

E@GO EURO 2019 - June 24, 2019 30

EAGO.|l: Ex. CST Hybridization

e Custom bounding routines

— User-defined convex relaxation provides
convex hull of nonconvex objective

— Specify user-defined lower-bounding
problem instead of invoking full-space
relaxation procedure

opt_dict = Dict{Symbol, Any}()
lem!] LowerProblem!

opt _dict[:lower prob
problem!] = UpperProblem!

opt dict[:upper

opt_dict[:treat_as nonlinear] = [1; 2]

m = JuMP.Model(with optimizer(EAGO.Optimizer,relative tolerance=1e-2; opt dict...))

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

E@GO EURO 2019 - June 24, 2019 31

EAGO.|l: Ex. Parameter Estimation

Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

mod ex 2
III)lelél E (T,z,p)—c"(T,z)))
O°G(T,x.,p)
mod 17750 .
s.t. o"(T},z,,p) = —T, e , V(i J)
P

EAGO.|l: Ex. Parameter Estimation

Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

using EAGO, JuMP, ForwardDiff
R=8.314 : : ; - i)
_ function objective(T::Vector,xl::Vector,Cp exp::Matrix,p...)
CpA = 1.4%44 .85 -
S5E = 8.8
for 1 = 1:1length(T)
for j = 1:length{x1)

CpW = 4.184*%18.82
T@=293.15
exGibbs (T,x1,p) = R”T*(x%”{ijxlé“Ef[p[l]fT+p[%]*T“2+p[?]flog(T??+ SSE += (Cp(T[i].x1[31.p)-Cp_exp[i,i])~2
(1-x1)*x172*(p[1]*T+p[2]*T~2+p[3]*10g(T))) - .
GibbsA(T) = CpA*(T-T@)-T*CpA*log(T/Te)
GibbsW(T) = CpW*(T-T@)-T*CpW*log(T/T@)
Gibbs({T,x1,p) = x1*GibbsA(T)+(1-x1)*Gibbsk{T)+
R*T*(x1*log(x1)+(1-x1)*1log({1-x1) }+exGibbs(T,x1,p)
Cp(T,x1,p) = -T*ForwardDiff.derivative(T->ForwardDif+.derivative(T->Gibbs{T,x1,p},T},T)

return S5E

objective(Tdata,x1data,Cp exp,p...)

E@@GO EURO 2019 - June 24, 2019

EAGO.|l: Ex. Parameter Estimation

Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

using EAGO, JuMP, ForwardDiff
R=5.314

CpA*(T-TB)-T*C
CpW*({T-TB)-T*C

Gibbs(T,x1,p) = x1*Gibb
R*¥T*(x
Cp(T,x1,p) = -T*ForwardDiff.de

E@GO EURO 2019 - June 24, 2019 34 &Sﬂ

EAGO.|l: Ex. Dynamic Optimization

o EAGO allows a large degree of functionality with a user-defined relaxation evaluator.

o Global optimization with differential equation constraints (supported by future
EAGQO_Differential.jl extensions):

Parameter Estimation for 1D Kinetic Problem Relaxation Bounds for the ODE System
n 2
. 2
mmZZ(x.(p,ti) —d.(t))
peEP < ; J J
1=1 j=1
dX k2$2 o k1x1 S
dt 11y T Ry)
X(p, O) — (p7 O)
P = [0‘8’1] 700 02 04 06 08 1.0 700 02 04 06 08 1.0
Wilhelm, Le, and Stuber (2019) Under Review ‘ t

FAGO

EAGO.|l: Semi-Infinite Programming

e Support for nonconvex semi-infinite programming
(design centering problems, etc.):

G.A. Watson (1983) DOI: 10.1007/978-3-642-46477-5_13
A. Mitsos (2009) DOI: 10.1080/02331934.2010.527970

