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Dynamic Optimization

• One common form of the dynamic optimization problem 

• That is we seek an optimal satisfying the ODE-IVP 
problem along with any constraints.

o 𝐱 – state variables
o 𝐩 – decision variables

Wilhelm, ME; Le, AV; and Stuber. MD. 
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𝜙∗ = min
𝐩∈𝑃⊂ℝ𝑛𝑝

𝜙(𝐱(𝐩, 𝑡𝑓), 𝐩)

s. t. ሶ𝐱 = 𝐟(𝐱(𝐩, 𝑡), 𝐩, 𝑡), ∀𝑡 ∈ 𝐼 = 𝑡0, 𝑡𝑓
𝐱(𝐩, 𝑡) = 𝐱0(𝐩)

𝐠(𝐱(𝐩, 𝑡), 𝐩) ≤ 𝟎, ∀𝑡 ∈ 𝐼 = 𝑡0, 𝑡𝑓



Parametric ODE-IVP

Parametric ODE-IVP Formulation Parametric ODE-IVP Solution

Assumptions (Well-posed)

1. 𝐱0: 𝑃 → 𝐷 is locally Lipschitz continuous on 𝑃

2. f is continuously differential on 𝐷 × Π × Τ

where 𝐟: 𝐷 × Π × Τ → ℝ𝑛𝑥 and 𝑥0: 𝑃 → 𝐷
with 𝐷 ⊂ ℝ𝑛𝑥 , Π ⊂ ℝ𝑛𝑝, and Τ ⊂ ℝ open 
with 𝑃 ∈ 𝕀Π and I ∈ 𝕀Τ

A solution is any continuous 𝐱 ∶ 𝑃 × 𝐼 → 𝐷 such that, for every 
𝐩 ∈ 𝑃, 𝐱 𝐩,⋅ ∶ Τ → 𝐷 is continuous differentiable and satisfies 
the parametric ODE-IVP on 𝐼.
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Review (Dynamic Optimization)

Discretization 1 :
o The domain is separated into 𝐾 finite elements. 
o The derivative terms are approximated by 

difference forms wherever they appear within 
the formulation.

1. Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, Philadelphia (2010)

Collocation 1 : 
o The domain is separated into 𝐾 finite elements.
o The solution in each finite element is then 

approximated by a polynomial of order 𝑁 + 1
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• Either method introduces a significant number 
of variables and potentially nonlinear equations

• Results in complicated high dimension 
problems that may be challenging for modern 
global optimizers to solve.



Review (Relaxing ODEs)

Taylor-Series Integrators3

Differential Inequalities4

Discretize-and-Relax5

• A two-stage method. 
• Calculates valid relaxations across a time step 

and then refines relaxation at each point. 

3. Rihm, Robert. Interval methods for initial value problems in ODEs. Topics in Validated Computations (1994): 173-207.
4. Joseph K Scott, Paul I Barton. Improved relaxations for the parametric solutions of ODEs using differential inequalities. Journal of Global Optimization. 2013 (57): 143–176. 
5. A.M. Sahlodin, Benoît Chachaut. Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Applied Numerical Mathematics, 61 
(179): 803 – 820, 2011

1
( ) ( 1)

1

1
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 + +
+

x p x p f x p p f

❑ Each of these approaches allows relaxation 
of ODE to be calculated with respect to p.

❑ Results in a lower dimensional problem.
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Implicit Integration of Problem

Generalized form of the dynamic optimization problem: Full-space Algebraic Form 
(𝑛𝑥 × 𝐾 + 𝑛𝑝 dimensions) :

*

0 1

0

0

0 1

min ( ( , ), ( , ),..., ( , ),... ( , ), )

s.t. ( , ) ( ( , ), , ), [ , ]
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* min ( ( ), )

s.t.    ( ( ), )

P
 


=



p
z p p

g z p p 0

Implicit Function Form 
(𝑛𝑝 Dimensions)

Implicit 
Integration 

Scheme

Block-
sequential 

solution and 
relaxation



Implicit Linear Multistep Method

ො𝐳𝑘+𝑠 +෍

𝑖=0

𝑠−1

𝑎𝑖 ො𝐳𝑘+𝑖 − ∆𝑡෍

𝑗=0

𝑠

𝑏𝑗 𝐟(ො𝐳𝑘+𝑗 , 𝐩, 𝑡𝑘+𝑗) = 𝟎

• An s-step PILMS method can be defined by 
the equation6,7: • Specific methods for each choice of {𝑎𝑖}𝑖=0

𝑠−1 and {𝑏𝑗}𝑗=0
𝑠 .

