
EAGO.jl: Easy Advanced
Global Optimization in Julia

Matthew D. Stuber
Assistant Professor

stuber@alum.mit.edu

Key Contributor
Matthew Wilhelm
PhD Candidate
PSOR Lab, Dept. of Chemical and Biomolecular Eng.
University of Connecticut

EAGO.jl developer

EURO 2019 - June 24, 2019 2

Outline
• Motivation

– Why deterministic global optimization?
• Background

– What is Julia and why’d we choose it?
• EAGO.jl: Deterministic global optimization in Julia

– Architecture, core features/capabilities
– Advanced optimization formulations
– Examples
– Performance

• Conclusions

EURO 2019 - June 24, 2019 3

Motivation
• Optimization problems (especially in OR) are often formulated for

convexity/concavity

EURO 2019 - June 24, 2019 4

Motivation
• Optimization problems (especially in OR) are often formulated for

convexity/concavity
– May limit applications of optimal decision-making

EURO 2019 - June 24, 2019 5

Motivation
• Optimization problems (especially in OR) are often formulated for

convexity/concavity
– We don’t always need to find global optima, but when we do, we need

fast, accessible, and flexible software

EURO 2019 - June 24, 2019 6

Background: Julia
What is ?

EURO 2019 - June 24, 2019 7

Background: Julia
What is ?
• New open-source programming language built specifically for scientific and

high-performance computing

EURO 2019 - June 24, 2019 8

Background: Julia
What is ?
• New open-source programming language built specifically for scientific and

high-performance computing
– Combines ease of use of high-level languages (MATLAB) with speed of

low-level languages (C, FORTRAN)

EURO 2019 - June 24, 2019 9

Background: Julia
What is ?
• New open-source programming language built specifically for scientific and

high-performance computing
– Combines ease of use of high-level languages (MATLAB) with speed of

low-level languages (C, FORTRAN)
• Can “feel” like a scripting language (dynamically-typed, but can also

declare types) (“generic programming”)

EURO 2019 - June 24, 2019 10

Background: Julia
What is ?
• New open-source programming language built specifically for scientific and

high-performance computing
– Combines ease of use of high-level languages (MATLAB) with speed of

low-level languages (C, FORTRAN)
• Can “feel” like a scripting language (dynamically-typed, but can also

declare types) (“generic programming”)
• Paradigm: multiple dispatch

– define function behavior across argument types

EURO 2019 - June 24, 2019 11

Background: Julia

EURO 2019 - June 24, 2019 12https://julialang.org

Background: Julia
What is ?
• Written in Julia (even primitives)
• Can natively call C and FORTRAN without wrapper code or APIs
• Automatic code generation
• Metaprogramming

EURO 2019 - June 24, 2019 13

Background: Julia
What is ?
• Written in Julia (even primitives)
• Can natively call C and FORTRAN without wrapper code or APIs
• Automatic code generation
• Metaprogramming

– Julia is represented as a data structure of the language itself
– We can write a program to transform and generate its own code

EURO 2019 - June 24, 2019 14

Background: EAGO
Why did we choose Julia?

EURO 2019 - June 24, 2019 15

Background: EAGO
Why did we choose Julia?
• Global optimization algorithms must be very fast and utilize many

complicated data types
– E.g., derivatives, bounds, relaxations

EURO 2019 - June 24, 2019 16

Background: EAGO
Why did we choose Julia?
• Global optimization algorithms must be very fast and utilize many

complicated data types
– E.g., derivatives, bounds, relaxations

• For research and prototyping purposes, we want algorithms to be easy to
implement and test

EURO 2019 - June 24, 2019 17

Background: EAGO
Why did we choose Julia?
• Global optimization algorithms must be very fast and utilize many

complicated data types
– E.g., derivatives, bounds, relaxations

• For research and prototyping purposes, we want algorithms to be easy to
implement and test

