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Background
• Food security challenges worsening due to population growth
• Alternative approaches needed to supplement conventional food production
• Controlled environment agriculture (CEA)

– Advantages
• Sustainability
• Increased food security

– Disadvantages 
• High startup costs
• Venture risk
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General-use CEA design and planning model needed to economically motivate 
adoption of CEA technology.

Traditional agricultural planning strategies are…

• Reactive, system-specific, focused on yield-based uncertainty

revenue = yield x market price

Our proposed CEA design/planning strategy is…

• Proactive, general, focused on market price uncertainty

Motivation

3



Objective
To simultaneously optimize the design and scheduling of CEA systems for 
robustness to market uncertainty.

Model Features:
General
• One model for economically optimal engineering design of CEA systems
Flexible
• Demand-based constraints, nutritional constraints, non-constant grow 

periods, capital and operating cost models, location cost models
Efficient 
• Exploit existing solvers (IPOPT, Gurobi, EAGO) to rapidly assess 

economic viability of CEA systems with minimal modification required 4



Trader’s Perspective

Min-Max Formulation SIP Reformulation
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• Modern portfolio theory and robust optimization applied to agriculture
• Minimize portfolio risk under worst-case uncertainty
• Portfolios robust to user-specified risk level
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Trader’s Results

• Robust portfolios show significant risk reduction over naïve portfolios
• Diversification is an effective strategy for mitigating economic uncertainty in 

investment portfolios of crop-specific commodities
6



Grower’s Perspective
Simultaneous optimization of system design and operation.

d Design variables: capacity, location, spatial allocation of each grow mode
X Scheduling variables: crop allocations for each grow period
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Nonconvex objective function
• Maximize NPV over project lifespan
• Capital and operating expenses
• Annual cash-flow discounting

Grower’s Model SIP
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Nonconvex Objective

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟(d, X) – revenue as a function of design and allocations
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(d)– capital expenses as a function of design
𝐶𝐶𝑜𝑜𝑝𝑝(d, X)– operating expenses as a function of design and allocations
P – capital financing coefficient

Bilinear terms, summation of convex and concave terms, and nonconvex 
land-cost model.

�𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁(d, X) = C𝑟𝑟𝑟𝑟𝑟𝑟(d, X) − (1 + P ) C𝑐𝑐𝑐𝑐𝑐𝑐(d) − C𝑜𝑜𝑜𝑜(d, X
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Grower’s Model SIP

Crop allocation constant sum

Nonconvex objective function
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Crop allocation constant sum
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Grower’s Model SIP
Nonconvex objective function
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Capacity dedicated to a 
single grow mode 
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Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function

12

Production limited by demand



Production limited by demand
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Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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SIP constraints controlling 
multi-period risk exposure
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PSD covariance matrix
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SIP constraints controlling 
multi-period risk exposure

Production limited by demand

Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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Methodology: SIP
• The SIP must be solved to global optimality.
• We solve the SIP using the Blankenship & Falk 

cutting-plane algorithm.
• Construct SIP feasible set by iteratively solving the 

relaxed NLP (discretization-based procedure) and 
the feasibility problems.

• Use EAGO spatial B&B and JuMP for 
mathematical optimization in Julia 

Blankenship, J.W., Falk, J.E., 1976. Infinitely constrained optimization problems. J. Optim. Theory Appl. 19 (2), 261-281. 16



Methodology: SIP Subproblems

• We employ EAGO spatial B&B with custom 
upper- and lower-bounding problems.

• Lower-bounding problem
– Solve NLP locally using IPOPT at current 

node in B&B tree
• Upper-bounding problem

– Partially relax NLP to obtain affine and 
bilinear terms only, solve to global 
optimality using Gurobi’s nonconvex 
solver

• Feasibility subproblems are SDPs solved 
reliably using SCS.
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Methodology: Upper-Bounding Problem

�𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁(d, X) = C𝑟𝑟𝑟𝑟𝑟𝑟(d, X) − (1 + P ) C𝑐𝑐𝑐𝑐𝑐𝑐(d) − C𝑜𝑜𝑜𝑜(d, X

18

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 d, X , 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(d), 𝐶𝐶𝑜𝑜𝑜𝑜 d, X all possess bilinear terms



Methodology: Upper-Bounding Problem

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 d, X , 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐(d), 𝐶𝐶𝑜𝑜𝑜𝑜 d, X all possess bilinear terms
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐 d also contains more complicated exponential and power terms
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�𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁(d, X) = C𝑟𝑟𝑟𝑟𝑟𝑟(d, X) − (1 + P ) C𝑐𝑐𝑐𝑐𝑐𝑐(d) − C𝑜𝑜𝑜𝑜(d, X



�𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁(d, X) = C𝑟𝑟𝑟𝑟𝑟𝑟(d, X) − (1 + P ) C𝑐𝑐𝑐𝑐𝑐𝑐(d) − C𝑜𝑜𝑜𝑜(d, X

Methodology: Upper-Bounding Problem

• Employ EAGO spatial B&B to partially relax NLP by constructing affine 
relaxations of exponential and power terms.

• Branch on design variables only!
• Pass to Gurobi which branches on both d and X for the current node of 

EAGO’s tree. 
• Gurobi solves the partially relaxed NLP to global optimality using its 

nonconvex solver with bilinear relaxations.

20



Results - Methodology

Largest problem solved:
• 44 upper-level decision variables
• 8 semi-infinite constraints parameterized by 25-dimensional uncertainty sets 
• 6-288s for 10-25% tolerable risk levels

21

Tolerable Risk 10% 14% 21.75% 22.5% 23% 25%
Portfolio A - - 133 16 9.3 4.4
Portfolio B 288 379 8.9 5.4 5.2 6.2

Grower’s Model Run Time



Results - Application
• Risk under Monte-Carlo simulated market returns to assess performance of 

robust vs naïve approach
• Robust design achieves significant risk reduction
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NPVs of Robust Systems

23

Tolerable Risk 10% 14% 21.75% 22.5% 23% 25%

Portfolio A - - 17.9 20.5 21.4 21.7

Portfolio B 9.5 9.5 19.6 21.2 21.3 21.3

• NPV of robust optimal design with robust optimal allocations 
implemented reported in million USD

• All NPVs are positive means all robust optimal solutions 
obtained represent an economically feasible design

NPV of Robust Optimal CEA Systems 



Robust vs Naïve Allocations

24

Tolerable Risk 10% 14% 21.75% 22.5% 23% 25%

Portfolio A − − -195% -165% -157% -155%

Portfolio B -116% -116% -201% -182% -180% -180%

• For a fixed design we observe over 100% reduction in NPV with 
naïve crop allocations in all simulated cases

• The economic feasibility of CEA systems is nontrivial

NPV Reduction with Naïve Allocations



Summary & Conclusions
• Robust design and scheduling of CEA systems

• Developed novel SIP formulation and solution methodology

• Economically viable robust systems designs

• Foundation for higher-complexity CEA design and planning applications
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Thank you for your attention!
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