• Adams Moulton arises from 𝑎𝑠−1 = −1, {𝑎𝑖}𝑖=0
𝑠−2= 0.

• Backwards Difference Formula comes from

𝛏𝑘
𝑠 ො𝐳𝑘+𝑠, … , ො𝐳𝑘 , 𝐩 = ො𝐳𝑘+𝑠 +෍

𝑖=0

𝑠−1

𝑎𝑖 ො𝐳𝑘+𝑖 − ∆𝑡𝑏𝑗𝐟(ො𝐳𝑘+𝑠, 𝐩, 𝑡𝑘+𝑠) = 𝟎

𝛇𝑘
𝑠 ො𝐳𝑘+𝑠, … , ො𝐳𝑘 , 𝐩 = ො𝐳𝑘+𝑠 − ො𝐳𝑘+𝑠−1 − ∆𝑡෍

𝑖=0

𝑠

𝑏𝑗𝐟(ො𝐳𝑘+𝑗 , 𝐩, 𝑡𝑘+𝑗) = 𝟎

6. Gautschi W. Numerical Analysis. Springer Science & Business Media, New York; 2012.
7. Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg; 1991.
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Two Step PILMS Methods

• Two-step PILMS methods exhibit unconditional A-stability6,7

• The three implicit approaches considered can be expressed in 
terms of a series of block solves given by:

𝛇𝑘
2 ො𝐳𝑘+2, ො𝐳𝑘+1, ො𝐳𝑘 , 𝐩 = ො𝒛𝑘+2 − ො𝒛𝑘+1 −

1
2
Δ𝑡 𝐟 ො𝒛𝑘+2, 𝐩, 𝑡𝒌+𝟐 + 𝐟 ො𝐳𝑘+1, 𝐩, 𝑡𝒌+𝟏

𝛏𝑘
2 ො𝐳𝑘+2, ො𝐳𝑘+1, ො𝐳𝑘 , 𝐩 = ො𝐳𝑘+2 −

4

3
ො𝐳𝑘+1 +

1

3
ො𝐳𝑘 − 2

3
Δ𝑡𝐟 ො𝐳𝑘+2, 𝐩, 𝑡𝒌+𝟐

𝛏𝑘
1 ො𝐳𝑘+1, ො𝐳𝑘 , 𝐩 = ො𝐳𝑘+1 − ො𝐳𝑘 − Δ𝑡𝐟 ො𝐳𝑘+1, 𝐩, 𝑡𝒌+𝟏

Two-step BDF method6,7:

Two-step Adam’s Moulton method6,7:

Implicit Euler6,7:

6. Gautschi W. Numerical Analysis. Springer Science & Business Media, New York; 2012.
7. Hairer E, Wanner G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg; 1991. 9



Assumptions

1. There exists a unique function 𝐳: 𝑃 → 𝐷𝐾+1 with 

𝐡(𝐳(𝐩), 𝐩) = 𝟎, and an interval 𝑋 ∈ 𝐼𝐷 such that 

𝐳(𝐩) is unique in 𝑋𝐾+1 for all 𝐩 ∈ 𝑃.

2. Derivative information ∇ℎ𝑖 , 𝑖 = 1, … , 𝑛𝑥𝐾 is available, 

say by automatic differentiation, and is factorable.

3. A matrix 𝐘𝑘 ∈ ℝ𝑛𝑥×𝑛𝑥 is known such that            

𝑀𝑘 = 𝐘𝑘𝐽𝑘
𝑠 (𝑋, 𝑃) satisfies 0 ∉ 𝑀𝑘,𝑖𝑖 for all 𝑖 ∈

1,… , 𝑛𝑥 and for all 𝑘, where 𝐽𝑘
𝑠 (𝑋, 𝑃) is an inclusion 

monotonic interval extension of Jk
s on 𝑋 × 𝑃.  

8. Neumaier A. Interval methods for systems of equations, vol.37. Cambridge university press, 1990.
9. Krawczyk R. Interval iterations for including a set of solutions. Computing 1984 Mar 32 (1): 13–31. 
10. R. B. Kearfott. Abstract generalized bisection and a cost bound. Mathematics of Computation, 49 (179): 187 – 202, 1987
11. Stuber MD. Evaluation of Process Systems Operating Envelopes. PhD Dissertation, MIT, 2013.