• We often encounter optimization formulations which are difficult to represent
in standard modeling languages (GAMS, AMPL)
– E.g., embedded simulation

EURO 2019 - June 24, 2019 18

Background: EAGO
Why did we choose Julia?
• Global optimization algorithms must be very fast and utilize many

complicated data types
– E.g., derivatives, bounds, relaxations

• For research and prototyping purposes, we want algorithms to be easy to
implement and test

• We often encounter optimization formulations which are difficult to represent
in standard modeling languages (GAMS, AMPL)
– E.g., embedded simulation

• We may want to invoke a global solver as part of another algorithm
– E.g., semi-infinite programming

EURO 2019 - June 24, 2019 19

Background: EAGO
Why did we choose Julia?
• It’s open-source and free for non-commercial use!

EURO 2019 - June 24, 2019 20

Background: EAGO
Why did we choose Julia?
• It’s open-source and free for non-commercial use!
• There exists an open-source advanced modeling language: JuMP.jl

EURO 2019 - June 24, 2019 21

Background: EAGO
Why did we choose Julia?
• It’s open-source and free for non-commercial use!
• There exists an open-source advanced modeling language: JuMP.jl

How do you get EAGO?
From Julia package manager:

EURO 2019 - June 24, 2019 22

Background: EAGO
Why did we choose Julia?
• It’s open-source and free for non-commercial use!
• There exists an open-source advanced modeling language: JuMP.jl

How do you get EAGO?
From Julia package manager:

From GitHub:
https://www.github.com/PSORLab/EAGO.jl

EURO 2019 - June 24, 2019 23

EAGO.jl: Architecture and Features

EURO 2019 - June 24, 2019 24

EAGO.jl: Advanced Formulations
• User-defined functions

EURO 2019 - June 24, 2019 25

EAGO.jl: Architecture and Features

EURO 2019 - June 24, 2019 26

• Core solver: branch-and-bound

EAGO.jl: Architecture and Features
• Bounds and Relaxations

– Interval arithmetic
– McCormick-based relaxations

• Multivariate, generalized, and differentiable
• Implicit functions

– αBB & Auxiliary variables coming soon to latest version

EURO 2019 - June 24, 2019 27

EAGO.jl: Architecture and Features

• Constraint propagation on directed graphs
• Optimization-based bound tightening

– Aggressive bound tightening
– Greedy ordering for solutions
– Readily extendable to non-affine relaxations

• Interval Newton & Parametric Interval
Newton Contractors in software library

• Specialized contractors for linear and
quadratic forms

EURO 2019 - June 24, 2019 28

EAGO.jl: Ex. CST Hybridization

EURO 2019 - June 24, 2019 29

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

EAGO.jl: Ex. CST Hybridization
• Custom bounding routines

– User-defined convex relaxation provides
convex hull of nonconvex objective

EURO 2019 - June 24, 2019 30

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

EAGO.jl: Ex. CST Hybridization
• Custom bounding routines

– User-defined convex relaxation provides
convex hull of nonconvex objective

– Specify user-defined lower-bounding
problem instead of invoking full-space
relaxation procedure

EURO 2019 - June 24, 2019 31

M.D. Stuber. A differentiable model for optimizing hybridization of industrial process heat systems with
concentrating solar thermal power. Processes. 6(7), 76 (2018)

EAGO.jl: Ex. Parameter Estimation
Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

EURO 2019 - June 24, 2019 32

mod exp 2

2
mod

,

2

)))

(, ,)
s.t. , ,) (,)

min ((, , (,

(,

p i p i j

i

i

j

j
j

p i j i

P
T

c T x T

T

x

c

c

G T x
x i jT





  



p
p

p
p

EAGO.jl: Ex. Parameter Estimation
Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

EURO 2019 - June 24, 2019 33

EAGO.jl: Ex. Parameter Estimation
Suppose we have experimental heat capacity data of a two-component
nonideal mixture and we wish to estimate the temperature-dependent
parameters of a fundamental Gibbs free energy model.

