

Instructional Videos and Interactive Notebooks for Learning of Coding Concepts in Chemical Engineering Analysis

Matthew Wilhelm, PhD Candidate

Chenyu Wang, PhD Candidate Matthew Stuber, Assistant Professor

Challenges: Content

General CHEG Curriculum

FRESHMAN YEAR First Semester CHEM 1127Q General Chemistry MATH 1131Q Calculus I ENGR 1000 Orientation to Engineering CSE 1010C Intro to Computing ENGL 1010 or 1011 Academic Writing	Credits 4 1 3 4 16	Second Semester CHEM 1128Q General Chemistry MATH 1132Q Calculus II ENGR 1166 Foundations of Engineering Arts & Humanities (Content Area 1) ¹ Social Sciences (Content Area 2) ¹	Credits 4 3 3 3 17
SOPHOMORE YEAR First Semester PHYS 1501Q Eng Physics I CHEM 2443 Organic Chemistry MATH 2110Q Multivariable Calculus CHEG 2103 Intro to Chem Engineering PHIL 1104 Ethics (Content Area 1) ¹	Credits 4 3 4 3 3 7	Second Semester PHYS 1502Q Eng Physics II CHEM 2446 Organic Chemistry Lab CHEM 2444 Organic Chemistry MATH 2410Q Diff Equations CHEG 2111 Thermodynamics I Diversity and Multiculture (Content Area 4) ¹	Credits 4 3 3 3 3 3
JUNIOR YEAR First Semester CHEG 3112 Thermodynamics II CHEG 3123 Eluid Mechanics CHEG 3145 Chemical Engineering Analys Social Science (Content Area 2) ¹ MCB/Biology/CHEM Requirement ⁴	Credits 3 3 3 3 3 3 4	Second Semester CHEG 3124 Heat & Mass Transfer CHEG 3128 Junior Chem Engineering Lab CHEG 3151 Process Kinetics Engineering Requirement ³ Diversity and Multiculture (Content Area 4) ¹ Free Elective	Credits 3 2 3 3 3 3 3
SENIOR YEAR First Semester CHEG 4139 Chem Engineering Lab OR CHEG Requirement ³ CHEG 4140 Capstone Design 1 CHEG 4142 Unit Ops & Process Simulation Engineering Requirement ³ Free Elective 14 (with lab) or 15 (with election)	3 3	Second Semester CHEG 4139 Chem Engineering Lab OR CHEG Requirement ³ CHEG 4143W Capstone Design 2 CHEG 4147 Process Dynamics & Control CHEG Requirement ³ Professional Requirement ³ 14 (with lab) or 15 (with ele	17 Credits 2 or 3 3 3 3 3 3 ctive)
14 (with lab) or 15 (with elective)			ctive) 129 credits

- ✓ Show students how to formulate and solve engineering problems
- ✓ Introduce concepts of algorithms
- ✓ Introduce numerical methods
- ✓ Teaching a "new" programming language

Challenges: Content

- Show students how to formulate and solve engineering problems
- ✓ Introduce concepts of algorithms
- ✓ Introduce numerical methods
- ✓ Teaching a "new" programming language
 - Intro to Computing language determined by different department
 - 2 4 year gap after Intro to Computing
 - Interceding courses have minimal programming content

General CHEG Curriculum

Approach

An integrated approach to improvement New Interactive Modalities

- Student generated videos
- Interactive notebooks & assignments

Explicit Skills Focus

- Teach explicit coding skills and content
- Implicit comprehension monitoring

"Real World" Content

- Complex examples
- Literature and industry content

4

Content Gaps

Computational Thinking

- Problem formulation
- Recursion
- Problem Decomposition
- \circ Abstraction
- \circ Systematic testing
 - Debugging
 - Modular Programming

Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke. Demystifying computational thinking. Educational Research Review, 22:142–158, nov 2017. doi:10.1016/j.edurev.2017.09.003.

Jeannette M. Wing. Computational thinking. Communications of the ACM, 49(3):33, mar 2006. doi:10.1145/1118178.1118215.

Notebook Design

- Designed notebooks for both Matlab (Live Editor) and Julia (Juptyer) initially
- A single document consisting of cells of either:
 - Rich text •
 - Code ٠
- Cells can be run individually or as a whole document

Jupyter Notebook:

Matlab Live Editor:

Unit 3: Initial Value Problems

Supplemental material for Chapters 4 of "Initial Value Problems" by Dorfman and Daoutidis

Learning Objective:

Solving single first-order ODE initial value problems (IVPs)

- · Solve a first-order ODE IVP using the explicit Euler method
- · Solve a first-order ODE IVP using the implicit Euler method
- · Be able to solve a first-order ODE IVP using a predictor-corrector method Solve a first-order ODE IVP by RK4
- · Be able to determine the truncation errors using different numerical integration methods*
- · Be able to determine the numerical stability for system of linear IVPs while using explicit numerical integration method*

Case Study: Reactor-separator-recycle Process for Chlorination of Benzene In this section, we consider a reactor-separator-recycle process for chlorination of benzene as illustrated in the follow

function R = getR_E2(x)
R = zeros(2,1);
R(1) = exp(-x(1)) - x(2);
R(2) = x(1) + x(2)^2 - 3*x(2);
and a set of the se

The Jacobian function for Example 2 is given b

function J = getJ_E2(x) J = zeros(

reactions can be simplified as

- J(1,1) = -exp(-x(1)); J(1,2) = -1; J(2,1) = 1; J(2,2) = 2*x(2) 3;

Tutorial Design #1

- Statement of unit level objectives
- Brief Review of Theory
 - Links to website detailing industry applications and relevant academic research.
 - Comments on extension material.
- 1 2 Problems
 - Background statements to frame a problem in an industrial context.
 - Interactive content.
 - Commentary on coding fundamental interlaced throughout the example.
 - Prompts for reflection interspersed.
- End with reflective questions.

