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Introduction

A “Robust System” mitigates the effects of uncertainty to ensure
performance/safety constraints are satisfied.
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Introduction

 A*“Robust System” mitigates the effects of uncertainty to ensure
performance/safety constraints are satisfied.

 “Robust Simulation” refers to the ability to rigorously account for the impacts
of uncertainty via a model-based (i.e., simulation) approach

— Conclude whether or not a system can meet the desired
performance/safety constraints in the face of uncertainty using
mathematical models
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Introduction

 A*“Robust System” mitigates the effects of uncertainty to ensure
performance/safety constraints are satisfied.

 “Robust Simulation” refers to the ability to rigorously account for the impacts
of uncertainty via a model-based (i.e., simulation) approach

— Conclude whether or not a system can meet the desired
performance/safety constraints in the face of uncertainty using
mathematical models

Research Challenge: How can we use model-based optimal design
principles to improve reliability and safety of systems at the design stage?
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Accounting for Uncertainty

Parametric
Uncertainty

System Model

For a specific design, how
would the system respond to State-Space y/
uncertainty?
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Operating
Envelope

would the system respond to
uncertainty?
INCOSE - Oct. 17, 2019

State-Space



Accounting for Uncertainty
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Accounting for Uncertainty

Constraint/Specification

Parametric
Uncertainty Operating
> System Model
h(z,u,p) = ROBUST
SYSTEM!
Design

For a specific design, how R
would the system respond to State-Space y/

Unitec uncertainty? P
Institute for Advanced Systems Engineering ()
<\/ UNIVERSITY OF CONNECTICUT INCOSE - Oct. 17' 2019 O‘®®




Accounting for Uncertainty

aint/Specification

Research Challenge:
Verifying a system is not robust is as simple as
~ finding a single realization of uncertainty that

Parameti

uncertair Violates the constraint. B
perl e
W Verifying a system is robust requires simulating ROBUST

~—— infinitely-many realizations of uncertainty and PYSTEM

Design ensuring the system never violates the constraint.
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Introduction

o Steady-state vs. dynamical systems models

System Model System Model

nonlinear algebraic system nonlinear ODE system
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Introduction

o Steady-state vs. dynamical systems models

System Model System Model

nonlinear algebraic system nonlinear ODE system

Now, we must account for the transient response to uncertainty in our design.
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Accounting for Uncertainty

9(x(u,p,t, ), u,p,t ) <0
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Accounting for Uncertainty

g(x(w,p,t,_,),u,p,t, ) <0
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HENERES

From a design perspective, our objective is to verify performance/safety in
the face of (the worst-case) uncertainty over the time horizon.

v(u) = max g(x(u,p,?),u,p,?)

peP. tel
s.t. x(u,p,t) = f(x(u,p,t),u,p,t)
x(u,p,0) = x,(u,p)
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HENERES

 From a design perspective, our objective is to verify performance/safety in
the face of (the worst-case) uncertainty over the time horizon.

v(u) = max g(x(u,p,?),u,p,?)
peP. tel

s.t. x(u,p,t) = f(x(u,p,t),u,p,t)
x(u,p,0) = x,(u,p)

If v(u) <0, we have verified the robustness of our design u.

“For a given design, the system does not violate performance/safety at any
point in time, even in the face of the worst-case uncertainty”
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HENERES

Discrete-time reformulation, e.g., implicit Euler:

x(u,p,t) = f(x(u,p,t),u,p,?) :> Yo = %P)
X(u7p7 O) — XO(u7p) yH—l — yz —|_ h/f(yH_l?u?p? ti+1)7 1 = 17---,K

Where we have y.(u,p)~ x(u,p,t)
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HENERES

Discrete-time reformulation, e.g., implicit Euler:

() = max g(x(u,p.t),u,p,?) Y(u) = Jnax 9(y,u,p,t,)
s.t. x(u,p,t) = f(x(u,p,?),u,p,?) s.t. y, =x,(u,p)
x(u,p,0) = Xo(u,p) y,.— Y, — hf(yl,u, P, tl) =0
‘ yK o yK—l o hf(yK,U,p,tK) =0 |
i
h(y,u,p) =0
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HENERES

