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Robust Simulation

* A "Robust System” mitigates the effects of uncertainty
to ensure performance/safety constraints are satisfied.
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Robust Simulation

* A "Robust System” mitigates the effects of uncertainty
to ensure performance/safety constraints are satisfied.

* “Robust Simulation” refers to the ability to rigorously
account for the impacts of uncertainty via a model-
based (i.e., simulation) approach
— Conclude whether or not a system can meet the desired

performance/safety constraints in the face of uncertainty
using mathematical models
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_Robust Simulation: Another Perspective

* “Robust Simulation” could also be viewed through the
modeler’s lens
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_Robust Simulation: Another Perspective

“Robust Simulation™ could also be viewed through the
modeler’s lens

— Modeling and simulation of systems often requires
changing parameter values and/or model libraries and the
solver then fails to converge
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_Robust Simulation: Another Perspective

“Robust Simulation™ could also be viewed through the
modeler’s lens
— Modeling and simulation of systems often requires

changing parameter values and/or model I|brar|es and the
solver then fails to converge .
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_Robust Simulation: Another Perspective

* “Robust Simulation” could also be viewed through the
modeler’s lens

— Modeling and simulation of systems often requires
changing parameter values and/or model Ilbrarles and the
solver then fails to converge .

julia> acos( 1. 1)

Stacktrace:
[1] acos domain error(::Float64) at .\special\trig.jl:671
[2] acos(::Float64) at .\special\trig.jl:7e1

[3] top-level scope at REPL[92]:1
[4] include_string(::Function, ::Module, ::String, ::String) at .\loading.jl:1@88
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Robust Simulation: Another Perspective

* Numerical infeasibility encountered in algebraic
systems

DOI: 10.1002/aic.14447 Ith
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Worst-Case Design of Subsea Production Facilities Using
Semi-Infinite Programming

Moatthew D. Stuber, Achim Wechsung, Arul Sundaramoorthy, and Paul L Barton

Process Systems

g Laboratory, Dept. of Chemical Engineer

Massachusens Initute of Technology,

Cambridge, MA 02139
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Introduction

As ol and gas reserves continue 10 be depleted from trad
tional on-land and shallow-water fields, there has been a sig-
nificant effort made toward production from increasingl
more hostile environments such s those in the uhira deep-
water—greater than 7500 i depths—of the Gulf ¢
In 2004, 3 vas deposit of petroleumn, known 3 the “lower ler
tiary trend,” contaming 3-15 billion bamels of petroleum, was
discovered by Chevion geol
strated by BF in 2000 when it suffered a catastrophic failure
of its leasad ultra deepwater drilling platform—n only about
S000 i of water—resulting in ves log and an esimated
30 billion in expenses and five million bamels spilled™ with
significant ecological damage, pursuing odl reserves in deep-
waler environments comes with inberently high rivk mugni
fied by 3 lack of sufficient technology. In this enviromment
the costs associated with operational failures far cutweigh the
coss msociated with “overdesigning™ the peocess, and so the
goal nusst be w0 avod them altogether

ndustry engineers have suggested that the mpplication of
radional foating platforms to ulira deepwater production i
w0 ridky. Instead, novel remole compact subsea production
facilities are comidered a key enabling technalogy for ultra
deepwater oil and gas production. Due 1o imprecise data and
pleie knowledge of the extreme subsea c
¢ various other factors, @ is apparent that
mud be sccounted for, Thes, the sk of designs
process system is far from mivial

Mezicn

entainty
such a

ey (4 arbcle drsdd e sbirvmesd b F L T o

b

© 2014 American st of Chemical Enginern

AICBE Journal

mironments are pre
That is, prior 1o the

incers AICRE J, 60: 2513

ments i
er oil and gas pr
v high and, therefo

design is ad
s embedded. A

addressin

e problem ¢

As fiedd conditions are extreme, they are difficull and
expensive B recreate in the lshoratory, and as bailding phys-
ical pilos plam sysems for teding ai fiekd con
implausible. model-based design mud wippont and
ment empirical sudies. Furthe: 2
tha even if building and deploying pilst sysems were o
costeffective approach, they can only be tested under a
editions, and therefore, no rigorous guar-

e, i i worth ment

worst-case performance safety can be verified
Stuber and Baon' previously staied that for these rypes of
systems, the first question a design engineer must address ic