2 F(x) = (x[1]172)/3.0 + x[2]~2 + x[1]/2.0

X i
1 1 2 1 gSIP(x,p) = (1.0 - (x[1]*2)*(p[1]~2))~2 - x[1]*p[1]~2 - x[2]"2 + x[2
min f(x) = —+z, +— p [1172)* (pL1] (11%[112 - x[21%2 + x[2]

using JuMP, EAGO

X
[-1000.0; -1000.0]; XU = [1000.0; 1000.0]

st. l—z'y’) —zy’ —a, +z, <0, Vy €[0,1] [0.01; pU = [1.0]
x € [—1000,1000]"

m = Model(with_optimizer(EAGO.Optimizer, verbosity = 9))

EAGO solves in ~2.5 seconds
output = explicit_sip_solve(f, gSIP, xL, xU, pL, pU, m)

E@GO EURO 2019 - June 24, 2019 36 ‘@

EAGO.|l: Performance

O EAGO exhibits competitive performance on small benchmarking problem set
O Ubuntu 18.04LTS, LPsolver = CPLEX, NLPsolver = Ipopt, atol = 1E-3, rtol = 1E-3

O Xeon E3-1270v5 3.6GHz/4GHz (base/boost)

Name Variables | Inequalities | Equalities Nonlinear Terms
alkyl 15 0 7 x, (+)*
bearing 14 0 12 log, logg, %, ()%, ()%, ()%, (1)
BeckerLago 2 0 0 (-)? m
ex3 1 1 8 6 0 x
exd 19 2 2 0 ()% ()
ex5 4 3 16 13 0 Xy (/) ()
ex6 2 10 6 0 3 x, log, (+)/(")
ex6_2 11 3 0 1 x, log, (1)/(")
ex6 2 13 6 0 3 x, log, (-)/(-)
ex6 2 14 4 0 2 x, log, (-)/(")
ex7 2 1 7 14 0 x, ()/(), (-)?
ex7 2 3 8 6 0 x, ()/()
ex7 2 4 8 0 7 X, ()/()y ()
ex8 4 1 22 0 10 (-)?
ex8 4 2 24 0 10 ()2
gold 2 0 0 %, ()2
hart6 6 0 0 exp(+), X, (-)?
meanvar 8 0 2 X
Model13 6 0 0 exp(+), %, (+)?
process 10 0 7 %, (4)/ (), (-)?

P(rp,s=T:1=5%=ns)

=
(=]

o
o

ot
o0

o
~

o
o

o
n

o
N

o
w

ot
(¥

Performance Profile on Test Set

ty,s

‘r' =
p:s min{tp,s 1S € S}
—— BARON
== SCIP
—— EAGO
10° 10! 102 103 104

Conclusions

« EAGO is an extensible deterministic global optimization solver
— Architected specifically for user-defined functions and routines
— Performance comparable with state-of-the-art solvers
— Open-source and free for non-commercial use
 Future:
— Additional relaxations (BB and AVM)
— Release of dynamic optimization (optimal control) package
— Implicit SIP algorithm (for simulation-based problems)
— Integer variables

 [Feature requests welcome on our GitHub!

Thank You — Any Questions?

PSORLab@UCONN

Debuggers: Prof. Kamil Khan and Student Hulyi Cao @ McMaster
EURO 2019 Organizers

Funding: University of Connecticut

https://www.psor.uconn.edu
https://www.github.com/PSORLab/EAGO.. | U B U N N
UNIVERSITYOF CONNECTICUT

Process Systems and
Operations Research
aboratory :

EURO 2019 - June 24, 2019 39 &-3?
©® @

https://www.psor.uconn.edu/
https://www.github.com/PSORLab/EAGO.jl

	EAGO.jl: Easy Advanced Global Optimization in Julia
	Key Contributor
	Outline
	Motivation
	Motivation
	Motivation
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	EAGO.jl: Architecture and Features
	EAGO.jl: Advanced Formulations
	EAGO.jl: Architecture and Features
	EAGO.jl: Architecture and Features
	EAGO.jl: Architecture and Features
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Dynamic Optimization
	EAGO.jl: Semi-Infinite Programming
	EAGO.jl: Performance
	Conclusions
	Thank You – Any Questions?