Can the interval extension of  𝐽𝑘
𝑠 be 

preconditioned such that it contains 
no singular matrices on its domain? 

Hardest assumption to verify:
• We’ve developed block sequential 

analogs to the sufficient conditions 
presented in Neumaier.8

• Parametric interval methods can be 
used to provide sharper tests.8,9

• These can further be combined with 
bisection methods.10,11

10



Development of Relaxations

• The parametric mean-valued form12 of a block is given by:

( ( ), ) ( ( ) ( )) ( ( ), ), ( 1) 1,...,j T

j k j x xh h j k n kn − = − = − +
x

y p p z p γ p γ p p

12. Stuber MD, Scott JK, Barton PI. Convex and concave relaxations of implicit functions. Optimization Methods and Software2015;30(3):424–460.

where γ: 𝑃 → 𝐷 and 𝐲𝑗: 𝑃 → 𝐷 such that for some 𝜆: 𝑃 → (0,1), 

( ) ( ) ( ) (1 ( )) ( ),j

k P = + −  y p p z p p γ p p

• This suggests that a parametric analog of the Newton-Raphson 

fixed point method may be used to compute relaxation.
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Block relaxation algorithm

1. Initialize the relaxations, 𝐳𝑘
0, and 

subgradients, 𝐬𝒛𝑘
0 , from interval bounds.

12

1.

Interval Bounds

Implicit Function



Block relaxation algorithm

2. Compute affine function between current 
relaxations and respective subgradients

13

1.

2.

𝝀 = 𝟎. 𝟓

𝟏 − 𝝀 = 𝟎. 𝟓

𝜸(𝒑)

Interval Bounds

Implicit Function



Block relaxation algorithm

3. Compute 𝐌, the relaxation of a preconditioned 
Jacobian and respective subgradients
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1.

2.

3.

( )

( 1) 1 T

( 1) 1

( 1) 2 T

( 1) 2( 1) 1

T

( ( ), )

( ( ), )
( ) ( ), , ( ),

( ( ), )

x

x

x

xx x

x

x

k n

k n

k n

k nk n kn

k k k

kn

kn

h

h

h

− +

− +

− +

− +− +

   
 
   

 =      
 
    

x

x

x

y

y
M B y y Y

y

The functions 𝐌𝑘: 𝑃 → 𝑀𝑘, and 𝐁𝑘: 𝑋 × ⋯× 𝑋 × 𝑃 → 𝑀𝑘 be defined 
for 𝑘 ∈ 1, … , 𝐾 corresponding to each timestep are defined by:

• The points (𝐲𝑗 𝐩 , 𝐩) ∈ 𝑋 × 𝑃 are the points at which the 
gradients of ∇𝑥ℎ𝑗(∙,∙) are evaluated.

• 𝐘𝑘 is a matrix which preconditions the system satisfying 
assumption 3 (𝐌𝑘 enclosures no singular matrix)



Block relaxation algorithm
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1.

2.

3.

4.

( ) ( )*

, 1 2 , ,*

,

for 1,..., do

( , ( ), ( ), )
:

end

x

k i k k ij k j j ij k j jj i j i

k i i

ii

i n

b m z m z
z

m

  


− −  

=

+ − + −
= −

 z p z p p

Let 𝐛𝑘: 𝑋 × 𝑋 × 𝑋 × 𝑃 → ℝ𝑛𝑥 such that 𝐛𝑘 = 𝐘𝑘𝜃𝑘−2
𝑠 with 𝜃 ∈ 𝜉, 𝜁 , 𝑠 ∈

1,2 , and 2 ≤ 𝑘 ≤ 𝐾. Define the function 𝜓𝑘: 𝑋 × 𝑀 × 𝑋 × 𝑋 × 𝑃 →

ℝ𝑛𝑥 such that ∀ ෥𝜸, ෩𝐌, ෤𝐳𝑘 , ෤𝐳𝑘−1, ෤𝐳𝑘−2, 𝐩 ∈ 𝑋 ×𝑀 × 𝑋 × 𝑋 × 𝑃, we have 

𝜓𝑘 ෥𝜸, ෩𝐌, ෤𝐳𝑘 , ෤𝐳𝑘−1, ෤𝐳𝑘−2, 𝐩 = ෤𝐳𝑘
∗ ,where the ith component of ෤𝐳𝑘

∗ is given 

by the loop:

4(a). Compute relaxation of 𝝍𝑘 (a valid relaxation of 𝒛𝑘
𝑗+1

) and 
the respective subgradients thereof.