This question will be bsted mathematically later and
its application 10 sbsés production facilities will be the pri-
mary focus of this anicle. In the following sedion, the sub-
sea process sysem model will be presentad and the case
study will be set up

Model and Case Study

The sbsea scparator is considered o be af the heart of
subsea production facilities becamse it is the key process
system for performing upstream phase separathon as mate-
sl b being produced from the wellbead In the steady
del presented here, it b comsidered that a three-
ixture of oilfwaterfgas is bemng suliciently sepa
alow for remjection of he water back into the
environment and the production of separe oil and gas

July 2014 Vol. 68, No. 7 =3
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Accounting for Uncertainty

T » B

——
For a specific design, how = R
would the system State-Space Z

| f respond to uncertainty?
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Accounting for Uncertaint

For a specific design, how =
would the system State-Space
f respond to uncertainty?
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Accounting for Uncertaint

Constraint/Specification

For a specific design, how =
would the system State-Space
f respond to uncertainty?

13
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Accounting for Uncertaint

Constraint/Specification

SYSTEM
FAILURE!

For a specific design, how =
would the system State-Space
f respond to uncertainty?

14

(" f - - T — ' h"-.-_-
g Ny, Virtual Edition IN @ SE
‘ .'Q‘.'”’ October 15 - 16, 2020 o

Robust Simulation of Mechanistic Models



Accounting for Uncertainty

Constraint/Specification

SYSTEM
FAILURE!

For a specific design, how =
would the system State-Space //
f respond to uncertainty?
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Accounting for Uncertainty

Constraint/Specification

ROBUST
SYSTEM!

For a specific design, how = R
would the system State-Space //
f respond to uncertainty?
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Accounting for Uncertainty

f respond to uncertainty?

Robust Simulation of Mechanistic Models



Accounting for Uncertaint

« Steady-state vs. dynamical systems models

e

nonlinear algebraic system nonlinear ODE system

I New England Chapter
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« Steady-state vs. dynamical systems models

—

nonlinear algebraic system nonlinear ODE system
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Accounting for Uncertaint

9(x(u,p,t, ), u,p,t ) <0

Constraint/Specification

ROBUST
SYSTEM!

>
State-Space X(u, p7 tk )

Robust Simulation of Mechanistic Models




Accounting for Uncertainty

g(X(ll’ p? tk+1)7u7 p? tk_|_1) S O

4

Constraint/Specification

SYSTEM
FAILURE!

State-Space X(u, p, t
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Mathematical Preliminaries

 From a design perspective, our objective is to verify performance/safety
in the face of (the worst-case) uncertainty over the time horizon.

y(u) = max g(x(u,p,?),u,p,t)

peP. tel
s.t. x(u,p,t) = f(x(u,p,t),u,p,t)
x(u,p,0) = X, (u,p)
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Mathematical Preliminaries

 From a design perspective, our objective is to verify performance/safety
in the face of (the worst-case) uncertainty over the time horizon.

y(u) = max g(x(u,p,?),u,p,t)
peP. tel

s.t. x(u,p,t) = f(x(u,p,t),u,p,t)
x(u,p,0) = X, (u,p)

If v(u) <0, we have verified the robustness of our design u.

“For a given design, the system does not violate performance/safety at
any point in time, even in the face of the worst-case uncertainty”
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Robust Steady-State Stmulation

* Previous developments: a set-valued mapping theory that
enables the calculation of rigorous bounds on the states over
the entire uncertainty space. !

2

State-Space //

W L % Stuber, M.D. et al. (2015) DOI: 10.1080/10556788.2014.924514
!&. ne ,, Virtual Edition o e Chamier o4
gy’  (Octoberit-te.20m Robust Simulation of Mechanistic Models


https://doi.org/10.1080/10556788.2014.924514

Robust Steady-State Simulation

Convex relaxation of
nonconvex operating
envelope (without
actually simulating the
operating envelope)

»

State-Space /
W L “ o2 nnual - Stuber, M.D. et al. (2015) DOI: 10.1080/10556788.2014.924514
\ixﬁ "-‘i\_ fall workshop i :
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_ Robust Dynamic Simulation

* Our dynamic model is reformulated in the discrete
form as a nonlinear algebraic system:

