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Introduction
• A “Robust System” mitigates the effects of uncertainty to ensure 

performance/safety constraints are satisfied.
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• A “Robust System” mitigates the effects of uncertainty to ensure 

performance/safety constraints are satisfied.
• “Robust Simulation” refers to the ability to rigorously account for the impacts 

of uncertainty via a model-based (i.e., simulation) approach
– Conclude whether or not a system can meet the desired 

performance/safety constraints in the face of uncertainty using 
mathematical models
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Research Challenge: How can we use model-based optimal design 
principles to improve reliability and safety of systems at the design stage?



Accounting for Uncertainty
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Research Challenge: 
Verifying a system is not robust is as simple as 
finding a single realization of uncertainty that 
violates the constraint. 

Verifying a system is robust requires simulating 
infinitely-many realizations of uncertainty and 
ensuring the system never violates the constraint. 



Introduction
• Steady-state vs. dynamical systems models
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System Model
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System Model
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Now, we must account for the transient response to uncertainty in our design.



Accounting for Uncertainty
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Preliminaries
• From a design perspective, our objective is to verify performance/safety in 

the face of (the worst-case) uncertainty over the time horizon.
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Preliminaries
• From a design perspective, our objective is to verify performance/safety in 

the face of (the worst-case) uncertainty over the time horizon.

If               , we have verified the robustness of our design u.

“For a given design, the system does not violate performance/safety at any 
point in time, even in the face of the worst-case uncertainty”
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Preliminaries
Discrete-time reformulation, e.g., implicit Euler:

Where we have
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( , , ) h y u p 0Related to “orthogonal collocation” approach: Biegler (1983)
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Robust Steady-State Simulation
• Previous developments: a set-valued mapping theory that enables the 

calculation of rigorous bounds on the states over the entire uncertainty 
space.
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Robust Steady-State Simulation
• How does this work mathematically?

– Implicit function theorem

– (parametric) mean value theorem

– Fixed-point iterations

– Rigorous (global) set-valued arithmetic
• Interval arithmetic
• generalized McCormick convex relaxations
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Robust Steady-State Simulation
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Robust Dynamic Simulation
• Our dynamic model is reformulated in the discrete form as a nonlinear 

algebraic system:
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Very large!



Robust Dynamic Simulation
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Robust Dynamic Simulation
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Here, we have 5 states.  For 
a system with K=1000, we 
would need to account for a 
5000-dimension system 
simultaneously.

Each block of unknowns only 
depends on the previous 
timesteps (known).  Thus, 
we only need to account for 
a single 5-dimensional 
system sequentially.



Robust Dynamic Simulation
Apply the theory introduced previously for robust steady-state simulation to our 
system                      to calculate rigorous bounds on the state variables over 
the range of uncertainty variables p and design variables u, block-by-block.
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Robust Dynamic Simulation
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Robust Dynamic Simulation
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Control of a 9-species biological reaction for 
wastewater treatment.



Future Work
• Extend the worst-case uncertainty verification to the robust design problem 

to “minimize the maximum impact of uncertainty”
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Conclusion
• We have developed a method for rigorously bounding the operating 

envelope of a dynamical system
• We enable a simulation-based approach with deterministic global 

optimization for worst-case safety verification
• We have developed the theory for higher-order implicit integration methods 

(parametric implicit linear multistep methods).
• Focused on two-step (2nd-order) methods

– Much greater accuracy than implicit Euler
– Unconditionally stable
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Thank you!

Any Questions?

This material is based upon work supported by the National Science Foundation under Grant 
No. 1932723.  Any opinions, findings, and conclusions or recommendations expressed in this 

material are those of the authors and do not necessarily reflect the views of the National 
Science Foundation.
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