

Recent Advances in Bounding Transient PDE Models with Parametric Uncertainty

Chenyu Wang, Matthew D. Stuber

2020 AIChE Annual Meeting

Process Systems and Operations Research Laboratory

Background

[1] C. Wang and M. D. Stuber, Under Review, 2020

[2] M. D. Stuber and P. I. Barton, "Robust simulation and design using semi-infinite programs with implicit functions," *International Journal of Reliability and Safety*, vol. 5, no. 3-4, pp. 378-397, 2011.
[3] M. D. Stuber, A.Wechsung, A. Sundaramoorthy, and P. I. Barton, "Worst-case design of subsea production facilities using semi-infinite programming," AIChE Journal, vol. 60, no. 7, pp. 2513-2524, 2014.

Parametric Partial Differential Equations

- Provide rigorous bounds for parametric PDE system (IBVP)
- $\partial_{t}\tilde{\mathbf{x}}(y,t,\mathbf{p}) = \tilde{\mathbf{f}}(y,t,\tilde{\mathbf{x}}(y,t,\mathbf{p}),\partial_{y}\tilde{\mathbf{x}}(y,t,\mathbf{p}),\partial_{yy}\tilde{\mathbf{x}}(y,t,\mathbf{p}),\mathbf{p})$ (1) $\tilde{\mathbf{x}}(y,t_{0},\mathbf{p}) = \tilde{\mathbf{x}}_{0}(y,\mathbf{p})$ $\tilde{\mathbf{f}}_{l}(\tilde{\mathbf{x}}(y_{l},t,\mathbf{p}),\partial_{y}\tilde{\mathbf{x}}(y_{l},t,\mathbf{p}),\mathbf{p}) = \tilde{\mathbf{x}}_{l}(t,\mathbf{p})$ $\tilde{\mathbf{f}}_{r}(\tilde{\mathbf{x}}(y_{r},t,\mathbf{p}),\partial_{y}\tilde{\mathbf{x}}(y_{r},t,\mathbf{p}),\mathbf{p}) = \tilde{\mathbf{x}}_{r}(t,\mathbf{p}).$
- Assumptions:
 - 1. $\tilde{\mathbf{f}}: Y \times I \times D \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times P \to \mathbb{R}^{n_x}, \ \tilde{\mathbf{x}}_0: Y \times P \to D, \ \tilde{\mathbf{f}}_l: D \times \mathbb{R}^{n_x} \times P \to \mathbb{R}^{n_x}, \ \tilde{\mathbf{x}}_l: I \times P \to \mathbb{R}^{n_x}, \ \tilde{\mathbf{f}}_r: D \times \mathbb{R}^{n_x} \times P \to \mathbb{R}^{n_x} \text{ and } \ \tilde{\mathbf{x}}_r: I \times P \to \mathbb{R}^{n_x} \text{ are locally Lipschitz continuous.}$
 - 2. A solution of (1) is denoted $\tilde{\mathbf{x}}: Y \times I \times P \to D$, and is twice continuously differentiable for all $y \in Y$.
 - 3. For each $y \in Y$, there exists a unique solution over the time domain I for every $\mathbf{p} \in P$.
- Reachable set: $R(y,t) \equiv {\tilde{\mathbf{x}}(y,t,\mathbf{p}) : \mathbf{p} \in P}.$
- State bounds: $\tilde{\mathbf{x}}^L, \tilde{\mathbf{x}}^U : Y \times I \to \mathbb{R}^{n_x}$

Interval Arithmetic and Affine Arithmetic

[4] J. Comba, J. Stolfi, "Affine arithmetic and its applications to computer graphics," anais do vii sibgrapi, 9-18 (1993).

[5] J. Stolfi, L. H. de Figueiredo, "An introduction to affine arithmetic," *Trends in Applied and ComputationalMathematics*, 4 (3) (2003) 297–312.

[6] L. H. De Figueiredo, J. Stolfi, "Affine arithmetic: concepts and applications," *Numerical Algorithms*, 37 (1-4) (2004) 147–158.

Differential Inequalities

[7] Gary W Harrison. Dynamic models with uncertain parameters. In Proceedings of the first international conference on mathematical modeling, volume 1, pages 295–304. University of Missouri Rolla, 1977.

Bounding IBVPs

[1] C. Wang and M. D. Stuber, Under Review, 2020

Deterministic Global Optimization

Deterministic Global Optimization Algorithm

Transient Plug Flow Reactor

$$\frac{\partial \tilde{x}}{\partial t} = -\frac{\partial \tilde{x}}{\partial y} - Da\tilde{x}, \ t \in [0, 1], \ y \in [0, 1]$$

 $Da = k\tau \quad k \in [0.1, 0.4]$

Transient Plug Flow Reactor

$$\frac{\partial \tilde{x}}{\partial t} = -\frac{\partial \tilde{x}}{\partial y} - Da\tilde{x}, \ t \in [0,1], \ y \in [0,1]$$

 $\begin{array}{ll} \min_{p \in P} & p \\ \text{s.t.} & z_{K,exit} - \lambda \leq 0 \\ p \in P = [0,1] \\ Da = k\tau = (0.1 + 0.3p)\tau \\ z_{K,exit} : \text{effluent concentration} \end{array}$