Yo — X (11, p)

y, -y, — M(y,,u,pt)
h(y,u,p)=| °" °" .7 1

yK o yK—l o hf(yK,ll,p,tK)

h: R=F < R™ xR — R

Y /] e 155 . . L 26
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Robust Dynamic Simulation

Apply our theory for robust dynamic simulation to our system to calculate
rigorous bounds on the state variables over the range of uncertainty
variables p and design variables u, forward in time.
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State-Space //
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1 | INTRODUCTION

[Dyynamic optimization problems of the form

¢ ‘”";_illl_'-ﬂllnl'r el

Anne V.Le? | Matthew D. Stuber' ©

Abstract

We pr tad inistic global optimizati thod for nonf prog ing
fi lations ined by stiff sy of ordinary differential equation (ODE)
initial value problems (IVPs). The ples arise from dynami imization prob-
lems exhibiting both fast and slow i h - b 1in
model-based systems engineering applications. The proposed approach utilizes
unconditionally stable implicit integrati thods to refi I the ODE-

constrained problem into a nonconvex nonlinear program (NLP) with implicit func-
tions embedded. This problem is then solved to global optimality in finite time using
a spatial branch-and-bound framework utilizing convex/concave relaxations of
implicit functions constructed by a method which fully exploits problem sparsity.
The algorithms were implemented in the Julia programming language within the
EAGO.jl package and demonstrated on five illustrative examples with varying com-

plexity relevant in process syst gineering. The developed methods enable the
4 d global solution of dy ic optimization problems with stiff ODE-IVPs
embedded.
KEYWORDS

dynamic simulation. global optimization, implicit functions, stiff systems

program, in general, and therefore verifying optimality requires deter-
minktic global optimization. The focus of this paper is on solving (1)
o guaranteed global optimality (or declaration of infeasibility). The
methods devdoped in ths work are of spedific importance when the
OODE-IVP system is stiff,

Methods for solving (1) rigorously tn global optimality rely on the

st. x(p.t) = fixip.t).p.t), Wtel=[ta.ty] )
x(p.lo) =x0(p) spatial branch-and-bound (B&B) framework' or some variant. The
gldp.ty).p)s0 B&B algorithm requires the ability to calculate rigorous upper and

lower bounds on the global optimal solution value. An upper bound

10N

+

2" Annual
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Virtual Edition
Qctober 15- 16, 2020

State-§

are of extreme importance to process systems engineers and the
broader model-based systems engineering community as they can be
formulated for a variety of systems whose transient behavior is of
particular interest, from optimal control to mechanistic model valida-
tion. The first major complicating detail of the optimization fomula-
tion (1) is that it is constrained by a system of ondfinary differential
equation-inktial value problems (ODE -IVPs). Therefore. simply verify-
ing a feasible point requires the solution of a system of ODE-IVPs.
The second major complicating detall & that (1) is a noncomvex

can be d by simply g -, ), ) at any feasible point.
However, calculating rigorous lower bounds poses significant chal-
lenges as this step requires that rdgorous and accurate global bounds
are known or are readily ¢ for all variables and functions of
{11 For standard noncorvex nonlinear programs (NLPs) (i.e, without
dynamical systems constraints), rigorous lower bounds on the optimal
solution value are obained by cakulating convex and concave relaa-
tions of the functions and solving a corresponding convex lower-

bounding problem. Applying this app h to a dynamic

AICHE Joumnd. 2019,652156834
hitps:/ /dol org/10. 10027k 16834

wileyonlinefibrary com/joumal/zkc

© 2019 American Institute of Chemical Engineers I 1 of 20

Robust Simulation of Mechanistic Models

State-Space

29


https://doi.org/10.1002/aic.16836

_ Robust Dynamic Simulation
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Robust Dynamic Simulation

Next steps: verification and validation of robustness

miglfy
uc
S.t. Y > max g(X(uapa t)auapa t)

pePltel

s.t. x(u,p,t) = f(x(u,p,t),u,p,t),t €1

x(u,p,0) = x(u,p)
Robust Design
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__ Robust Dynamic Simulation

Next steps: verification and validation of robustness

: max -y
Ill[le%l’y peP
s.t. 7 > max g(x(up,1),u,p, ) st 72 ming(x(w,p.t,), u.p.t))

q.t. X(u,p, ) f( (11 p, ) u,p,t),tE[ s.t. X(uvpa )_f( (11 P, ) ll,p,t),tEI

x(u,p,0) =x (u,
x(u,p,0) = x,(u,p) (u,p,0) = x,(u,p)
Robust Design Robust Operation

