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1.

2.

Dynamic SIP Formulation
®* = min ®(u) Pu—
u

s.t. g(x(u, p,tr),u,p) <0
x = f(x(u, p,t),u, p) P—
x(u,p,to) =x0(w,p)

tel=|tyt;], vpeP

Assumptions

Objective
Performance Constraint(s)

Parametric ODEs

Initial Condition

Motivation:

Determine adequate system performance
under worst-case realization of uncertainty.
Key for safety-critical systems and high-risk
defect elimination.

Prior work rely on heuristic approaches which
lose strong guarantees [1,2].

* The initial condition Xy: P — D is locally Lipschitz continuous on U X P.
* The right hand side f is n times continuously differentiable on U X D X P.

Puschke, Jennifer, et al. Robust dynamic optimization of batch processes under parametric uncertainty: Utilizing approaches from semi-infinite programs. Computers &

Chemical Engineering 116 (2018): 253-267.

Puschke, Jennifer, and Alexander Mitsos. Robust feasible control based on multi-stage eNMPC considering worst-case scenarios. Journal of Process Control 69 (2018): 8-15.
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Assumptions

Objective
Performance Constraint(s)

Parametric ODEs

Initial Condition

Motivation:

Determine adequate system performance
under worst-case realization of uncertainty.
Key for safety-critical systems and high-risk
defect elimination.

Prior work rely on heuristic approaches which
lose strong guarantees [1,2].

Relatively general form (via reformulations):
Applicable to some semi-explicit index-1 DAEs

Non-autonomous systems

* The initial condition Xy: P — D is locally Lipschitz continuous on U X P.
* The right hand side f is n times continuously differentiable on U X D X P.

1. Puschke, Jennifer, et al. Robust dynamic optimization of batch processes under parametric uncertainty: Utilizing approaches from semi-infinite programs. Computers &

Chemical Engineering 116 (2018): 253-267.

2. Puschke, Jennifer, and Alexander Mitsos. Robust feasible control based on multi-stage eNMPC considering worst-case scenarios. Journal of Process Control 69 (2018): 8-15.
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One standard approach to solving SIP’s lies in
the discretization the uncertain set [3].

Restriction-based upper bound incorporated
in the SIPres algorithm for nonconvex SIP[4].

SIPres provides a guaranteed convergence to a
global optimal value under Slater-point
constraint qualification.

Adapted to use a hybrid approach which
contains an oracle problem that further
refines lower and upper bounds at each

iteration with a single discretization set per
SIP constraint (NOT PICTURED) [5].

Overview of SIPres algorithm [1]

JEETEED,

Update lower bound

>

Add to discretization set (or update LLP tolerance)

Update restriction parameter

Update upper bound, restriction parameter, LLP tolerance, and/or discretization set

B. Bhattacharjee, P. Lemonidis, W.H. Green Jr, and P.I. Barton. Global solution of semi-infinite programs. Math. Program. 103 (2005), pp. 283-307.
Mitsos, Alexander. Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60.10-11 (2011): 1291-1308.
Djelassi, Hatim, and Alexander Mitsos. A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. Journal of Global Optimization 68.2 (2017): 227-253.
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the discretization the uncertain set [3].

Restriction-based upper bound incorporated
in the SIPres algorithm for nonconvex SIP[4].

SIPres provides a guaranteed convergence to a
global optimal value under Slater-point
constraint qualification.

In this work.
Adapted to use a hybrid approach which
contains an oracle problem that further
refines lower and upper bounds at each

iteration with a single discretization set per
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SIP Subproblems

E Lower-Bounding Problem E Lower-Level Problem

LBD __ : — —
b = ml}n (D(U) CI)LLP — ml?xg(x(u’ p, tf)' u, p)
s.t. g(x(u, p, tf),u, p) <0 Vp e pdisc st.pEPcRW
ueyUcRu

E Upper-Bounding Problem E Restriction Problem

®UBD = min ®(u)

—n* = min -7

u nu
s.t. g(x(u, P, tf), u, 1_)) <-—-€ VPE pdisc s.t. D(u) — ORES < 0
ueUcRw g(x(u, D, tf), u I_)) < -n vp e pdisc
u€eUcRw

4. Mitsos, Alexander. Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60.10-11 (2011): 1291-1308.
5. Djelassi, Hatim, and Alexander Mitsos. A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. Journal of Global Optimization 68.2 (2017): 227-253.