Block relaxation algorithm
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:
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the respective subgradients thereof.



Block relaxation algorithm
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1.

2.

3.

4.

 

 

( , , ) max , ( , , )

( , , ) min , ( , , )

cv cc cv cv cc

cv cc cc cv cc

 

 





u z z p z u z z p

o z z p z o z z p

∀(𝐳𝑐𝑣 , 𝐳𝑐𝑐 , 𝐩) ∈ ℝ𝑛𝑥 ×ℝ𝑛𝑥 × 𝑃

Let 𝐮𝜙,𝐨𝜙 be composite relaxations of 𝜙 on 𝑋 × 𝑃. The 

functions 𝐮𝜙, 𝐨𝜙: ℝ
𝑛𝑥 ×ℝ𝑛𝑥 × 𝑃 → ℝ𝑛𝑥 will be defined as:

Relaxation at next step is composite 
relaxation of GS result and prior relaxation.

12. Stuber MD, Scott JK, Barton PI. Convex and concave relaxations of implicit functions. Optimization Methods and Software2015;30(3):424–460.

4(b). Compute composite relaxation of 𝝍𝑘 (a valid relaxation of 𝒛𝑘
𝑗+1

) 
and the respective subgradients thereof.



Block relaxation algorithm
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1.

2.

3.

4.

New bounds dominate old bounds

4(b). Compute composite relaxation of 𝝍𝑘 (a valid relaxation of 𝒛𝑘
𝑗+1

) 
and the respective subgradients thereof.



Block relaxation algorithm

2. Compute affine function between current 
relaxations and respective subgradients

19
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Block relaxation algorithm

4(b). Compute composite relaxation of 𝒛𝑘
𝑗+1

and 
the respective subgradients thereof.
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Relaxation Algorithm

1. Compute relaxation of initial conditions 

using standard McCormick arithmetic.

2. Performance a relaxation in a block 

sequential fashion to compute 

relaxations and subgradients at next time 

step and repeat.

3. Use relaxations and subgradients

available at discrete time points to 

construct relaxations of the objective and 

constraints. Interpolating if necessary. 

21



Exhibits Partition Convergence

Partition Convergence13: 

13. Stuber MD, Scott JK, Barton PI. Convex and concave relaxations of implicit functions. Optimization Methods and Software 2015; 30(3):424–460.
22

Consider a nested sequence of intervals 𝑃𝑞 , 𝑃𝑞 ⊂ 𝑃, 𝑞 ∈

ℕ, such that 𝑃𝑞 → ഥ𝐩, ഥ𝐩 for some ഥ𝐩 ∈ 𝑷. Let 𝑧𝑞
𝑐𝑣, 𝑧𝑞

𝑐𝑐 be 

relaxations of 𝑧 on 𝑃𝑞 obtained using the prior algorithm. 

Let 𝜙𝑞
𝑐𝑣 ∙ = 𝑢𝜙(𝐳𝑘

𝑐𝑣 ∙ , 𝐳𝑘
𝑐𝑐 ∙ ,∙) be a convex relaxation 

of the objective function 𝜙 on 𝑃𝑞. Let ෠𝜙𝑞
𝑐𝑣 = min𝐩∈𝑃𝑞𝜙𝑞

𝑐𝑣, 

then lim𝑞→∞
෠𝜙𝑞
𝑐𝑣 = 𝜙𝑞

𝑐𝑣 𝐳 ഥ𝐩 , ഥ𝐩



Proof of Partition Convergence

• 𝐾 = 1 case is trivially true… Proceed by contradiction.

• Suppose that for 𝐾 > 1, lim𝑞→∞
෠𝜙𝑞
𝑐𝑣 ≠ 𝜙𝑞

𝑐𝑣 𝐳 ഥ𝐩 , ഥ𝐩 .

