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Applications: Reachability Analysis
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Applications: Global Dynamic Optimization

(Selection of Node) (Relaxation of Intermediate Values) (Relaxation of Objective and Constraints)
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3. Mitsos, A, et al. McCormick-based relaxations of algorithms. SIAM
Journal on Optimization, SIAM (2009) 20, 73-601.

4. Scott, JK, et al. Generalized McCormick relaxations. Journal of
Global Optimization 51.4 (2011): 569-606.

5. Khan, K. et al. Differentiable McCormick relaxations. Journal
Global Optimization (2017), 67(4), 687-729.

McCormick Operator Arithmetic34°




Parametric ODE System
x(p,t) = f(x(p,t),p), tel=]lto,tf], peP

Initial Condition
x(p,to) =xo(p), p€ P

Assumptions
1. Theinitial condition Xy: P — D is locally
Lipschitz continuous on P.
2. Theright hand side f is n times continuously
differentiable on D X II.

Solution

Any continuous X : P X I = D such that, foreveryp € P, x(p,)) : T > D
is continuous differentiable and satisfies the parametric ODE-IVP on .
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Prior Work: Nonlinear pODES

Differential Inequalities

XV(t,p) =£(t,p,x" (£,p), x“(£,p)), X" (t,,p) =X, (Pp)
X“(@,p)=1“(,p,x"(£,p),x“(t,p)), x“(4,p)=x; (p)

» Development of interval-based differential inequality [6,7]

> Less expansive convex/concave relaxations as well as tighter
interval bounds [8,9,10]

» Adaptation of these methods to semi-explicit index-one
differential-algebraic systems of equations DAEs [11,12,13]

» Methods of tightening state relaxations by exploiting model

redundancy and nonlinear invariants [14,15].
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Prior Work: Nonlinear pODES

Taylor Series Integration

p hj ‘ hp+1
x(7 .,pex(z,p)+ Y —fx(z ,p),p)+——F " (X(z.),P
(7,.1-P) €X(7,,p) JZ_:']'! (x(z,,p).p) (D) (X(z,),P)
Taylor Series Remainder Bound

» First introduced by Moore [16] based on simple existence test.

» Generalized to two step methods consisting of an existence and
uniqueness test and subsequent contraction [17,18].

» Development of shrink wrapping [19] and effective schemes for
preconditioning intermediate calculations [20]

» Discretize-and-relax approaches with McCormick relaxations [21]

» Taylor-Interval [22], Taylor-McCormick [23] models, and Taylor-
Ellipsoid [24] models were introduced which enclosure the

remainder term using different set-valued arithmetics.
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Prior Work: Stiff Systems and Global Optimization
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Integration Scheme

21. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax

o Discretize-and-relax algorithm employed. approach for convex/concave relaxations of the solutions
. . of parametric ODEs. Applied Numerical Mathematics 61.7
o Higher-order existence test used?-?7, DoLi) 803820,
o Local error per unit step (LEPUS) adaptive step-size control scheme used?. 27. ged‘a”:w: ?fedlé'koh%fh'@n;eth ':-Jadfson;snj:ohn D.
. . . . ryce. An etrective high-oraer interval method Ttor

o Step 1: Determines step-size and state relaxations for the entire step (t € [tj, tj;1])?>% validating existence and uniqueness of the solution of an

St 2: R f tat | ti t ti (t — t. ) IVP for an ODE. Reliable Computing 7.6 (2001): 449-465.
o €p &: Refines state relaxations at new time - Y)+1/- 28. Nedialkov, Nedialko Stoyanov. Computing rigorous bounds

on the solution of an initial value problem for an ordinary
differential equation. University of Toronto, 2000.
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Step 1

Integration Scheme

Discretize-and-relax algorithm employed.

Higher-order existence test used?%.%/,

Local error per unit step (LEPUS) adaptive step-size control scheme used?3.

Step 1: Determines step-size and state relaxations for the entire step (t € [t;, tj;1])*"%.

Step 2: Refines state relaxations at new time (t = tj;).
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Adams-Moulton: Basic

Adams-Moulton Method?>:26 Truncation Error 2? (1)
©(p, M) = h** 1y, x+2 (p, )
T(p, ﬁ) = hlrH_an+1f(n+1) (X(p, ﬁ)r p)

AN € [tx—n, tk]

n
X(,1) = X(P, ties) +h ) By £x(D, i), D)
=0
tk—ns -» tk € [tg—n, ti]

Nonlinear System of Equations

h(z(p), p) — X(pr tk) - X(pr tk—l) - hz Bjn f(X(p, tk—j)r p) =0
j=0

. . . 25. Gautschi W. Numerical Analysis. Springer Science
O A n-step Adams-Moulton arises form a Lagrange interpolation & Business Media, New York; 2012.