Global Dynamic Optimization

(Selection of Node) (Relaxation of Intermediate Values)® (Relaxation of Objective and Constraints)

Obijective

P1 = |=w@) '*

z,(p) 3 _ y
z,'(p) s b, Convex Relaxation
. L P i) D
P, Lower Bound -

McCormick Operator Arithmetic’:8°

Wilhelm, ME; Le, AV; and Stuber. MD. Global Optimization of Stiff Dynamical Systems. AIChE Journal: Futures Issue, 65 (12), 2019
Mitsos, A, et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

Scott, JK, et al. Generalized McCormick relaxations. Journal of Global Optimization 51.4 (2011): 569-606.

Khan, K. et al. Differentiable McCormick relaxations. Journal Global Optimization (2017), 67(4), 687-729.
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Reduced-Space

Relax-then-Discretize

X (t,p) =% (t, p, X" (t,p), x“(t,p)), X“(t,,P) = X5 (P)
X (t,p) = (t,p, x™ (t,p), x* (t,p)), X*(t,,P) =5 (P)

» Development of interval-based differential inequality [10,11]

» Less expansive convex/concave relaxations as well as tighter
interval bounds [12,13,14]

» Adaptation of these methods to semi-explicit index-one
differential-algebraic systems of equations DAEs [15,16,17]

» Methods of tightening state relaxations by exploiting model
redundancy and nonlinear invariants [18,19].

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.

Relaxations

Discretize-then-Relax

p hJ’ i hp+1
X(z,.,,p) e X(z,,p)+ Y —FV(x(z.,p),p) + ——F "V (X(z,),P
(74.1,P) €X(7,,P) ;j! (x(z4,P),P) (oD (X(z,).P)
Taylor Series Remainder Bound

» Firstintroduced by Moore [20] based on simple existence test.

» Generalized to two step methods consisting of an existence and
uniqueness test and subsequent contraction [21,22].

» Discretize-and-relax approaches with McCormick relaxations [23]

» Taylor-Interval [24], Taylor-McCormick [25] models, and Taylor-
Ellipsoid [26] models were introduced which enclosure the
remainder term using different set-valued arithmetic.
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Abstract

‘We present a deterministic global optimization method for nonlinear programming
formulations constrained by stiff systems of ordinary differential equation (ODE)
initial value problems (IVPs). The examples arise from dynamic optimization prob-

lems exhibiting both fast and slow transient phenomena commonly encountered in

Wilhelm, ME; Le, AV, and Stuber. MD. "Global
Optimization of Stiff Dynamical Systems." AIChE
Journal: Futures Issue, 65 (12), 2019

MNumbers: 1580072, 1706343, 152723.
University of Connecticut

1 | INTRODUCTION

Dynamic optimization problems of the form:

r's ::.-'L'“.'\w&mp'[‘ Bl

plexity relevant in process systems engineering. The developed methods enable the
guaranteed global solution of dynamic optimization problems with stiff ODE-IVPs
embedded.

KEYWORDS

dynamic simulation, global optimization, implicit functions, stiff systems

program, in general, and therefore verifying optimality requires deter-
ministic global optimization. The focus of this paper is en solving (1)
to guaranteed global eptimality (or declaration of infeasibility). The
methods developed in this work are of specific importance when the
ODE-IVP system is stiff,

Methods for solving (1) riesroysy to global ootimality reby on the

27. Gautschi W. Numerical Analysis. Springer Science & Business Media, New York; 2012.
28. Hairer E, Wanner G. Solving Ordinary Differential Equations Il: Stiff and Differential-

Algebraic Problems. Springer, Heidelberg; 1991.

(Implicit Euler??.28)
(Two-step Adam-Moulton?7:28)

(Two-step BDF?728)

1 _ & A .
& = Zx41 — Zy — Atf(Zyy1, P)
Zgir +5 2 — A (Zyy2,P)

IAt(EZir2P) + E(Zir1, D))

° ° © 00 00

2-Step AM (Cf)

Implicit Euler (&)

2-Step BDF (&%)
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Integration Scheme

22. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax

(@) Discretize—then—relax algorithm emp|0yed. approach for convex/concave relaxations of the solutions
. . 2229 of parametric ODEs. Applied Numerical Mathematics 61.7
o Higher-order existence test used?#%°. (2011): 803-820.
o Local error per unit step (LEPUS) adaptive step-size control scheme used*°. 29. E‘edia”;\ovf ':fedl?'kOh?-:hKe“;'e”_‘ F:-JaC'fson;lf”j:Oh" D.
. . . . ryce. An effective high-order interval method for
o Step 1: Determines step-size and state relaxations for the entire step (t € [t;, tj;1])***. validating existence and uniqueness of the solution of an
St 2: R f tat | ti t ti t=t IVP for an ODE. Reliable Computing 7.6 (2001): 449-465.
o €p Z: Rerines state relaxations at new time ( - j+1)' 30. Nedialkov, Nedialko Stoyanov. Computing rigorous bounds
on the solution of an initial value problem for an ordinary
differential equation. University of Toronto, 2000.
Step 1 .
P Existence and Step 2 .
. Stepsize Control (LEPUS)
Uniqueness Test :
—_—— Contraction of o -
St . | iori B d / N\ P ~
+ epsize a priori Bounds Next Step ~ Excess ~
\ Computatichyy 5 | Error Estimate | ~ Error? .~ 7
| |
I Reject [
Go to Next Step Accepted




Integration Scheme
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Step 1 : Step 2
E P
)flstence ang Stepsize Control (LEPUS)
Uniqueness Test :
—_— il Contraction of —— e — P
. \ < / N\ P ~
+ Stepsize : a priori Bounds Next Step ~ Excess ~
Computation , ) | Error Estimate | ~ Error? .~
|
I Reject [
Go to Next Step Accepted




Adams-Moulton: Pointwise

Adams-Moulton Method?7:28 Truncation Error 3! (1)

t(p, ) = h" 1y, x0+2)(p,7)
t(p, M) = h™1y,  fOD (x(p, 7)), p)

N € [tx—n, tk]

X(p, 1) = X(P, ties) +h Y By (P, i), )
i=0

tk—ny -r Tk € [tg—n, ti]
Nonlinear System of Equations

h(z(p),p) = x(p, ti) — x(P, tye—1) — hz Bin f(x(p,tk—;),p) =0
j=0

z(p) = [x(p, ty); X(P, tk-1); s X(P, ty—n)]

27. Gautschi W. Numerical Analysis. Springer Science

L A n-step Adams-Moulton arises from a Lagrange interpolation & Business Media, New York; 2012.

. . . . . 28. Hairer E, Wanner G. Solving Ordinary Differential
polynomial appropriating the solution at n+1 points, ty_, ..., tg, in Equations I: Stiff and Diffegrential_A};ebraic
the time interval [tk_n, tk] 27,28 Problems. Springer, Heidelberg; 1991.

o . - . 31. Marciniak, Andrzej, Malgorzata A. Jankowska, and
L These methods exhibit preferable regions of stability for stiff systems Tomasz Hoffmann. On interval predictor-
When compa red Wlth many explicit methods 27,28_ corrector methods. Numerical Algorithms 75.3

(2017): 777-808.

12



Adams-Moulton: Pointwise

o Compute relaxation for truncation error in standard manner

o Compute relaxation of implicit function using approach of 6. Wilhelm, ME; Le, AV: and Stuber. MD. Global

Stuber et al. 201532 and Wilhelm et al. 20196. Optimization of Stiff Dynamical Systems. AIChE
Journal: Futures Issue, 65 (12), 2019

32. Stuber, Matthew D., Joseph K. Scott, and Paul I.
Barton. Convex and concave relaxations of
implicit functions. Optimization Methods and
Software 30.3 (2015): 424-460.

Nonlinear System of Equations (Defining implicit function)

h(z(p), p) = X(p, tk) - X(pr tk—1) - hz Bjn f(X(p, tk—j); p) +
j=0

z(p) = [x(p, ti); X(P, ty—1); s X(P, ty—y)]

13



Mean value form of n-step Adams-Moulton method

truncation error
_ Of
Xjc = Riq + hz By f(Ricey, B) +[Re(p) Jr Xhﬁm 35 (1 (0),00)) (0~ D)
j=0 j=0
Dic(p) ke

of
( +h[31n(3 (uk 1 (p), p(p))>(xk 1 — Ri-1) +th,n (uk i (p), p(p)) (Xk-j — Ri—j)

I+l§§ 1(p) J“ ’(p)

Were we define py and p as below Truncation error notation and form

me (p) = n(xx — Xy) + Ri o e
p(p) =n(p—P) +p Ri(p) = h"* 2y, £ D(R(p, ty_n; tr), P)

M € [0,1] &
14



Adams-Moulton: Interval

Mean value form of n-step Adams-Moulton method

X = Dr(p) +J5(P)(p — P) + (I + 15_1(Xk—1,P)) (Xg—1 — Xk—1) + Z ')lz_j(xk—j:p)(xk—j — Ri—)
j=0
E!
Interval bounds of n-step Adams-Moulton method !

