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Background
• Food security challenges worsening due 

to population growth and climate change
• Alternative approaches needed to 

supplement conventional food production
• Controlled environment agriculture (CEA)

– Advantages
• Sustainability
• Increased food security

– Disadvantages 
• High startup costs
• Venture risk
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General-use CEA design and planning models to economically motivate adoption.

A realistic model must account for uncertainty.

Simultaneous design and scheduling optimization.

Motivation

3AIChE Annual Meeting 2021 
Robust-optimal designOptimal design Uncertainty realized



Objective
Simultaneously optimize the design and scheduling of CEA systems for 
robustness to market uncertainty.
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Revenue = Yield x Market Price

Production Mode Uncertainty Considered
Traditional Outdoor Yield

CEA (proposed) Market Price



Robust Optimization
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Rigorously tests the design and operating schedule under all uncertainty 
realizations.

Determines optimal design/operating schedule under worst-case uncertainty.

Returns a conservative design – actual performance will likely be better.

Project Lifespan (~30 years)

Q1 Q2 Q3 Q4

Design decisions

Scheduling decisions
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Model Features
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General
• One model for economically optimal engineering design of CEA systems
Flexible
• Demand-based constraints, nutritional constraints, capital and operating 

cost models, location cost models
Efficient 
• Exploit existing solvers (IPOPT, Gurobi, EAGO) to rapidly assess economic 

viability of CEA systems with minimal modification required
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Grower’s Model
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Location

Capacity

Grow Modes

Scheduled 
Planting 

Plan
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Grower’s Perspective
Simultaneous optimization of system design and operation.

d Design variables: capacity, location, spatial allocation of each grow mode
X Scheduling variables: crop allocations for each grow period
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Nonconvex objective function
• Maximize NPV over project lifespan
• Capital and operating expenses
• Annual cash-flow discounting

Grower’s Model SIP
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Grower’s Model SIP

Crop allocation constant sum

Nonconvex objective function
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Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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Capacity dedicated to a 
single grow mode 
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Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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Production limited by demand
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Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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SIP constraints controlling 
multi-period risk exposure
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Production limited by demand
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Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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PSD covariance matrix
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SIP constraints controlling 
multi-period risk exposure

Production limited by demand



Production limited by demand

Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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 PSD covariance matrix

SIP constraints controlling 
multi-period risk exposure



Production limited by demand

Capacity dedicated to a 
single grow mode 

Crop allocation constant sum

Grower’s Model SIP
Nonconvex objective function
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 PSD covariance matrix

SIP constraints controlling 
multi-period risk exposure



Solution Methodology
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• The SIP must be solved to global optimality.
• Use the Blankenship & Falk cutting-plane 

algorithm.
• Construct SIP feasible set by iteratively solving the 

relaxed NLP (discretization-based procedure) and 
the feasibility problems.

• Use EAGO spatial B&B and JuMP for 
mathematical optimization in Julia 

Blankenship, J.W., Falk, J.E., 1976. Infinitely constrained optimization problems. J. Optim. Theory Appl. 19 (2), 261-281. 



Solution Methodology
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• We employ EAGO spatial B&B with custom 
upper- and lower-bounding problems.

• Lower-bounding problem
– Solve NLP locally using IPOPT at current 

node in B&B tree
• Upper-bounding problem

– Partially relax NLP to obtain affine and 
bilinear terms only, solve to global 
optimality using Gurobi’s nonconvex 
solver

• Feasibility subproblems are SDPs solved 
reliably using SCS.



Case Study
• 5 crops

– 52 = 25-dimensional uncertainty sets
• 8 growing periods

– 8 semi-infinite constraints
• 2 growing modes
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2dimensionality
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Results - Application
• Risk under Monte-Carlo simulated market returns to assess performance of 

robust vs naïve approach
• Robust design achieves significant risk reduction
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Robust vs Naïve Allocations
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Tolerable Risk 10% 14% 21.75% 22.5% 23% 25%

Portfolio A − − -195% -165% -157% -155%

Portfolio B -116% -116% -201% -182% -180% -180%

• For a fixed design we observe over 100% reduction in NPV with 
naïve crop allocations in all simulated cases

• The economic feasibility of CEA systems is nontrivial

NPV Reduction with Naïve Allocations vs. Robust Allocations
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Summary & Conclusions
• Robust design and scheduling of CEA systems

• Economically viable robust systems designs

• Foundation for higher-complexity CEA design and planning applications
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Thank you for your attention!
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