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Introduction
Want to solve dynamic optimization problems to guaranteed global optimality:
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Introduction
Want to solve dynamic optimization problems to guaranteed global optimality:

Parametric ordinary differential equation initial value problem (ODE-IVP) 
constraints.

Arise from optimal control, parameter estimation, etc.
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Introduction
Why do we need guaranteed global optimality?
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Introduction
Why do we need guaranteed global optimality?

• Most often when we’re dealing with uncertainty (and nonconvexity):
– Robust control: given uncertainty are mitigating control actions stable?
– Robust design: will our system operate safely in the presence of 

uncertainty?
– Model validation: does a proposed model capture the observed 

behavior?
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Introduction
How do we solve nonconvex optimization problems to guaranteed global 
optimality?

Branch-and-Bound Algorithm (and variants)
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Introduction
How do we solve nonconvex optimization problems to guaranteed global 
optimality?

Branch-and-Bound Algorithm (and variants) is a deterministic search 
procedure that systematically partitions the decision space and rules out 
regions based on infeasibility and sub-optimality.   

We want to employ spatial branch-and-bound to solve our dynamic optimization 
problem.
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Introduction
How do we solve nonconvex optimization problems to guaranteed global 
optimality?

Branch-and-Bound Algorithm (and variants) is a deterministic search 
procedure that systematically partitions the decision space and rules out 
regions based on infeasibility and sub-optimality.   

We want to employ spatial branch-and-bound to solve our dynamic optimization 
problem. 
→ must be able to calculate rigorous global bounds on all functions
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Introduction
The most challenging task is then calculating rigorous bounds on the state 
trajectories over the entire parameter set:
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Past Approaches
Explicit Discrete-Time
1. Express the ODE-IVP system as a 

discrete-time approximation using 
numerical integration schemes

2. Reformulate the dynamic 
optimization problem into a 
standard NLP with algebraic 
constraints (states become 
decision variables)

AIChE Annual Meeting 2019
Biegler, L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. SIAM, Philadelphia (2010)
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Past Approaches
Explicit Discrete-Time
1. Express the ODE-IVP system as a 

discrete-time approximation using 
numerical integration schemes

2. Reformulate the dynamic 
optimization problem into a 
standard NLP with algebraic 
constraints (states become 
additional decision variables)

3. Calculate bounds of algebraic 
functions for the branch-and-
bound algorithm
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Past Approaches
Explicit Discrete-Time
1. Express the ODE-IVP system as a 

discrete-time approximation using 
numerical integration schemes

2. Reformulate the dynamic 
optimization problem into a 
standard NLP with algebraic 
constraints (states become 
additional decision variables)

3. Calculate bounds of algebraic 
functions for the branch-and-
bound algorithm

Simulation-Based
1. Derive auxiliary system of ODE-

IVPs guaranteed to bound all 
parametric trajectories.

2. Integrate these ODE-IVPs to 
provide valid bounds to the 
branch-and-bound algorithm (only 
p are decision variables)
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Rihm, Robert. Interval methods for initial value problems in ODEs. Topics in Validated 
Computations (1994): 173-207.
Joseph K Scott, Paul I Barton. Improved relaxations for the parametric solutions of ODEs 
using differential inequalities. Journal of Global Optimization. 2013 (57): 143–176. 
A.M. Sahlodin, Benoît Chachaut. Discretize-then-relax approach for convex/concave 
relaxations of the solutions of parametric ODEs. Applied Numerical Mathematics, 61 
(179): 803 – 820, 2011
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Past Approaches Downsides
Explicit Discrete-Time
• For accuracy, many discrete states 

are required (i.e., high-
dimensionality NLP)

• No integration error control 
(higher-order methods are used)

Simulation-Based
• Can be slow (depending on 

numerical integrator and problem 
complexity)

• A discrete-time form was 
developed but only for explicit 
integration methods (not for stiff 
systems)
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Our New Approach
We propose a discrete-time simulation-based approach:
1. Utilize implicit function theory to “solve” the discrete-time system of 

equations as implicit functions of the decision variables p.
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Our New Approach
We propose a discrete-time simulation-based approach:
1. Utilize implicit function theory to “solve” the discrete-time system of 
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Our New Approach
We propose a discrete-time simulation-based approach:
1. Utilize implicit function theory to “solve” the discrete-time system of 

equations as implicit functions of the decision variables p.
2. Utilize interval arithmetic and McCormick-based relaxations of implicit 

functions to rigorously bound
– Extend theory developed for steady-state systems

AIChE Annual Meeting 2019

0 1
( ) ( ( ), ( ), , ( ))

K
 z p z p z p z p

Stuber, M.D., Scott, J.K., and P.I. Barton. Convex and Concave Relaxations of Implicit Functions. 
Optimization Methods & Software (2015)

26



Our New Approach
• Discrete-time representation is a nonlinear algebraic system that make up 

equality constraints (like a steady-state model)
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Bounds on Implicit Functions
• How does this work mathematically?