Xic = Di(P) + )P = B) + (1+ 157 (i1, P)) (iems = Rie) + ) I (K, P) (Xieos = Ricy) + TE K PY(XE — x7)
j=2



Adams-Moulton: Interval

L Uncertain set is propagated as a parallelepiped??:33.
O Namely, that there exist A € R™*™ and 8§, € Ay such that x (p) — Xx = Axdi € AgAy.

Xic 1= D(P) + ISP = B) + (1 + 571 (P)) Apoa iy + Z T (Xiee s P) A + JE(XR,P)(XR — £8) | n X
j=2

22. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for convex/concave relaxations of the
solutions of parametric ODEs. Applied Numerical Mathematics 61.7 (2011): 803-820.

33. Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value
problems. Institute of mathematics and its applications conference series. Vol. 39. Oxford University Press, 1992.



Initialization for parallelepiped??33 22. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for

convex/concave relaxations of the solutions of parametric ODEs. Applied
Numerical Mathematics 61.7 (2011): 803-820.

33. Lohner, Rudolf J. Computation of guaranteed enclosures for the solutions of
ordinary initial and boundary value problems. Institute of mathematics and

Pa ra"elepiped update at step k its applications conference series. Vol. 39. Oxford University Press, 1992.

A0=I AOZXO _)/ZO

A, update given by taking to be orthogonal matrix Q of QR decomposition of mid(JXA_)?%33

b= A7 | De(®) +IEPYP = B) + (14571 (P) Arcabics + ) T (i P A8 + T (K P (K — R
j=2



Adams-Moulton: Interval

Bound truncation error via partition

j=0

n n
Re(P) = h"*2y,,4 U FO+D(X,_;,P) € h*t2y, ,,FO+D) (U Xk P)
j=0



Adams-Moulton: Relaxation

Interval update of n-step Adams-Moulton method

Xi = | Dp(P) +J5(P)(P — P) + (l + ]5_1(13)) A 181 + Z i) (X j» P)AkojAj + JX(XR.P)(XP — x3) | n X}
=

Convex/concave relaxation update of n-step Adams-Moulton method

Let {gY, g°“}(p) denote the tuple of convex and concave relaxations of g on P evaluated at p € P:

(i X @) = (DR DY) I I @ — B + (1+ JX V1Y P)) ® At (B 1, A 3 (p)

+Z BT ) A AR 1, AFE @) (I (xR X (p) —12)

{x, x§°}(p) := intersect({xf, x{}(p), Xp)

.4,



Adams-Moulton: Relaxation

Generalization of Union:

Compute union ({Xk x 3 (p), {XO v Occ}(p)) and update {x}’, x£°}(p) as follows:

step 1: {@f", 9} (p) — min({xg, xL}(p), {xp ", xp}(p)) +——— | Pairwise composite relaxations
of min/max evaluated by

step 2: {9, pSEH(p) — max({x, xH(p), (xp <, xp }(p)) McCormick arithmetic

Step 3: {x3”, X3 J(p) < : {7, @5 }(P)

Bound truncation error via partition
{RY, Ri{H(p) = h"*? ¥, union (unlon(f(““) xE, X553, ), - ), F OV (XY x5 3 (p), p))

Subgradient-based tightening of state bounds:

Update inter‘val bounds at k by using interval extension 22. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for
. . . . convex/concave relaxations of the solutions of parametric ODEs. Applied
of affine relaxations compute at p, if an improvement!4. Numerical Mathematics 61.7 (2011): 803-820.

20



Implementation

Customizable Global and Robust Optimization Routines

EAGO

Implicit Linear |:'>
Multistep Relaxations ﬂ

EAGODynamicOptimizer.jl

34. Wilhelm, M. E., and M. D. Stuber. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software (2020): 1-26.
35. Bezanson, Jeff, et al. Julia: A fresh approach to numerical computing. SIAM review 59.1 (2017): 65-98.