. o . . . 26. Hairer E, Wanner G. Solving Ordinary Differential
polynomial appropriating the solution at n+1 points, ty_p, ..., tk, in Equations I: Stiff and Differential-Algebraic
the time interval [t t ]25,26 Problems. Springer, Heidelberg; 1991.

k—n» 'k . - .
. . oy . 29. Marciniak, Andrzej, Malgorzata A. Jankowska, and
L These methods exhibit preferable regions of stability for stiff systems Tomasz Hoffmann. On interval predictor-

When Compa red With many explicit methods 25,26 corrector methods. NUmer/CGlAlgOr/tth 75.3
' (2017): 777-808.




Adams-Moulton: Basic

Adams-Moulton Method?>:26 Truncation Error 2° (1)
n -
\_fr Ve T(P, n) = hrH'J Y X(I’l+2) , =
X(pr tk) — X(p; tk—l) + h™7 6., I(XID: Ll,_i\:. B (p n) - Yn+1 (p n)

o Adam-Moulton: Order of integration scheme increases with f evaluations used (but f
tk—ns -tk € [tr—y from prior step may be saved) but nonlinear solve needed
o Existing methods (Lohner’s QR43° and Interval Hermite-Obreshkoff31) scale with order
of Taylor coefficients of f
Approximately O(Nk2) complexity to compute the k" Taylor coefficient of f where N is
the number of operators?2.
h(z(p), p) o O(N) for Adams-Moulton
o O(NK?) for (k)-order Lohner’s QR method
o O(p?N + g°N) for (p+qg+1)-order Hermite Obreshkoff method

Nonlinear Syster

— - PR _—

14. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for convex/concave relaxations of the solutions of
parametric ODEs. Applied Numerical Mathematics 61.7 (2011): 803-820.
28. Nedialkov, Nedialko Stoyanov. Computing rigorous bounds on the solution of an initial value problem for an ordinary
differential equation. University of Toronto, 2000.
30. Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value
problems. Institute of mathematics and its applications conference series. Vol. 39. Oxford University Press, 1992.
31. Nedialkov, Nedialko S., and Kenneth R. Jackson. An interval Hermite-Obreschkoff method for computing rigorous bounds =
on the solution of an initial value problem for an ordinary differential equation. Reliable Computing 5.3 (1999): 289-310. (2017): 777-808.




Adams-Moulton: Basic

o Compute relaxation for truncation error in standard manner

o Compute relaxation of implicit function using approach of
32. Stuber, Matthew D., Joseph K. Scott, and Paul I.

32 i 33
Stuber et al. 2015°“and Wilhelm et al. 2019°°. Barton. Convex and concave relaxations of
implicit functions. Optimization Methods and
Software 30.3 (2015): 424-460.
33. Wilhelm, ME; Le, AV; and Stuber. MD. Global
Optimization of Stiff Dynamical Systems. AIChE
Journal: Futures Issue, 65 (12), 2019

Nonlinear System of Equations (Defining implicit function)

h(z(p),p) = x(p, ti) — X(P, ti-1) — hz Bin f(x(p, tx—j), p) +
j=0




Adams-Moulton: Mean Value Form

Mean value form of n-step Adams-Moulton method

n truncation error n
R _ R N _ of
Xj = Roq + hz By f(Ricey, B) 4 R+ Y hBjnnm op (miey () p(P)) (P — P) +
j=0 j=0
Dx(p) T

of
( +h61na (luk 1 (p), p(l))))(xk 1~ Rk-1) +th]n ("k i (P), "(p)) (%c-j = Ricsy)

1+]§§ L(p) ]il S
Were we define py and p as below Truncation error notation and form
i (P) = (i = o) + R R (p) = h™*2 ¥, f D R(p, ti—n; tie), P)

p(p) =m(p—-p) +p
n € [0,1]




Adams-Moulton: Interval

Mean value form of n-step Adams-Moulton method

X = Dp(p) +J5(P)(p — P) + (1 + I (Xgem1, p)) (X1 — Xk—1) + Z | (Xk—j P) (Xk—j — Rk—j)
j=0
%=1
Interval bounds of n-step Adams-Moulton method o

Xic = Die(P) + JEPI(P = B) + (14 T5 (Xiee1, P)) Koo = Raee) + ) I (Xieoyy P) (K — Riey) + JE i PI(XE - x8)
j=2




Adams-Moulton: Interval

O Uncertain set is propagated as a parallelepiped#3°,
O Namely, that there exist A, € R™*™x and 8§ € Ay such that x, (p) — Xx = Axdi € AgAy.

Xy = | Di(P) +J5(PYP — B) + (1 + 57 (P)) Ap1hiy + 2 T (Xiew s P) Aoy + JE(XR P)(XR — 27) | N X3

J=2

14. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for convex/concave relaxations of the
solutions of parametric ODEs. Applied Numerical Mathematics 61.7 (2011): 803-820.

30. Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value
problems. Institute of mathematics and its applications conference series. Vol. 39. Oxford University Press, 1992.




Initialization for parallelepiped'#3° 14. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for

convex/concave relaxations of the solutions of parametric ODEs. Applied
Numerical Mathematics 61.7 (2011): 803-820.

30. Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of
ordinary initial and boundary value problems. Institute of mathematics and

Parallelepiped update at step k its applications conference series. Vol. 39. Oxford University Press, 1992.

AO=I AO=X0 —)20

A, update given by taking to be orthogonal matrix Q of QR decomposition of mid(JKA_)43°

A=A ' | Dp(P) +JE(PY(P — P) + (1 + Ll((_l(P)) A 184 + Z i (X P)Ay Ak + 5 X P) Xy — Ri)
=2




Adams-Moulton: Interval

A= Ag " (Dk(P) +J5(P)(P -P) + (1 + Ll((_l(P)) A 184 + Z i (X P)Ax Ak + 5 Xy, P)(Xi — fik))
=

Bound truncation error via partition

n n
Ri(p) = h"*2 7y £ <U Xk,-,P> = b2y, (U f“‘“’(xk]-,P))
j=0

j=0




Adams-Moulton: Relaxation

Interval update of n-step Adams-Moulton method
n
Xic = | Di(P) + JS@IP = B) + (1+TE7(®)) Arais + ) I (Xieej P sy + TE(XE P)(XE - xB) | X
j=2
Convex/concave relaxation update of n-step Adams-Moulton method

Analogous computation of convex/concave relaxations. Let ([gY, g°“](p) denote the convex
and concave relaxations of g at p:

i, xic1) = [DY, DFI(p) + U5 15 1@)® — ) + (1+ DX 0 1(0) ® A A8, A5, 1(p)

+2 Y T ) Ak (AR 1 A1) + O I 1(p) ([x e, xp =] (p) — £7)

Cv CC

[xE, x5]1(p) = intersect([x§, x£°](p), Xp)




Adams-Moulton: Relaxation

Generalization of Intersection:

Compute intersect ([xk X2 1(p), [xo v Occ](p)) and update [x§’, x5 ] (p) as follows:

Step 1: [f", df1(p) «— min([x{¥, x{F1(p), [xy ", %] ()
Step 2: [FY, d5°1(p) — max([x§Y, xi1(p), [x ", x| (p))
Step 3: [xi”, X 1(p) < [d1", du‘](p)
Bound truncation error via partition
[REY, RE€](p) = h"*27,,,,intersect (intersect(f+ ([x¥, (1 (p), p), ... ), £+ D ([xf. 0, XE,1(p), P))

Subgradient-based tightening of state bounds:

Update interval bounds at k by USing interva| extension 14. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for

convex/concave relaxations of the solutions of parametric ODEs. Applied

of affine relaxations compute at p, if an improvement!*. Numerical Mathematics 61.7 (2011): 803-820.




Implementation

e Algorithm implemented in our DynamicBounds.jl package available
at https://github.com/PSORLab/DynamicBounds.;jl3*
* Branch and bound algorithm as an extension to the EAGO global

optimizer available at
https://github.com/PSORLab/EAGODynamicOptimizer.jl3° https://qithub.com/PSORLab/EAGO.jl

* IntervalArithmetic.jl for validated interval calculations.

e Relaxations from Mccormick.j|36 submodule of EAGO.j|37 34. Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository,
https://github.com/PSORLab/DynamicBounds.jl

35. Wilhelm, M. E., EAGODynamicOptimizer.jl, (2020), GitHub repository,
https://github.com/PSORLab/EAGODynamicOptimizer.jl

e All simulations run on single thread of Intel Xeon E3-1270 v5 36. Wilhelm, M. E., McCormick.jl, (2020), GitHub repository,
3.60/4.00GHz processor with 16GM ECC RAM, Ubuntu 18.04LTS 37, Wiehr M_E - and M., stuber. EAGO. J: easy advanced global
USing JU“a V1.5.138. Intel MKL 2019 (Update 2) for BLAS/LAPACK optimization in Julia. Optimization Methods and Software (2020): 1-26.

