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Abstract

We present a deterministic global optimization method for nonlinear programming
formulations constrained by stiff systems of ordinary differential equation (ODE) initial
value problems (IVPs). The examples arise from dynamic optimization problems
exhibiting both fast and slow transient phenomena commonly encountered in model-
based systems engineering applications. The proposed approach utilizes unconditionally-
stable implicit integration methods to reformulate the ODE-constrained problem into a
nonconvex nonlinear program (NLP) with implicit functions embedded. This problem is
then solved to global optimality in finite time using a spatial B&B framework utilizing
convex/concave relaxations of implicit functions constructed by a method which fully
exploits problem sparsity. The algorithms were implemented in the Julia programming
language within the EAGO.jl package and demonstrated on five illustrative examples with
varying complexity relevant in process systems engineering. The developed methods
enable the guaranteed global solution of dynamic optimization problems with stiff ODE-
IVPs embedded.

This article is protected by copyright. All rights reserved.




Introduction

Want to solve dynamic optimization problems to guaranteed global optimality:

*

6 = min ¢(x(p,,),p)

pePCR'?
s.t. x(p,?) = £(x(p,¢),p,t), Vi€ I =t ,1,]
x(p:t,) = x,(p)
g(x(p,t,),p) <0
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Want to solve dynamic optimization problems to guaranteed global optimality:

*

6 = min ¢(x(p,,),p)

pcPCR P
s.t. | x(p,t) = f(x(p,t),p,t),Vt € I = [to,tf]
x(p,t,) = %,(p)
g(x(p,t,),p) <0

Parametric ordinary differential equation initial value problem (ODE-IVP)
constraints.

Arise from optimal control, parameter estimation, etc.
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Why do we need guaranteed global optimality?
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Why do we need guaranteed global optimality?

 Most often when we’re dealing with uncertainty (and nonconvexity):

Robust control: given uncertainty are mitigating control actions stable?

Robust design: will our system operate safely in the presence of
uncertainty?

Model validation: does a proposed model capture the observed
behavior?
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Introduction

How do we solve nonconvex optimization problems to guaranteed global
optimality?

Branch-and-Bound Algorithm (and variants)
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Introduction

How do we solve nonconvex optimization problems to guaranteed global
optimality?

Branch-and-Bound Algorithm (and variants) is a deterministic search
procedure that systematically partitions the decision space and rules out
regions based on infeasibility and sub-optimality.

We want to employ spatial branch-and-bound to solve our dynamic optimization
problem.




Introduction

How do we solve nonconvex optimization problems to guaranteed global
optimality?

Branch-and-Bound Algorithm (and variants) is a deterministic search
procedure that systematically partitions the decision space and rules out
regions based on infeasibility and sub-optimality.

We want to employ spatial branch-and-bound to solve our dynamic optimization
problem.

— must be able to calculate rigorous global bounds on all functions
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The most challenging task is then calculating rigorous bounds on the state
trajectories over the entire parameter set:

x(p,t) = f(x(p,?),p,t), Ve € I =t,¢,],Vp € P
x(p,t,) =x,(p),Vp € P
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Past Approaches

Explicit Discrete-Time

1. Express the ODE-IVP system as a
discrete-time approximation using
numerical integration schemes

2. Reformulate the dynamic
optimization problem into a
standard NLP with algebraic
constraints (states become
decision variables)

Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, Philadelphia (2010)




Past Approaches

Explicit Discrete-Time
1. Express the ODE-IVP system as a

-

\
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z, = X,(P)
2| x(p,t) = £(x(p,1),p,t), ¥t € [ = [t,,1,] 2 — 2, — (2, p.1,) =0
x(p,t,) = X,(p) o
Z, — 7, —hf( zZ.,p,t.)=0
Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, Philadelphia (2010)
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Past Approaches

Explicit Discrete-Time

1.

Express the ODE-IVP system as a
discrete-time approximation using
numerical integration schemes

Reformulate the dynamic
optimization problem into a
standard NLP with algebraic
constraints (states become
additional decision variables)

Calculate bounds of algebraic
functions for the branch-and-
bound algorithm




Past Approaches

Explicit Discrete-Time

1.

Express the ODE-IVP system as a
discrete-time approximation using
numerical integration schemes

Reformulate the dynamic
optimization problem into a
standard NLP with algebraic
constraints (states become
additional decision variables)

Calculate bounds of algebraic
functions for the branch-and-
bound algorithm

Simulation-Based

1. Derive auxiliary system of ODE-
I\VPs guaranteed to bound all
parametric trajectories.

2. Integrate these ODE-IVPs to
provide valid bounds to the
branch-and-bound algorithm (only
p are decision variables)

Rihm, Robert. Interval methods for initial value problems in ODEs. Topics in Validated
Computations (1994): 173-207.

Joseph K Scott, Paul | Barton. Improved relaxations for the parametric solutions of ODEs
using differential inequalities. Journal of Global Optimization. 2013 (57): 143-176.