21



Implementation

Customizable Global and Robust Optimization Routines Abstract Layer for Dynamic Problems

4 N
A 4
DynamicBounds.jl
\ /
» DynamicBounds.jl — Wrapper for dependent modules
Implicit Linear :> > DynamicBoundsBase.jl — Abstraction Layer
Multistep Relaxations > DynamicBoundspODEsDiscrete.jl
— Discrete time approaches

» DynamicBoundspODEsineq.jl
-- Continuous time approaches

EAGODynamicOptimizer.jl

34. Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository, https://github.com/PSORLab/DynamicBounds.jl

35. Wilhelm, M. E., EAGODynamicOptimizer.jl, (2020), GitHub repository, https://github.com/PSORLab/EAGODynamicOptimizer.jl

36. Wilhelm, M. E., McCormick.jl, (2020), GitHub repository, https://github.com/PSORLab/McCormick.jl

37. Wilhelm, M. E., and M. D. Stuber. EAGO. jl: easy advanced global optimization in Julia. Optimization Methods and Software (2020): 1-26.

22
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38. Bezanson, Jeff, et al. Julia: A fresh approach to numerical computing. SIAM review 59.1 (2017): 65-98.


https://github.com/PSORLab/DynamicBounds.jl
https://github.com/PSORLab/EAGODynamicOptimizer.jl
https://github.com/PSORLab/McCormick.jl

Customizable Global and Robust Optimization Routines

Implementation

Abstract Layer for Dynamic Problems

j,—»r\rﬂ A 2

* IntervalArithmetic.jl for validated interval calculations.

* Relaxations from McCormick.jlI3® submodule of EAGO.jI?’.

Implicii

Multistep f » All simulations run on single thread of Intel Xeon E3-1270 v5 3.60/4.00GHz

34.
35.
36.
37.
38.

processor with 16GM ECC RAM, Ubuntu 18.04LTS using Julia v1.5.138, Intel
MKL 2019 (Update 2) for BLAS/LAPACK.

o

~

nds.jl

dependent modules
lion Layer

/

Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository, https://github.com/PSORLab/DynamicBounds.jl

Wilhelm, M. E., EAGODynamicOptimizer.jl, (2020), GitHub repository, https://github.com/PSORLab/EAGODynamicOptimizer.jl

Wilhelm, M. E., McCormick.jl, (2020), GitHub repository, https://github.com/PSORLab/McCormick.jl

Wilhelm, M. E., and M. D. Stuber. EAGO. jl: easy advanced global optimization in Julia. Optimization Methods and Software (2020): 1-26.
Bezanson, Jeff, et al. Julia: A fresh approach to numerical computing. SIAM review 59.1 (2017): 65-98.
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https://github.com/PSORLab/McCormick.jl

Kinetic Problem - Formulation B

(Objective Function) (Description of Problem)

» Fit the rate constants (k, ks, k,) of oxygen addition to
= man(I‘ Idata cyclohexadienyl radicals to data. 3°
per First addressed by global by Singer et al.40
Explicit Euler form solved by Mitsos3
Implicit Euler form addressed in Stuber3?
Two-step PILMS forms addressed in Wilhelm®

i i i

s.t. I'=xt+ 21 21xD

YV VY

(DODE IVP)
- (Decision Variables) u = (kap ks ky)
xp = kyxzXy — oz (Kar + k3p)xa + (Kae/Kp)xp + (k3¢/K3)xp — ksx3,

- : (State Variables) X = (Xa,Xp, Xp, Xy, Xz)
Xg = K3Co2xa — (K3r/K3 + K4)xg,  Xp = KppCo2xa — (Ka/K3)Xp,

: . (Parameters) k1, K1s, ks, K3, K3, €02, At,
Xy = —KqsXyXz, Xz = —K1XyXz,

(Initial Condition) x(t=0)=1(0,0,0,0.4,140)

3. Mitsos et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601

6. Wilhelm, ME; Le, AV; and Stuber. MD. "Global Optimization of Stiff Dynamical Systems." AIChE Journal: Futures Issue, 65 (12), 2019

32. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460

39. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193-7203.
40. A. B.Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971-976



(Objective Function) (Description of Problem)

D, » Fit the rate constants (kg ksp k,) of oxygen addition to
39

Affine relaxations used to compute lower bound (CPLEX 12.8).

(pODE IVP) Upper-bound computed by integrating ODE at midpoint of active node then
evaluating objective & constraints.  Ky)

)-(A - k1
)XYIXZ)

xg = k3 Duality-based bound tightening was performed in all cases. A
3,C0o2, t,n

Absolute and relative convergence tolerances for the B&B algorithm of 1072 an 0,0, 0.4,140)
107>, respectively.