AEERY coriim :
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Robust Dynamic Simulation

Next steps: verification and validation of robustness

1N ax ’)/
peP

s.t. Y Z min g(X(u7p7 tf)auapa tf)

uelU

s.t. x(u,p,t) = f(x(u,p,t),u,p,t),t €1
x(u,p,0) = x,(u,p)

Robust Design Robust Operation

33
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— Robust Dynamic Simulation

Next steps: verification and validation of robustness

Robust Design Robust Operation
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__ Robust Dynamic Simulation

Next steps: verification and validation of robustness

: max -y
Ill[le%l’y peP
s.t. 7 > max g(x(up,1),u,p, ) st 72 ming(x(w,p.t,), u.p.t))

q.t. X(u,p, ) f( (11 p, ) u,p,t),tE[ s.t. X(uvpa )_f( (11 P, ) ll,p,t),tEI

x(u,p,0) =x (u,
x(u,p,0) = x,(u,p) (u,p,0) = x,(u,p)
Robust Design Robust Operation
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_ SoftwareTools  EAG0O

 EAGO.jl: Easy Advanced Global Optimization in Julia.

— Open-source, competitive with state-of-the-art commercial
solvers but much more flexible to account for complicated
user-defined functions (UDFs)

1.0 f ] - O
2 0.8 |
Vi
9]
VI 0.61
i |
o --- BARON
VI 0.41 -+~ SCIP
& —— ANTIGONE
> — EAGO
Q 0.2
10 n1 n2 N3
10 10 3 10 10
"é' ! » 2™ Annual
fa *’.’.l }  INCOSE NEW ENGLAND DOI:10.1080/10556788.2020.1786566
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Soft
.+ EAGO.j: Easy A

— Open-source, cc
solvers but muc
user-defined fun
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EAGO.jl: easy advanced global optimization in Julia

M. E. Wilhelm © and M. D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular
Engineering, University of Connecticut, Storrs, CT, USA

ABSTRACT

An extensible open-source deterministic global optimizer (EAGO)
programmed entirely in the Julia language is presented. EAGO
was developed to serve the need for supporting higher-complexity
user-defined functions (e.g. functions defined implicitly via algo-
rithms) within optimization models, EAGO embeds a first-of-its-kind
implementation of McCormick arithmetic in an Evaluator structure
allowing for the construction of convex/concave relaxations using
a combination of source code transformation, multiple dispatch,
and context-specific approaches. Utilities are included to parse user-
defined functions into a directed acyclic graph representation and
perform symbolic transformations enabling dramatically improved
solution speed. EAGO is compatible with a wide variety of local opti-

ARTICLE HISTORY
Recelved 15 January 2020
Accepted 15 June 2020

KEYWORDS

Deterministic global
optimization; nonconvex
programming; McCormick
relaxations; optimization
software; branch-and-bound;
Julia

2010 MATHEMATICS
SUBJECT
CLASSIFICATIONS

Virtual Edition

mizers, the most exhaustive library of transcendental functions,and ~ 90C26; 90C34; 90C57; 90C%0
allows for easy accessibility through the JuMP modelling language.
Together with Julia’s minimalist syntax and competitive speed, these
powerful features make EAGO a versatile research platform enabling
easy construction of novel meta-solvers, incorporation and utiliza-
tion of new rel jons, and to advanced problem for-
mulations encountered in engineering and operations research (e.g.
multilevel problems, user-defined functions). The applicability and
flexibility of this novel software is demonstrated on a diverse set of
examples. Lastly, EAGO is demonstrated to perform comparably to
state-of-the-art commercial optimizers on a benchmarking test set.

1. Introduction and motivation

Mathematical optimization problems are ubiquitous in scientific and technical fields.
Applications range from aerospace and chemical process systems to finance. However, even
relatively simple physical processes such as mixing, may introduce significant nonconvex-
ity into problem formulations [60]. As such, nonconvex programs often represent the most
faithful representations of the system of interest. Multiple approaches have been developed
to address these cases. Heuristics such as evolutionary algorithms, may approximate good
solutions for select problems. However, heuristics may fail to guarantee that even a feasible

CONTACT M.D. Stuber @ stuber@alum.mit.edu O Process Systems and Operations Research Laboratory,
Department of Chemical and Biomolecular Engineening, University of Connecticut, 191 Auditorium Rd, Unit 3222, Storrs,
CT06269-3222, USA

Q Supplemental data for this article can be accessed here. https-//dol.org/10.1080/10556788 2020.1786566

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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Software Tools

 EAGO.jl: Easy Advanced Global Optimization in Julia.
Software access: registered Julia package

Documentation: https://docs.julialang.org

Type "?" for help, "]?" for Pkg help.