Method	Time (s)
Explicit approach	38.7
Implicit approach	382

8

[1] C. Wang and M. D. Stuber, Under Review, 2020

[8] M. E. Wilhelm and M. D. Stuber. EAGO.jl: easy advanced global optimization in Julia. *Optimization Methods and Software*, pages 1–26, aug 2020

[9] M. E. Wilhelm, A. V. Le, and Matthew D. Stuber. Global optimization of stiff dynamical systems. AIChE Journal, 65(12), nov 2019

Ozone System: Coupled IBVPs

$$O + O_2 \xrightarrow{k_1} O_3$$
$$O + O_3 \xrightarrow{k_2} 2O_2$$
$$O_2 \xrightarrow{k_3(t)} 2O$$
$$O_3 \xrightarrow{k_4(t)} O + O_2$$

$$\begin{split} r_{cO} &= -k_1 c_O c_{O_2} - k_2 c_O c_{O_3} + 2k_3(t) c_{O_2} + k_4(t) c_{O_3}, \\ r_{cO_2} &= -k_1 c_O c_{O_2} + k_2 c_O c_{O_3} - k_3(t) c_{O_2} + k_4(t) c_{O_3}, \\ r_{cO_3} &= k_1 c_O c_{O_2} - k_2 c_O c_{O_3} - k_4(t) c_{O_3}. \end{split}$$

$$\begin{aligned} \frac{\partial c_O}{\partial t} + u_1 \frac{\partial c_O}{\partial y} &= D_1 \frac{\partial^2 c_O}{\partial y^2} + r_{c_O}, \\ \frac{\partial c_{O_2}}{\partial t} + u_2 \frac{\partial c_{O_2}}{\partial y} &= D_2 \frac{\partial^2 c_{O_2}}{\partial y^2} + r_{c_{O_2}}, \\ \frac{\partial c_{O_3}}{\partial t} + u_3 \frac{\partial c_{O_3}}{\partial y} &= D_3 \frac{\partial^2 c_{O_3}}{\partial y^2} + r_{c_{O_3}}, \end{aligned}$$

$$u = u_1 = u_2 = u_3$$
 $u \in [4e-3, 6e-3]$
 $D = D_1 = D_2 = D_3$ $D \in [4e-3, 6e-3]$

[10] J. Makungu, H. Haario, W. C. Mahera, "A generalized 1-dimensional particle transport method for convection diffusion reaction model," Afrika Matematika, 23 (1) (2012) 21-39.

Ozone System: Coupled IBVPs

[1] C. Wang and M. D. Stuber, Under Review, 2020

Ozone System: Coupled IBVPs

$$\min_{\mathbf{p}\in P} \sum_{j=1}^{10} \sum_{k=1}^{K} (x_{3,5j,k}(\mathbf{p}) - c_{O_{3},i,k}^{\text{data}})^2$$

s.t. $\mathbf{z}_0(\mathbf{p}) = \mathbf{x}(0, \mathbf{p})$
 $\mathbf{z}_{k+1}(\mathbf{p}) = \mathbf{z}_k(\mathbf{p}) + h\mathbf{f}(t_k, \mathbf{z}_k(\mathbf{p}), \mathbf{z}_k^{c}(\mathbf{p}), \mathbf{z}_k^{c2}(\mathbf{p}), \mathbf{p})$

$$\mathbf{p} = (u, D) \in P = [4e-3, 6e-3] \times [4e-3, 6e-3]$$

Method	Time (h)
IA	11
IA/AA	6.5

11

Transport Model in Tumor

- Fluid Transport Model ٠
- Solute Transport Model

Pore Theory

$$L_{p} = \frac{\gamma r_{o}^{2}}{8\mu L} \quad P = \frac{\gamma H D_{o}}{L} \quad \sigma = 1 - W$$

[11] J. D. Martin, M. Panagi, C. Wang, T. T. Khan, M. R. Martin, C. Voutouri, K. Toh, P. Papageorgis, F. Mpekris, C. Polydorou, et al., "Dexamethasone increases cisplatin-loaded nanocarrier delivery and efficacy in metastatic breast cancer by normalizing the tumor microenvironment," ACS nano.

Transport Model in Tumor

Concentration at 30 min post injection

Concentration at medium radius

Transport Model in Tumor

• Purpose: optimal therapy design under uncertainty

$$\max_{\boldsymbol{\pi}\in\Pi} C_{avg}(t_f, \boldsymbol{\pi})$$

s.t. $\sum_{i=1}^n C_{avg}(t_i, \boldsymbol{\pi}) \leq \lambda$

 $\pi = (L_p, K) \in \Pi$

 $\Pi = [1.65\text{E-}5, 1.75\text{E-}6] \times [2.75\text{E-}7, 2.85\text{E-}7]$

14

Acknowledgements

- **Group** members
 - Prof. Matthew D. Stuber,
 - Matthew Wilhelm,
 - William Hale
 - Other group members

Funding

- University of Connecticut
- National Science Foundation, Award No.: 1932723

Any opinions, finding and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

aboratory

UCONN

Any questions?