– Implicit function theorem

– (parametric) mean value theorem

– Fixed-point iterations

– Rigorous (global) set-valued arithmetic
• interval arithmetic
• generalized McCormick convex relaxations

AIChE Annual Meeting 2019
Stuber, M.D. et al. (2015)
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Our New Approach
• Parametric implicit linear multistep methods:
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Our New Approach
• Parametric implicit linear multistep methods:

• Focus on unconditionally-stable methods (s=1 and s=2)
– Second-order methods provide an order-of-magnitude greater accuracy 

over first-order methods
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Our New Approach
• Discrete-time representation is a nonlinear algebraic system that make up 

equality constraints (like a steady-state model)
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Relaxations of Parametric Implicit 
Linear Multistep Methods
Apply the theory introduced previously for robust steady-state simulation to our 
system                      to calculate rigorous bounds on the state variables over 
the range of uncertainty variables p, block-by-block.
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Relaxations of Parametric Implicit 
Linear Multistep Methods
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Relaxations of Parametric Implicit 
Linear Multistep Methods
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Relaxations of Parametric Implicit 
Linear Multistep Methods
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Kinetic Model Example

16. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193–7203.
17. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971–976
18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601
19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460

𝑓𝑓∗ = min
𝒑𝒑∈𝑃𝑃

�
𝑖𝑖=1

𝑛𝑛

I𝑖𝑖 − Idata
𝑖𝑖 2

𝑠𝑠. 𝑡𝑡. I𝑖𝑖 = 𝑥𝑥𝐴𝐴𝑖𝑖 +
2

21
𝑥𝑥𝐵𝐵𝑖𝑖 +

2
21

𝑥𝑥𝐷𝐷𝑖𝑖

𝑘𝑘1,𝑘𝑘1𝑠𝑠 ,𝑘𝑘5,𝐾𝐾2,𝐾𝐾3, 𝑐𝑐𝑂𝑂2,Δ𝑡𝑡,𝑛𝑛
Constants

Objective Variables

𝒑𝒑 = (𝑘𝑘2𝑓𝑓 , 𝑘𝑘3𝑓𝑓 , 𝑘𝑘4)

Problem Statement
• Fit the rate constants (k2f, k3f, k4) of oxygen 

addition to cyclohexadienyl radicals to data. 16

• First addressed by global by Singer et al.17

• Explicit Euler form solved by Mitsos18

• Implicit Euler form addressed in Stuber19

Decision Variables

�̇�𝑥𝐴𝐴 = 𝑘𝑘1𝑥𝑥𝑍𝑍𝑥𝑥𝑌𝑌 − 𝑐𝑐𝑂𝑂2 𝑘𝑘2𝑓𝑓 + 𝑘𝑘3𝑓𝑓 𝑥𝑥𝐴𝐴 + ⁄𝑘𝑘2𝑓𝑓 𝐾𝐾2 𝑥𝑥𝐷𝐷 + ⁄𝑘𝑘3𝑓𝑓 𝐾𝐾3 𝑥𝑥𝐵𝐵 − 𝑘𝑘5𝑥𝑥𝐴𝐴2,

ODE-IVP:

�̇�𝒙 𝑡𝑡 = 0 = 0, 0, 0, 0.4, 140

𝒙𝒙 = 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ,𝑥𝑥𝐷𝐷, 𝑥𝑥𝑌𝑌, 𝑥𝑥𝑍𝑍

State Variables
�̇�𝑥𝐵𝐵 = 𝑘𝑘3𝑓𝑓𝑐𝑐𝑂𝑂2𝑥𝑥𝐴𝐴 − ⁄𝑘𝑘3𝑓𝑓 𝐾𝐾3 + 𝑘𝑘4 𝑥𝑥𝐵𝐵, �̇�𝑥𝐷𝐷 = 𝑘𝑘2𝑓𝑓𝑐𝑐𝑂𝑂2𝑥𝑥𝐴𝐴 − ⁄𝑘𝑘2𝑓𝑓 𝐾𝐾2 𝑥𝑥𝐷𝐷,

�̇�𝑥𝑌𝑌 = −𝑘𝑘1𝑠𝑠𝑥𝑥𝑌𝑌𝑥𝑥𝑍𝑍, �̇�𝑥𝑍𝑍 = −𝑘𝑘1𝑥𝑥𝑌𝑌𝑥𝑥𝑍𝑍,
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Conclusion
• We have developed a method for rigorously bounding the state trajectories 

of (stiff) parametric ODE-IVPs
• We have developed the theory for higher-order implicit integration methods 

(parametric implicit linear multistep methods).
• Focused on two-step (2nd-order) methods

– Much greater accuracy than implicit Euler
– Unconditionally stable

• Developed an open-source package for use with our EAGO.jl open-source 
solver

AIChE Annual Meeting 2019

https://github.com/PSORLab/EAGO.jl
https://github.com/PSORLab/EAGODifferential.jl
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Thank you!