EURO 2019 - June 24, 2019 34

mod exp 2

2
mod

,

2

)))

(, ,)
s.t. , ,) (,)

min ((, , (,

(,

p i p i j

i

i

j

j
j

p i j i

P
T

c T x T

T

x

c

c

G T x
x i jT





  



p
p

p
p

EAGO.jl: Ex. Dynamic Optimization
o EAGO allows a large degree of functionality with a user-defined relaxation evaluator.
o Global optimization with differential equation constraints (supported by future

EAGO_Differential.jl extensions):

EURO 2019 - June 24, 2019 35

Relaxation Bounds for the ODE SystemParameter Estimation for 1D Kinetic Problem

Wilhelm, Le, and Stuber (2019) Under Review

2
2

1 1

2 2 1 1

1 1 2 2

min ((,) ())

s.t. (,) [0,1]

(, 0) (, 0)

[0.8,1]

,

n

j i j ip P
i j

x p t d t

x k xd
p t t

x k xdt

p p

P

k

k


 








 

   



 




x

x

EAGO.jl: Semi-Infinite Programming
• Support for nonconvex semi-infinite programming

(design centering problems, etc.):

EURO 2019 - June 24, 2019 36

G.A. Watson (1983) DOI: 10.1007/978-3-642-46477-5_13
A. Mitsos (2009) DOI: 10.1080/02331934.2010.527970

EAGO solves in ~2.5 seconds

2
21 1
2

2 2 2 2 2
1 1 2 2

2

min ()
3 2

s.t. (1) 0, [0,1]

[1000,1000]

x x
f x

x y x y x x y

  

      

 

x

x

x

EAGO.jl: Performance

EURO 2019 - June 24, 2019 37

𝑟𝑟𝑝𝑝,𝑠𝑠 =
𝑡𝑡𝑝𝑝,𝑠𝑠

min 𝑡𝑡𝑝𝑝,𝑠𝑠 ∶ 𝑠𝑠 ∈ 𝑆𝑆

o EAGO exhibits competitive performance on small benchmarking problem set
o Ubuntu 18.04LTS, LPsolver = CPLEX, NLPsolver = Ipopt, atol = 1E-3, rtol = 1E-3
o Xeon E3-1270v5 3.6GHz/4GHz (base/boost)

Conclusions
• EAGO is an extensible deterministic global optimization solver

– Architected specifically for user-defined functions and routines
– Performance comparable with state-of-the-art solvers
– Open-source and free for non-commercial use

• Future:
– Additional relaxations (αBB and AVM)
– Release of dynamic optimization (optimal control) package
– Implicit SIP algorithm (for simulation-based problems)
– Integer variables

• Feature requests welcome on our GitHub!

EURO 2019 - June 24, 2019 38

Thank You – Any Questions?
• PSORLab@UCONN
• Debuggers: Prof. Kamil Khan and Student Huiyi Cao @ McMaster
• EURO 2019 Organizers
• Funding: University of Connecticut
https://www.psor.uconn.edu
https://www.github.com/PSORLab/EAGO.jl

EURO 2019 - June 24, 2019 39

https://www.psor.uconn.edu/
https://www.github.com/PSORLab/EAGO.jl

	EAGO.jl: Easy Advanced Global Optimization in Julia
	Key Contributor
	Outline
	Motivation
	Motivation
	Motivation
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: Julia
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	Background: EAGO
	EAGO.jl: Architecture and Features
	EAGO.jl: Advanced Formulations
	EAGO.jl: Architecture and Features
	EAGO.jl: Architecture and Features
	EAGO.jl: Architecture and Features
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. CST Hybridization
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Parameter Estimation
	EAGO.jl: Ex. Dynamic Optimization
	EAGO.jl: Semi-Infinite Programming
	EAGO.jl: Performance
	Conclusions
	Thank You – Any Questions?