Discrete-time reformulation, e.g., implicit Euler:

() = max g(x(u,p.t),u,p,?) Y(u) = Jnax 9(y,u,p,t,)
s.t. x(u,p,t) = f(x(u,p,t),u,p,?) s.t. y, =x,(u,p)
x(u,p,0) = Xo(u,p) y,.— Y, — hf(yl,u, P, tl) =0
Y~ Y, ~Myeupt)=0
I
Related to “orthogonal collocation” approach: Biegler (1983) h(y, u, p) =0
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Robust Steady-State Simulation

* Previous developments: a set-valued mapping theory that enables the
calculation of rigorous bounds on the states over,the entire uncertainty

space.
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Robust Steady-State Simulation

* Previous developments: a set-valued mapping theory that enables the

calculation of rigorous bounds on the states over,the entire uncertainty
space.

Parametric
Uncertainty

Operating
Envelope

System Model
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Robust Steady-State Simulation

 How does this work mathematically?
— Implicit function theorem
h(z,u,p) = 0 = z = x(u,p) : h(x(u,p),u,p) =0
— (parametric) mean value theorem
M(u,p) (x(u,p) — ¥(u,p)) = —h(v(u,p), u,p)
— Fixed-point iterations
x""(u,p) = ®(x"(u,p))
— Rigorous (global) set-valued arithmetic
 [nterval arithmetic

* generalized McCormick convex relaxations
Stuber, M.D. et al. (2015)
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Robust Steady-State Simulation

. Convex relaxation of
nonconvex operating
envelope (without actually
simulating the operating
envelope)

Operating
Envelope

\ 4

State-Space Z
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Robust Dynamic Simulation

e Our dynamic model is reformulated in the discrete form as a nonlinear

algebraic system:
Yo — X (11, P)

Y, —Y _hf(Y7u7p7t)
h(y,U,p): 1 0 : 1 1

Y, =Y, , — My, upt,)

h: R* < R™ xR — R™"
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Robust Dynamic Simulation

e Our dynamic model is reformulated in the discrete form as a nonlinear

algebraic system:
Yo — X (11, P)

Y, —Y _hf(Y7u7p7t)
h(y,U,p): 1 0 : 1 1

Y, =Y, , — My, upt,)

K1) i @ Very large!
h:R™ XxR" xR7?" - R
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Robust Dynamic Simulation
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2-Step AM (Cf)

Implicit Euler (E;)
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Robust Dynamic Simulation
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2-Step BDF (&)

Here, we have 5 states. For
a system with K=1000, we
would need to account for a
5000-dimension system
simultaneously.

Each block of unknowns only
depends on the previous
timesteps (known). Thus,
we only need to account for
a single 5-dimensional
system sequentially.




Robust Dynamic Simulation

Apply the theory introduced previously for robust steady-state simulation to our
system h(y,u,p) = 0 to calculate rigorous bounds on the state variables over
the range of uncertainty variables p and design variables u, block-by-block.
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Robust Dynamic Simulation

Operating

Envelope

Operating
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Robust Dynamic Simulation

Controller ==
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Control of a 9-species biological reacti
wastewater treatment.
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Future Work

« Extend the worst-case uncertainty verification to the robust design problem
to “minimize the maximum impact of uncertainty”

min
v(u) = max g(x(u,p,?),u,p,? ucl neR
( ) peP. tel ( ( ) ) St 77 > ax g( (u p)t) . pjt)
S.t. X(u, p, ) f( (u p, ) u, p, t) peP tel

s.t. x(u,p,t) = f(x(u,p,),u,p, 1)

x(u,p,0) = x,(u,p) x(u,p,0) = x,(u,p)
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Conclusion

 We have developed a method for rigorously bounding the operating
envelope of a dynamical system

 We enable a simulation-based approach with deterministic global
optimization for worst-case safety verification

« We have developed the theory for higher-order implicit integration methods
(parametric implicit linear multistep methods).

 Focused on two-step (2"d-order) methods
— Much greater accuracy than implicit Euler
— Unconditionally stable
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Thank you!

Any Questions?

This material is based upon work supported by the National Science Foundation under Grant
No. 1932723. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National
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