Version 1.5.2 (28206-89-23)
Official https://julialang.org/ release

LS
-

Github: https://github.com/PSORLab/EAGO.|I
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Software Tools EC:SGO

EAGO.jl: Easy Advanced Global Optimization in Julia.

User-Defined Function (UDF) Internal DAG Structure of UDF

Combined DAG Structure

=3P of Optimization Problem

o ——
e mm omm ow— e

JuMP AML Problem Y N B
Specification I, \
I : —J
> | ,
: |
{ I
~ ~ e e - P /
" 2™ Annual
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_Concepts of Hybnd Models
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Dvnamic NN Prediction Errors

» Consider the anharmonic oscillator (e.g., pendulum)

i(t) = —kz(t) — ax(t)’ — Ba(t) — vi(t)’
2(0) = 1,2(0) = 0

(Example from DiffEqFlux.jl)

I NGLAND : = !
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Training Region

1.0 —
. —— X (ODE)
Tensor product layer with v (ODE)
10t-Order Legendre — X (NN)
Basis —— V(NN

/ AN /

0.0 /
-0.5 \/ \\/

0.0 2.5 5.0 7.5 10.0
(Example from DiffEqFlux.jl) time
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Anharmonic Oscillator Training Region

namic NN Prediction Errors

Anharmonic Oscillator Prediction Region

RN\
NS,

1.0 -

—— X (ODE

—— V (ODE
—— X (NN) 0.5

—— V(NN)

0.5
/ 0.0
-0.5
0.0 2.5 5.0 7.5 10.0 0
time
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Prediction Region
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Prediction Region
1.0 | :

—— X (ODE)
—— V (ODE)
am Actual trajectories
05 exhibit rapid decay
. IANLATIAR
[N A
-0.5 \/\/

time
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Prediction Region
1.0 | :

—— X (ODE)
—— V (ODE)
am Actual trajectories
05 exhibit rapid decay
. N S\AN
(\ \_><’ W ML model fails to
o5 capture this
\/V behavior

time
t 27 Annual -
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Prediction Region

Actual trajectories
exhibit rapid decay

ML model fails to
capture this
behavior

20 30 40

48
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Dvnamic NN Prediction Errors

Anharmonic Oscillator Prediction Region

| — X(ODE)I i
—— V (ODE)
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Outstanding ML Challenges

* Absence of theory

* Absence of causal models (correlation not causation)
» Sensitivity to imperfect data

« Computational expense (training)

Begoli, E., Bhattacharya, T., Kusnezov, D. (2019) DOI: 10.1038/s42256-018-0004-1
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https://doi.org/10.1038/s42256-018-0004-1

_ Outstanding ML Challenges (SE Perspective)

» Lack requirements specification

» Lack design specification

» Lack interpretability (causal relationships)
* Lack robustness

Kuwajima, H., Yasuoka, H., Nakae, T., (2020) DOI: 10.1007/s10994-020-05872-w
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https://doi.org/10.1007/s10994-020-05872-w

_ Outstanding ML Challenges (SE Perspective)

» Lack requirements specification

. Lack desi i et “Greatest impact on
ack design speciiication conventional system

* Lack interpretabillity quality models’

* Lack robustness

Kuwajima, H., Yasuoka, H., Nakae, T., (2020) DOI: 10.1007/s10994-020-05872-w

i O G
.I;:&?;mhn ”}E%;i irh‘JN | Editior I NCOS E wwwwwwwww >z
W willp,/  Octoberis-16,2020 e Concepts of Hybrid Models


https://doi.org/10.1007/s10994-020-05872-w

Outstanding ML Challenges (SE Perspective)

W.:7  October15- 16,2020
/S

» Lack requirements specification

o | ack Research Challenge:
Can we exploit machine learning approaches
 Lack for safety-critical systems?