• 𝑢𝜙 continuous and exhibits partition convergence as it is constructed using a generalized 

McCormick relaxation framework14. Then

– Either lim𝑞→∞ 𝐳𝑘,𝑞
𝑐𝑣 ≠ 𝐳𝑘,𝑞 ഥ𝐩 or lim𝑞→∞ 𝐳𝑘,𝑞

𝑐𝑣 ≠ 𝐳𝑘,𝑞 ഥ𝐩 which implies

– Either lim𝑞→∞ 𝐳𝑘−1,𝑞
𝑐𝑣 ≠ 𝐳𝑘−1,𝑞 ഥ𝐩 or lim𝑞→∞ 𝐳𝑘−1,𝑞

𝑐𝑣 ≠ 𝐳𝑘−1,𝑞 ഥ𝐩 which implies

– Either lim𝑞→∞ 𝐳𝑘−2,𝑞
𝑐𝑣 ≠ 𝐳𝑘−2,𝑞 ഥ𝐩 or lim𝑞→∞ 𝐳𝑘−2,𝑞

𝑐𝑣 ≠ 𝐳𝑘−2,𝑞 ഥ𝐩 which implies

…

– Either lim𝑞→∞ 𝐳1,𝑞
𝑐𝑣 ≠ 𝐳1,𝑞 ഥ𝐩 or lim𝑞→∞ 𝐳1,𝑞

𝑐𝑣 ≠ 𝐳1,𝑞 ഥ𝐩 which is contradiction.

In
d
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f

14. Scott JK, Stuber MD, Barton PI. Generalized McCormick relaxations. Journal of Global Optimization 2011; 51(4): 569–606.
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Implementation

• Branch and bound algorithm as an extension to the 
EAGO global optimizer available at 
https://github.com/PSORLab/EAGODifferential.jl

• IntervalArithmetic.jl for validated interval 
calculations.

• Relaxations from McCormick submodule of EAGO.jl.

• All simulations run on single thread of Intel Xeon 
E3-1270 v5 3.60/4.00GHz processor with 16GM ECC 
RAM, Ubuntu 18.04LTS using Julia v1.1.015. Intel 
MKL 2019 (Update 2) for BLAS/LAPACK.

https://github.com/PSORLab/EAGO.jl

15. Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B. Shah Julia: A Fresh Approach to Numerical Computing. (2017) SIAM Review, 59: 65–98. 24

https://github.com/PSORLab/EAGODifferential.jl
https://github.com/PSORLab/EAGO.jl


A 1D Example

𝑑𝑥
𝑑𝑡

𝑝, 𝑡 = −𝑥2 + 𝑝

𝑥𝑜 𝑝 = 9

• Consider the 1D pODE-IVP:

𝑡 ∈ [0,1], 𝑥 ∈ 𝑋 = [0.1,9]

𝑝 ∈ 𝑃 = [−1,1]

• The BDF method enclosure depends 
heavily on the chosen step size whereas 
the AM method bounds do not.

• In either case, applying 5 iterations of a 
corresponding parametric interval 
method further tightens the relaxations.
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Kinetic Problem

16. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193–7203.
17. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971–976
18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601
19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460
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𝒑∈𝑃
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21
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𝑘1, 𝑘1𝑠 , 𝑘5, 𝐾2, 𝐾3, 𝑐𝑂2, Δ𝑡, 𝑛
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Objective Variables

𝒑 = (𝑘2𝑓 , 𝑘3𝑓 , 𝑘4)

Problem Statement
• Fit the rate constants (k2f, k3f, k4) of oxygen 

addition to cyclohexadienyl radicals to data. 16

• First addressed by global by Singer et al.17

• Explicit Euler form solved by by Mitsos18

• Implicit Euler form addressed in Stuber19

Decision Variables

ሶ𝑥𝐴 = 𝑘1𝑥𝑍𝑥𝑌 − 𝑐𝑂2 𝑘2𝑓 + 𝑘3𝑓 𝑥𝐴 + Τ𝑘2𝑓 𝐾2 𝑥𝐷 + Τ𝑘3𝑓 𝐾3 𝑥𝐵 − 𝑘5𝑥𝐴
2,

pODE IVP:

ሶ𝒙 𝑡 = 0 = 0, 0, 0, 0.4, 140

𝒙 = 𝑥𝐴, 𝑥𝐵 , 𝑥𝐷, 𝑥𝑌, 𝑥𝑍

State Variables
ሶ𝑥𝐵 = 𝑘3𝑓𝑐𝑂2𝑥𝐴 − Τ𝑘3𝑓 𝐾3 + 𝑘4 𝑥𝐵, ሶ𝑥𝐷 = 𝑘2𝑓𝑐𝑂2𝑥𝐴 − Τ𝑘2𝑓 𝐾2 𝑥𝐷,

ሶ𝑥𝑌 = −𝑘1𝑠𝑥𝑌𝑥𝑍, ሶ𝑥𝑍 = −𝑘1𝑥𝑌𝑥𝑍,
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Implementation

16. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193–7203.
17. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971–976
18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601
19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460

𝑓∗ = min
𝒑∈𝑃

෍

𝑖=1

𝑛

I𝑖 − Idata
𝑖 2

𝑠. 𝑡. I𝑖 = 𝑥𝐴
𝑖 +

2

21
𝑥𝐵
𝑖 +

2

21
𝑥𝐷
𝑖

𝑘1, 𝑘1𝑠 , 𝑘5, 𝐾2, 𝐾3, 𝑐𝑂2, Δ𝑡, 𝑛

Parameters

Objective Variables

𝒑 = (𝑘2𝑓 , 𝑘3𝑓 , 𝑘4)

Problem Statement
• Fit the rate constants (k2f, k3f, k4) of oxygen 

addition to cyclohexadienyl radicals to data. 16

• First addressed by global by Singer et al.17

• Explicit Euler form solved by by Mitsos18

• Implicit Euler form addressed in Stuber19

Decision Variables

ሶ𝑥𝐴 = 𝑘1𝑥𝑍𝑥𝑌 − 𝑐𝑂2 𝑘2𝑓 + 𝑘3𝑓 𝑥𝐴 + Τ𝑘2𝑓 𝐾2 𝑥𝐷 + Τ𝑘3𝑓 𝐾3 𝑥𝐵 − 𝑘5𝑥𝐴
2,

pODE IVP:

ሶ𝒙 𝑡 = 0 = 0, 0, 0, 0.4, 140

𝒙 = 𝑥𝐴, 𝑥𝐵 , 𝑥𝐷, 𝑥𝑌, 𝑥𝑍

State Variables
ሶ𝑥𝐵 = 𝑘3𝑓𝑐𝑂2𝑥𝐴 − Τ𝑘3𝑓 𝐾3 + 𝑘4 𝑥𝐵, ሶ𝑥𝐷 = 𝑘2𝑓𝑐𝑂2𝑥𝐴 − Τ𝑘2𝑓 𝐾2 𝑥𝐷,

ሶ𝑥𝑌 = −𝑘1𝑠𝑥𝑌𝑥𝑍, ሶ𝑥𝑍 = −𝑘1𝑥𝑌𝑥𝑍,
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• Affine relaxations used to compute lower bound (CPLEX 12.8).

• Upper-bound computed by integrating ODE at midpoint of active node then 
evaluating objective & constraints.

• Duality-based bound tightening was performed. Two iterations of each PILMS 
with was used after five iterations of a block sequential parametric interval 
method.

• Absolute and relative convergence tolerances for the B&B algorithm of 10−2 and 
10−5, respectively. 



Kinetic Problem

Kinetic problem was solved subject to three 
discretization schemes for 𝐾 = 100 and 𝐾 = 200.

LB
D

/U
B

D
Time (seconds)
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A plug-flow reactor problem

ˆ ˆ
ˆ( , ) ( )

d
p t Da p

dt y


= − −



x x
x

Method of Lines Discretization

*

[0,1]
min

ˆ. . ( , ) 0.08 0

p

K f

p

s t x t t p




=

= − 

Optimization Problem

Problem Setup
• Start-up of a single species PFR
• Inlet concentration is 1
• Initial concentration is 0
• Number of timesteps of variable size = 30
• Number of spatial discretization points = 20
• The PFR is sparged and we can module the rate 

of reaction by changing airflow (𝑝)

( ) 0.1 0.3Da p p= +
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Future Directions

• Extension to provide enclosure of 

truncation error.

– Interval forms have been addressed. 

– Generalization to relaxations and use in 

global optimization outstanding.

• Constructing bounds of PDE 

constrained systems via relaxation 

of Crank-Nicolson methods.
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𝜕𝑈

𝜕𝑡
= 𝛼

𝜕2𝑈

𝜕𝑥2

Courtesy of wikimedia commons 
(https://commons.wikimedia.org/wiki/File:HeatEquationCNApproximate.svg) 

https://commons.wikimedia.org/wiki/File:HeatEquationCNApproximate.svg
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