Jupyter Notebooks

- Supports 100+ languages: Matlab, Julia, Python, etc.
- Containerization support for open-source languages: Both free and commercial support (Docker, MyBinder, etc).
- More features via extensions
 - Hyperlinking to videos
 - o Richer text formatting options
- Simple installation for open-source languages
- **o** Difficult installation with Matlab
 - Install python -> Add/Update Packages Manually -> Change Environmental Variables
 - \circ OS specific differences
- Minimal formatting restrictions.

Matlab Live Editor

• Available with Matlab Installation.

- Limited support for Rich text:
 - Latex, Images, Figures
 - Not as readily extendible, no HTML support, embedding videos is tricky.
- Live functions need to be placed at the bottom of the page.
 - Modular programming in this environment must break the flow.
 - Can't have students *effectively* introduce functions in intermediate cells.

Unit 3: Initial Value Problems

Supplemental material for Chapters 4 of "Initial Value Problems" by Dorfman and Daoutidis.

Learning Objective: Solving single first-order ODE initial value problems (IVPs)

- Solve a first-order ODE IVP using the explicit Euler method
- Solve a first-order ODE IVP using the implicit Euler method
- Be able to solve a first-order ODE IVP using a predictor-corrector method*
- Solve a first-order ODE IVP by RK4
- Be able to determine the truncation errors using different numerical integration methods*
- Be able to determine the numerical stability for system of linear IVPs while using explicit numerical integration method*

9

Notebooks – Preliminary Data, Usage

□ Interactive notebooks have been distributed this Fall semester as supplemental material.

□ Usage information is encouraging (15% of access to content, nearly all students, multiple uses).

Access Count by Workbook

Material Accessed (Workbook vs. All Other)

Notebooks – Preliminary Data, Performance

- □ We take a preliminary look at correlation between interactive notebook usage and examination scores for the first two exams.
- □ Equal frequency binning applied based on interaction number
- □ We see that low usage of the notebooks correspond to with lowest exam performance in each case.

Interactions vs. Exam 1		
Interaction	Average Score (n)	
LOW (<= 5)	65.8% (24)	
MED (5 to 9)	71.9% (25)	
HIGH (> 9)	71.5% (24)	

Interactions vs. Exam 2		
Interaction	Average Score (n)	
LOW (<= 2)	61.7% (28)	
MED (3 or 4)	77.3% (24)	
HIGH (> 4)	70.7% (21)	

Student Generated Videos

- Undergraduate teaching assistants generated short topic primer videos (1 – 5 minutes).
 Scripted developed by student and workshopped prior to recording content.
- □ Contains an example in which a student solves a sample problem while providing exposition.
- Content driven slides are interspersed. This helps highlight the role of problem formulation and abstraction-based thinking while modelling an approach rooted in computational thinking.

Student Videos – Preliminary Data

Final Grades by Interactions w/ Video Content				
Number of Interactions	2017	2018	2019	2020
No Interaction	62.5%	66.4%	64.0%	N/A*
One Video	N/A	N/A	70.4%	N/A*
Both Videos	N/A	N/A	74.8%	N/A*
All	N/A	N/A	72.1%	N/A*

* Course re-organized to a learning module format due to anticipated online delivery. Interaction with both videos increased to 96% (4.4 views on average). Equal frequency binning applied based on interactions with Videos

Interactions vs. Exam		
Interaction	Average Score (n)	
LOW (<= 6)	61.7% (25)	
MED (7 to 10)	77.3% (24)	
HIGH (> 10)	70.7% (24)	

Next Steps

Initial Design	Instructional videos have been recorded and preliminary version of the interactive notebooks were constructed.	
Preliminary Trial	Instructional videos and literate programming notebooks have been included as supplemental material within existing learning modules for this Fall semester.	
Feedback	Usage statistics are currently being monitored and a preliminary survey will collect student feedback pertaining to the interactive notebooks.	
Finalize	Interactive notebooks will be updated based on student feedback	
Distribute	Interactive notebooks of both the Matlab Live Editor [®] and Jupyter notebooks formats will be distributed through the <u>CACHE</u> organization.	
Rollout	Interactive notebooks will become required material and completion thereof will be linked to assessment.	

Acknowledgements

Undergraduate Teaching Assistants - Notebook Editing

Megan Walsh
 Talha Bhatti

Undergraduate Research Assistant – Video Content

Dimitri Alston

Funding

Provided by grants from the Center for Excellence in Teaching and Learning at the University of Connecticut (UCONN CETL) and Computer Aids for Chemical Engineering (CACHE)