A.M. Sahlodin, Benoit Chachaut. Discretize-then-relax approach for convex/concave
relaxations of the solutions of parametric ODEs. Applied Numerical Mathematics, 61
(179): 803 — 820, 2011




Past Approaches Downsides

Explicit Discrete-Time Simulation-Based
 For accuracy, many discrete states ¢ Can be slow (depending on
are required (i.e., high- numerical integrator and problem
dimensionality NLP) complexity)
 No integration error control  Adiscrete-time form was
(higher-order methods are used) developed but only for explicit
Integration methods (not for stiff
systems)



Our New Approach

We propose a discrete-time simulation-based approach:

1. Utilize implicit function theory to “solve” the discrete-time system of
equations as implicit functions of the decision variables p.

—
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Our New Approach

We propose a discrete-time simulation-based approach:

1. Utilize implicit function theory to “solve” the discrete-time system of
equations as implicit functions of the decision variables p.

¢ = pg}lznz o(2, p, tf) z(p) = (Zo(p),zl(p),...,ZK(p)) This is not known analytically!
s.t. z, = x (u,p)
Z — 1, _hf( Z,,P; 1) 0 ¢ —m1n¢(( ):P; f)

‘. g(z,(p),p) <0

2, —2,  —h(z,,pt,)=0
g(z,,p) <0




Our New Approach

We propose a discrete-time simulation-based approach:

1.

Utilize implicit function theory to “solve” the discrete-time system of
equations as implicit functions of the decision variables p.

Utilize interval arithmetic and McCormick-based relaxations of implicit
functions to rigorously bound z(p) = (z,(p),z,(P),-.-,2,.(P))

NN
— Extend theory developed for steady-state systems

Stuber, M.D., Scott, J.K., and P.l. Barton. Convex and Concave Relaxations of Implicit Functions.
Optimization Methods & Software (2015)



Our New Approach

« Discrete-time representation is a nonlinear algebraic system that make up
equality constraints (like a steady-state model)

z, — X,(P)
z, — 1z, — hf(z,,Dp,
h(z.p) — HER
z, —2, —Wz,.,pt,)

h : R (K+1) R » RnI(K—H)




Our New Approach

« Discrete-time representation is a nonlinear algebraic system that make up
equality constraints (like a steady -state model)

Z, —X (P)
i) | B ,
h(z,p) = 1 1 —0
(%P) E B En
iK— _hf( K,P, K)
h: R=E R R T

Implicit Euler (&:)




Our New Approach

« Discrete-time representation is a nonlinear algebraic system that make up
equality constraints (like a steady -state model)

n X n system of algebraic equations

ooooo

ooooo

oooooo

Implicit Euler (&:)




Bounds on Implicit Functions

 How does this work mathematically?
— Implicit function theorem
h(z,p) = 0=z =z(p) : h(z(p),p) = 0
— (parametric) mean value theorem
M(p)(z(p) — v(p)) = —h(~(p),p)
— Fixed-point iterations
72" = ®(z2",p), {2"} — z(p)
— Rigorous (global) set-valued arithmetic
e Interval arithmetic

* generalized McCormick convex relaxations
Stuber, M.D. et al. (2015)




Our New Approach

e Parametric implicit linear multistep methods:

C(ikJrs A ik ? p) — 2k+s o ikJrs—l - hz bjf(ikvLj’ p; tk+j) =0

€(ik+s””’ik7p) — ik+s T hZ aiikﬂ' o hbsf(2k+s’p’ tk+s) =0




Our New Approach

e Parametric implicit linear multistep methods:

C(ikJrs A ik ? p) — 2k+s o ikJrs—l - hz bjf(ikvLj’ p; tk+j) =0

€(ik+s””’ik7p) — ik+s T hZ aiikﬂ' o hbsf(2k+s’p’ tk+s) =0

 Focus on unconditionally-stable methods (s=1 and s=2)

— Second-order methods provide an order-of-magnitude greater accuracy
over first-order methods




Our New Approach

« Discrete-time representation is a nonlinear algebraic system that make up
el
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2-Step AM (C;) Implicit Euler (&) 2-Step BDF (.E;) p
h: Rnw(K+1) <R —s R”x(KH) AIChE Annual Meeting 2019 33 ‘@




Relaxations of Parametric Implicit

Linear Multistep Methods

Apply the theory introduced previously for robust steady-state simulation to our
system h(z,p) =0 to calculate rigorous bounds on the state variables over
the range of uncertainty variables p, block-by-block.




Relaxations of Parametric Implicit
Linear Multistep Methods
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Relaxations of Parametric Implicit

Linear Multistep Methods
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Relaxations of Parametric Implicit
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Relaxations of Parametric Implicit
Linear Multistep Methods
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Kinetic Model Example

Problem Statement Objective Variables

 Fit the rate constants (k,; ks k,) Of oxygen 2
addition to cyclohexadienyl radicals to data. 1 = min Z(Il ldata)

* First addressed by global by Singer et al.’ _

 Explicit Euler form solved by Mitsos!8 s.t. 1= )+ les TR Xp

e Implicit Euler form addressed in Stuber?!?
Decision Variables

ODE-IVP: P = (kop, k3, ka)

X4 = kiXzxy — Coa(kop + kap)xa + (kop/Ko)xp + (ks /K3)xp — ksx, _
State Variables