38. Bezanson, Jeff, et al. Julia: A fresh approach to numerical computing.
SIAM review 59.1 (2017): 65-98.

20 ‘9
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https://github.com/PSORLab/DynamicBounds.jl
https://github.com/PSORLab/EAGODynamicOptimizer.jl
https://github.com/PSORLab/EAGO.jl
https://github.com/PSORLab/DynamicBounds.jl
https://github.com/PSORLab/EAGODynamicOptimizer.jl
https://github.com/PSORLab/McCormick.jl

lllustration of Trajectories

Basic 1D pODE-IVP:

4 5 Trajectories by Method
X _ = | — 1
E(p’ t) = —X + p t E [0’1]’ p E P [ 1’1] 0 Trajectories by Method
— 1.6
xo (p) = 9 X E X —_— [0.1)9] 8 \ N .::-::-::':F:‘:::.::‘:.:F:‘:l‘:l:l::l:’:l::l:l::l:”l
—e— Lohners QR, Order 3
121 —— Lohners QR, Order 4
. . . ! = | Lohners QR, Order 5
Comparison of interval bounds obtained ] \ g &~ Adom Mouton, e
] 7 081 am Mou on: :Z:
between the PILMs method and Lohner’s QR = \ vo] FART e e osten freer
K LN ' B Y O e
\ i e
- 4 - AN " R = Sy
\\ O.éZS 0,8|50 0‘8'75 0.9|00 049I2S O.QISO 049I75 1.600
\gﬁ\\ t
N
Lohner’s QR 3 1.370 0.91560 S~
2 - *\M;‘jﬂ-__________
Lohner’s QR 4 2.450 0.91375 e e T VPRI pcypesppuusmmenpyie
1\-\,\_\___\‘\ .

Lohner’s QR 5 3.891 0.91376 - Mwwwmmmmwww
PILMS, Adams-Moulton 3 0.420 1.095998 0 00 02 04 06 08 10
PILMS, Adams-Moulton 4 0.552 1.13989 t
PILMS, Adams-Moulton 5 0.717 1.18881




Kinetic Problem - Formulation

(Objective Function) (Description of Problem)
n > Fit the rate constants (k, ks; k,) of oxygen addition to
Z Idata cyclohexadienyl radicals to data. 3°
im » First addressed by global by Singer et al.*°
s.t. Ii=xi+ i i » Explicit Euler form solved by Mitsos3
- L. At . :
21" 21 > Implicit Euler form addressed in Stuber32
» Two-step PILMS forms addressed in Wilhelm33
(pODE IVP)

(Decision Variables) P = (Kzp K3p Ky)
: 2

Xa = kyxzxy — coa(Kar + k3p)xa + (Koe/K3)xp + (K3¢/K3)xp — ksxj,
. . (State Variables) X = (Xa XB,Xp, Xy, Xz)
Xg = k3fCo2Xxa — (K3¢/K3 + ky)xg,  Xp = KpCo2xa — (K2¢/K3)xp,

: 5 Parameters k1; kls: k5; Kz: K3; Co2, At,n
Xy = —KsXyX7, Xz = —KixXyXz, ( )
(Initial Condition) x(t=0)=(0,0,0,0.4,140)

39. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193-7203.
40. A. B. Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971-976

3. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601

32. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460
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(Objective Function) (Description of Problem)

L » Fit the rate constants (k5 ksp k,) Of Oxygen addition to
39

* = min
PEP -

st Affine relaxations used to compute lower bound (CPLEX 12.8).

(pODE IVP) Upper-bound computed by integrating ODE at midpoint of active node then

evaluating objective & constraints.  Ky)

D Xy, X7)

XAzkl

Xg = K3 Duality-based bound tightening was performed in all cases.
_ 3,Co2, At,n
Xy = —
Absolute and relative convergence tolerances for the B&B algorithm of 1072 an 0,0,0.4,140)
107>, respectively.
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L A comparison of our new approach is made to existing methods.

O The 200 step numerical Adams-Moulton (AM, 2" order) approach of
Wilhelm 2019 is compared to the exact bounds of the solution set
with the novel method.

O Differential inequality used approaches using the CVODE Adams
integrator (SUNDIALS)*! are included for comparison.

Exact PILMS, Interval None 5983 >800,000
Adams-Moulton
Exact PILMS, Affine None 3976 >350,000
Adams-Moulton
Numerical, Adams- Affine None 1356 6068
Moulton, 200 step
Differential Interval®7.2 1.9E-3 >7200 >1,300,000
Inequality
Differential Affine® 4.5E-3 >7200 >475,000
Inequality

LBD/UBD

41.

33.
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Next Steps

Extend approaches to partitioned pODEs.
PP P P Apply lower order to PILMS method to solve

Q General form of partitioned pODEs: parametric parabolic PDEs.

ax _ £, p) + f,(x,p) - Analogous approach to Crank-Nicolson methods.

at - Implicit-explicit methods (IMEX)
O Implicit-explicit (IMEX) pODEs:

f is a stiff, f, is a nonstiff
O Linear-nonlinear (LNL) pODEs:

Further integration into dynamic global/robust
f1 is linear, f, is nonlinear/nonstiff optimization algorithms.
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