Any Questions?

This material is based upon work supported by the National Science Foundation under Grant 
No.: 1560072, 1706343, 1932723.  Any opinions, findings, and conclusions or 

recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the National Science Foundation.
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Implementation

16. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193–7203.
17. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971–976
18. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601
19. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460

𝑓𝑓∗ = min
𝒑𝒑∈𝑃𝑃

�
𝑖𝑖=1

𝑛𝑛

I𝑖𝑖 − Idata
𝑖𝑖 2

𝑠𝑠. 𝑡𝑡. I𝑖𝑖 = 𝑥𝑥𝐴𝐴𝑖𝑖 +
2

21
𝑥𝑥𝐵𝐵𝑖𝑖 +

2
21

𝑥𝑥𝐷𝐷𝑖𝑖

𝑘𝑘1,𝑘𝑘1𝑠𝑠 ,𝑘𝑘5,𝐾𝐾2,𝐾𝐾3, 𝑐𝑐𝑂𝑂2,Δ𝑡𝑡,𝑛𝑛
Parameters

Objective Variables

𝒑𝒑 = (𝑘𝑘2𝑓𝑓 , 𝑘𝑘3𝑓𝑓 , 𝑘𝑘4)

Problem Statement
• Fit the rate constants (k2f, k3f, k4) of oxygen 

addition to cyclohexadienyl radicals to data. 16

• First addressed by global by Singer et al.17

• Explicit Euler form solved by by Mitsos18

• Implicit Euler form addressed in Stuber19

Decision Variables

�̇�𝑥𝐴𝐴 = 𝑘𝑘1𝑥𝑥𝑍𝑍𝑥𝑥𝑌𝑌 − 𝑐𝑐𝑂𝑂2 𝑘𝑘2𝑓𝑓 + 𝑘𝑘3𝑓𝑓 𝑥𝑥𝐴𝐴 + ⁄𝑘𝑘2𝑓𝑓 𝐾𝐾2 𝑥𝑥𝐷𝐷 + ⁄𝑘𝑘3𝑓𝑓 𝐾𝐾3 𝑥𝑥𝐵𝐵 − 𝑘𝑘5𝑥𝑥𝐴𝐴2,

pODE IVP:

�̇�𝒙 𝑡𝑡 = 0 = 0, 0, 0, 0.4, 140

𝒙𝒙 = 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 ,𝑥𝑥𝐷𝐷, 𝑥𝑥𝑌𝑌, 𝑥𝑥𝑍𝑍

State Variables
�̇�𝑥𝐵𝐵 = 𝑘𝑘3𝑓𝑓𝑐𝑐𝑂𝑂2𝑥𝑥𝐴𝐴 − ⁄𝑘𝑘3𝑓𝑓 𝐾𝐾3 + 𝑘𝑘4 𝑥𝑥𝐵𝐵, �̇�𝑥𝐷𝐷 = 𝑘𝑘2𝑓𝑓𝑐𝑐𝑂𝑂2𝑥𝑥𝐴𝐴 − ⁄𝑘𝑘2𝑓𝑓 𝐾𝐾2 𝑥𝑥𝐷𝐷,

�̇�𝑥𝑌𝑌 = −𝑘𝑘1𝑠𝑠𝑥𝑥𝑌𝑌𝑥𝑥𝑍𝑍, �̇�𝑥𝑍𝑍 = −𝑘𝑘1𝑥𝑥𝑌𝑌𝑥𝑥𝑍𝑍,

• Affine relaxations used to compute lower bound (CPLEX 12.8).

• Upper-bound computed by integrating ODE at midpoint of active node then 
evaluating objective & constraints.

• Duality-based bound tightening was performed. Two iterations of each PILMS 
with was used after five iterations of a block sequential parametric interval 
method.

• Absolute and relative convergence tolerances for the B&B algorithm of 10−2 and 
10−5, respectively. 
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Kinetic Problem
Kinetic problem was solved subject to three 

discretization schemes for 𝐾𝐾 = 100 and 𝐾𝐾 = 200.

LB
D/

U
BD

Time (seconds)
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Wastewater Example

AIChE Annual Meeting 2019

Control of a 9-species biological reaction for 
wastewater treatment.
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