 Lack robustness

Kuwajima, H., Yasuoka, H., Nakae, T., (2020) DOI: 10.1007/s10994-020-05872-w
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Hybrid Mechanistic ML Models

* Not a “"new” idea (emergence in 1992)

« Combine aspects of machine learning and mechanistic
modeling

» Black-Box — Gray-Box
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Hvbrid Mechanistic ML Models

Parallel Series

we 3 o
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brid Mechanistic ML Models

Reactor

Mass
Cons.

Thermofluids

< dynamics
Species
Propertles

Heat Fluid
Transfer Dynamics
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— Hybnd Mechamistic ML Models

yk‘auap
Mechanistic | Y+
> >
Model
Ty R W S

ey 58
.'qi’:!/f October 15- 16, 2020 Concepts of Hybrid Models



Hybrid Mechanistic ML Models

“Intermediate” states
or calculations. E.g.,

Y, U, P .
Zp — Complex nonlinear

dynamics.

. "
o Mechanistic

Model
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Hybrid Mechanistic ML Models
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Benefits over pure data-driven models:

* Requires less data

» Have system insight

» Better controller performance

« Better performance with nonlinear dynamics

» Better performance in extrapolation
— More useful for optimization applications
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—Robust Simulation of Hybrid Models

+ -.; - t\\ “““““““““
Fats !} NNNNNNNNNNNNNNNN _
.|f . T f orkshop INfCOSE
e Ny, Virtual Edition N 2 I ettt e i}
7 October 15- 16,2020 gz



_ Physics-Informed Data-Driven Models

 \WWant to control wastewater

ON IOR
{ treatment processes to
—O0— . .
optimize energy
SN e consumption and meet
MEA . .
ﬁ+‘o discharge requirements

=? 1 !
| PI Controller | o— |
o9
MPC/EMPC1/EMPC2 o ¢
AAE o 20 pnnua
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Physics-Informed Data-Driven Models

* Developed a compartment
- model with unknown

parameters for mass

e transfer between
compartments
S * Applied deterministic global
optimization for training to
0 Prconmole] - - |°| obtain guaranteed best-
MPC/EMPC1/EMPC2 | —5—2 | possible fit
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_ Physics-Informed Data-Driven Models

Percent error relative to physics-informed data-driven model

CFD Pure DD
(ML) Model

Experiment 1 108% 329%
Experiment 2 1287% 588%
Experiment 3 511% 319%
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Hybrid Mechanistic ML Models

Ye,u,p
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Model

Y, — X,(u,p)
yl _yo _hf(y17u7p7t1)

yK o yK—l T hf(yK,ll,p,tK)
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Robust Simulation of Hybrid Models

User-Defined Function (UDF) Internal DAG Structure of UDF

Combined DAG Structure

=3P of Optimization Problem

b S

o —————

JuMP AML Problem \
Specification
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User-Defined Function (UDF)
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Robust Simulation of Hybrid Models

» Use our set-valued bounding theory to rigorously

bound the states

. yk’u,p
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Relaxations of Activation Functions

1
log(1 + exp(x)) max (x, 1+ exp(—x)) max(x, tanh(x))
Softplus Maxsig
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Relaxations of Activation Functions

X
1+ |x|

Softsign

1 2
1+ exp(—x) 1= 1+ exp(—x)
Sigmoid Bisigmoid

1.0
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Conclusion

* Developed rigorous bounding theory for steady-state
and dynamical systems for mechanistic models
— Formal uncertainty quantification
— Extremely powerful open-source deterministic global

optimizer for advanced user-defined models

» Want to exploit hybrid modeling approaches to
overcome challenges with pure mechanistic and pure
data-driven approaches
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Conclusion

* Applied global optimization for training a physics-
iInformed data-driven model to demonstrate the
tradeoff

* Preliminary work on bounding a library of common
basis functions for NN

— Enable rigorously bounding hybrid models
— Formal uncertainty quantification of hybrid models
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THANK YOU

Matthew Wilhelm
PhD Candidate Process Systems and

Any Questions? Operations Research
L aboratory

Chenyu Wang
PhD Candidate

SCHOOL OF ENGINEERING

"% This material is based upon work supported by the National Science
»' Foundation under Grant No.: 1706343, 1932723. Any opinions, findings,
a8 ““and conclusions or recommendations expressed in this material are those of
© % the authors and do not necessarily reflect the views of the National Science
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