D.CB = k3fC02xA _ (k3f/K3 + k4)xB’ X.D = szCOZxA o (sz/Kz)xD' X = (xA;xB;xDle) xZ)

Xy = —KqisXyXz, Xz = —kixyxz, Constants

x(t = 0) = (0,0,0,0.4,140) k1, ks, ks, Kz, K3, Coz, AL, 10

16. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193-7203.
17. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971-976

18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601

19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions! Uptinlizdtidn Wiéthods gnd\Seftware (2015), 30, 424-460




Kinetic Model Example

Problem Statement 140 . . : 5
* Fit the rate const O  Experimental Data o
addition to cyclot 12018 2-Step AM | ~ ldata)
. F|rst.a.ddressed b 8 Implicit Euler 2 . 2
e Explicit Euler forr o) T Xp T 57 Xp
- 1 21
. . 100
e Implicit Euler fori
hny
ODE-IVP: = 80 1)
c
XA = klexY — COZ( .g
_ I ; = 60
X = k3rCcprxs —
B 3fL024A ( Xy, xZ)
Xy = —kisXyXz, 40
x(t - 0) = (0, 0; O; 3 COZ’ At)n
200
16. J. W. Taylor, et al. Direct meas . A, 108 (2004), pp. 7193-7203.
17. A. B. Singer et al., Global dyn 0 | . . pp. 971-976
18. Mitsos et al. McCormick-base¢
19. Stuber, M.D. et al. Convex an 0 0.2 04 RK%’]E A%ﬁual |\;'|eetlr]fg2201é 4 1.6 1.8 B 42

time (s)



Conclusion

 We have developed a method for rigorously bounding the state trajectories
of (stiff) parametric ODE-IVPs

« We have developed the theory for higher-order implicit integration methods
(parametric implicit linear multistep methods).

 Focused on two-step (2"d-order) methods
— Much greater accuracy than implicit Euler
— Unconditionally stable

 Developed an open-source package for use with our EAGO.|l open-source

solver https://github.com/PSORLab/EAGO.jl
https://github.com/PSORLab/EAGODifferential.jl
P

AIChE Annual Meeting 2019 43 ‘9
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https://github.com/PSORLab/EAGO.jl
https://github.com/PSORLab/EAGODifferential.jl

Thank you!

Any Questions? UBUNN

UNIVERSITYOF CONNECTICUT
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The Global Home of Chemical Engineers

This material is based upon work supported by the National Science Foundation under Grant
No.: 1560072, 1706343, 1932723. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation. ‘P
44 (@
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Implementation

Problem Statement

e Fit the rateg 3
addition o
e Firstadc e« Affine relaxations used to compute lower bound (CPLEX 12.8). tata)
e Explicit | . .
* Implicit| ¢ Upper-bound computed by integrating ODE at midpoint of active node then g+ o7 XD

evaluating objective & constraints.
pODE IVP:

x4 = kyx; * Duality-based bound tightening was performed. Two iterations of each PILMS
with was used after five iterations of a block sequential parametric interval

Xg = kjrC
B — 731 method. ,Xz)
Xy = _kl
 Absolute and relative convergence tolerances for the B&B algorithm of 10~2 and o, AL,
x(t=0) 107>, respectively.
16. J. W. Taylor, et al. Dt 12004), pp. 7193-7203.
17. A. B. Singer et al., Globe #71-976

18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601
19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Qptimization Metheds.and Softweanre{2015), 30, 424-460




Kinetic Problem

Klnetlc prObIem was SOIVed SUbJeCt tO three @ Implicit-Euler, K= 100 -+ Two-Step AM, K= 100 -l Two-Step BDF, K= 100

discretization schemes for K = 100 and K = 200 —@— Implicit-Euler, K= 200 —¢ Two-Step AM, K= 200 —ll- Two-Step BDF, K= 200
1.0 A
Solution Method K Iterations  Average time per iteration  Solution time SSE at Solution
0.8
Implicit Euler 100 33987 45%1073s 29 7min 26947.246 ()
o
-
200 23,525 59x1073s 23.4min 16796.038 ~ 0.6 -
()
(aa)]
2-Step AM 100 62024 12x1072%s >2h N/A* -
0.4
200 6068 22x107%s 22.6min 13077.998
0.2
2-Step BDF 100 88408 81x1073s >2h N/A*
2 N LA L L LR | ' LI L L B L L | J L L L L L AL | T LA L B LY | T LN B L NN | L LA L N LR |
200 27600 26x10 25 >2h N/A 10 1 100 10? 102 102 104
Fyry 4 .
Explicit Euler 100  >300,000 23x107*s >2h N/A Tlme (SeCOHdS)

200  >300,000 24x107%s >2h N/A




Wastewater Example

Sensors::>

—p

Air
diffusers

Controller ==

—amp>

-~ NS

Air i e—

Control of a 9-species biological reaction for
wastewater treatment.

X4(p,t)

34.0

33.8 -
= 33.6
©33.4 -

33.2 A

—_—

33.0
0.00

0.05

0.10 0.15 0.20 0.25
t (day)

0.30
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