3. Mitsos et al.
6. Wilhelm, ME; Le,
32. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software -

39. J. W. Taylor, et al. Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals in nonpolar solvents, Phys. Chem. A, 108 (2004), pp. 7193-7203.

40. A. B.Singer et al., Global dynamic optimization for parameter estimation in chemical kinetics A. B. Singer et al., J. Phys. Chem. A, 110 (2006), pp. 971-976
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O A comparison of our new approach is made to existing methods.

O The 200 step numerical Adams-Moulton (AM, 2" order) approach of
Wilhelm 2019 is compared to the exact bounds of the solution set
with the novel method.

O Differential inequality used approaches using the CVODE Adams
integrator (SUNDIALS)*! are included for comparison.

Exact PILMS, Interval None 5983 >800,000
Adams-Moulton
Exact PILMS, Affine None 3976 >350,000
Adams-Moulton
Numerical, Adams- Affine None 1356 6068
Moulton, 200 step
Differential Interval®7.? 1.9E-3 >7200 >1,300,000
Inequality

LBD/UBD

41.

32.

10.
11.

12.

1.0 4

0.9 A

0.8 -

0.7

0.6 —— Differential Inequality - Interval
—— Differential Inequality - Relaxation

Numeric PILMS (AM), Affine

0.5 1 —-- Exact PILMS (AM), Interval

—-= Exact PILMS (AM), Affine

100 10! 10? 10° 104
t
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CSTR with Aeration

Effluent required
to be less than SP

Inlet with Uncertain
Nitrogen Concentration (p) 0-

Inlet with Uncertain
Nitrogen Concentration (p)

Goal

Minimize aeration cost while ensuring constraint satisfaction at
final time (t = 500 s) if step-change feed disturbance occurs

d* = minu
ueu

s.t. xl(tf,u,p) —-SP<0,vpeP

Initial Condition

Steady-state operation with x, =30 (mg/L)

42. Matthew E. Wilhelm, Chenyu Wang, and Matthew D. Stuber. Robust Optimization with Hybrid First-Principles Data-Driven Models. Computers and Chemical Engineering. Under review.

Mass balance

dx, 1

el (P — x1) —Ta0Xa0

dx,

dt = Ta0Xa0 — ™vo (X2, X4)Xno

dxs ¥

at Tno (X2, X4)Xno

dx, «

T —Ta0%a0Xa0 — Tvo (X2, X4) PnoXno + ku(Co — x4)
Rate Law

X2 Xq
no = TNO,max 2
Ksno + x2 + x2%/Kino Kono + X4

Variable Range

P =[31,40], U = [440,2000], t = [0,500]
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41.

10.
11.
12.

Optimal aeration rate found to be u
algorithms compared.
Exact PILMs methods faster than numerical approximation.
Exact PILMs comparable to differential inequality method.

704 L /s via

Exact PILMS, Adams-Moulton Interval 55
Exact PILMS, Adams-Moulton Affine 36
Numerical, Adams-Moulton, 200 step Interval 323
Numerical, Adams-Moulton, 200 step Affine 118
Differential Inequality Interval 38

Residence time (1) 4136 -
Rodger B. Baird, Andrew D. Eaton, and Eugene W.
. " Rice. Standard Methods for the Examination of
Saturated Oxygen Concentration (o) o1 Water and Wastewater. APHA, AWWA, and WEF,
Washington, D.C., 2017.
Concentration of AOB (X,0) 505
Omar Sanchez, et al. The effect of sodium
Concentration of NOB (Xy0) 151 chloride on the two-step kinetics of the
- . - nitrifying process. Water Environment Research,
Maximum Nitrite Consumption Rate 1.07 76(1):73-80.
(rNO,max)
Stoichiometric ratio O,:NH, (¥,0) 2.5
Stoichiometric ratio 0,:NO, (Wyo) 0.32
Udo Wiesmann. Biological nitrogen removal from
Monod constant of NO, for NOB (Ksyo) 1.6 wastewater. In Biotechnics / Wastewater, pages
113-154. Springer Berlin Heidelberg, 1994.
Inhibition constant of NO, for NOB (K;yo) 13000
Monod constant of O, for NOB (Kpno) 1.5
Lars Uby. Next steps in clean water oxygen
Lumped aeration constant (k) 3.26E-6 transfer testing — a critical review of current

standards. Water Research,157:415-434,2019.
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