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Background

* Food security challenges worsening due
to population growth and climate change

« Alternative approaches needed to
supplement conventional food production

« Controlled environment agriculture (CEA)

— Advantages

« Sustainability
 |ncreased food security

— Disadvantages

« High startup costs
* Venture risk
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Motivation

General-use CEA design and planning models to economically motivate adoption.
A realistic model must account for uncertainty.

Simultaneous design and scheduling optimization.

‘.

Optimal design Uncertainty realized
AIChE Annual Meeting 2021




Objective

Simultaneously optimize the design and scheduling of CEA systems for
robustness to market uncertainty.

[ Revenue = Yield x Market Price ]

Production Mode Uncertainty Considered
Traditional Outdoor Yield

CEA (proposed) Market Price




Robust Optimization

Rigorously tests the design and operating schedule under all uncertainty
realizations.

Determines optimal design/operating schedule under worst-case uncertainty.

Returns a conservative design — actual performance will likely be better.

Project Lifespan (~30 years) Design decisions
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| Q1 ‘ Q2 ‘ Q3 ‘ Q4 Scheduling decisions




Model Features

General
* One model for economically optimal engineering design of CEA systems

Flexible

 Demand-based constraints, nutritional constraints, capital and operating
cost models, location cost models

Efficient

« Exploit existing solvers (IPOPT, Gurobi, EAGO) to rapidly assess economic
viability of CEA systems with minimal modification required




Grower’s Model

Scheduled
Planting

Location

Grow Modes




Grower’s Perspective

Simultaneous optimization of system design and operation.
d Design variables: capacity, location, spatial allocation of each grow mode
X Scheduling variables: crop allocations for each grow period

Portfolio A Portfolio B
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Grower’s Model SIP

- Nonconvex objective function
S = dlg,%éa ey (4, X) « Maximize NPV over project lifespan
« Capital and operating expenses
g « Annual cash-flow discounting
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Grower’s Model SIP

f = max_fipy(d,X) Nonconvex objective function
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Grower’s Model SIP

f = max_fi(d,X) Nonconvex objective function
deD, Xe=

st. 1'x, =1, j=1...,n, Crop allocation constant sum
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Grower’s Model SIP

f = max_fi(d,X) Nonconvex objective function
deD, Xe=
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Grower’s Model SIP

*
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Grower’s Model SIP
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Grower’s Model SIP
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Grower’s Model SIP
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Solution Methodology

Cutting-Plane

« The SIP must be solved to global optimality. Aloorith
gorithm

« Use the Blankenship & Falk cutting-plane

al go rithm. Initialization Market
« Construct SIP feasible set by iteratively solving the | 5tep0 Data
relaxed NLP (discretization-based procedure) and I _
the feasibility problems. e N oner)”
»  Use EAGO spatial B&B and JuMP for Step 1 |
mathematical optimization in Julia T
Update SIp
Constraints «—N Bz ke
Step 3

. .' . 'l YES ®
. " . ChE Ar . Sto “
Blankenship, J.W., Falk, J.E., 1976. Infinitely constrained optimization problems: J. Optim. Theory Appl. 19 (2), 261-281. p ® O



Solution Methodology

«  We employ EAGO spatial B&B with custom Deterministic Global
upper- and lower-bounding problems. Optimization Algorithm
+ Lower-bounding problem (EAGO.jl Spatial o @@
~ Solve NLP locally using IPOPT at current ~ [oranch-and-Boundi 7
node in B&B tree _ (branch on D) p={jp,
* Upper-bounding problem P ¢ T - P 1 N
— Partially relax NLP to obtain affine and LOW;r'Boundmg Upper-Bounding
- roblem Problem
b|||nea: terms on(I;y, sogve to global »[ bJeCmV} RV
I l I ’'e noncanvveay — leemmmmmmmmeeeaoo ot ] —> n !
opltlma Ity using Gurobi’'s nonconvex IPOPT | e Relaxations
SOver Local Solution | Gorsiraimia. ,-::1:::::!::'__,
+ Feasibility subproblems are SDPs solved =~ > . Guwobi
reliably using SCS. GUROBI i\(_}_l?p?}_s_?l_‘{t}?fj

OPTIMIZATION 8"\0



Case Study

« Scrops
— 52=25-dimensional uncertainty sets
« 8 growing periods
— 8 semi-infinite constraints
« 2 growing modes

Portfolio A Portfolio B
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Results - Application

* Risk under Monte-Carlo simulated market returns to assess performance of
robust vs naive approach

* Robust design achieves significant risk reduction

Portfolio B Robust VS Nawe Risk
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Robust vs Naive Allocations

NPV Reduction with Naive Allocations vs. Robust Allocations

Tolerable Risk | 10% 14% 21.75% 22.5% 23% 25%
Portfolio A — — -195% -165% -157% -155%
Portfolio B -116% -116% -201% -182% -180% -180%

* For a fixed design we observe over 100% reduction in NPV with
naive crop allocations in all simulated cases

« The economic feasibility of CEA systems is nontrivial




Summary & Conclusions

Robust design and scheduling of CEA systems
Economically viable robust systems designs

Foundation for higher-complexity CEA design and planning applications




Summary & Conclusions
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ronment agricultural (CEA) systems under multi-period risk. This problem is formulated a5 a semi-infinite
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Keywards:
Q Semi-infinite programming
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Sustainable agriculture

of CEA systems over nalve Operating siraregi
made CEA production of distinct crop pordolios,

and validates the economic viability of single and multi-
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L Introduction

Conventional agribusiness operations are inherently risky as
their economic feasibility depends on highly uncertain factors such
as weather and food supply and demand. Unpredictable environ-
mental changes and extreme weather events such as droughts,
floods, and fires pose direct threats to crop yields. which translate
ro significant revenue losses for agricultural producers over time

e id Greenstone, 2007; B). As the duration and
frequency u[ such events are pmjecced ro rise into the foresee-
able future, their impacts will continue to endanger the global food
supply (Field et al., 2012). Further. as global population growth in-
tensifies, increasing food demand is projected to outpace the can}
bilities of traditional outdoor agriculture systems (Fed
As long as these trends persist. the compounding effects of grea(er
‘weather variability and demand-driven market volatility will con-
tinue to endanger conventional agribusiness operations. The de-
mand for increased food production under heightened uncertainty
will not only increase pressure on existing agricultural operations,
but also pose a broader challenge to food security. To ensure grow-
ing demand continues to be met under increasingly volatile condi-

uberiPalum mit edu (MO

tions. alternative agricultural approaches are being considered to
supplement traditional cutdoor growing methods.

Controlled environment agriculture (CEA) is an alternative strat-
egy in which crops are cultivated indoors in climate-controlled en-
vironments. Decoupling crop growth from environmental condi-
tions through CEA presents an opportunity to alleviate the stress
placed on exhaustible natural resources by existing food produc-
tion practices while increasing local [ood pruﬂuctmn and improv-
ing food access and security (B ). Increased
consumer demand for year-round local a\'al\abwlj of responsibly
sourced fresh produce has already motivated the establishment of
CEA nperarmns across the United States, Europe, Asia, and Australia
(Despom 09; Burrurini and 2020). The adoption
of this alternative growing model has risen in recent years and is
expected to grow significantly with rising consumer demand and
climate awareness. It is estimated that the global vertical farm-
ing market alone, a subset of the global CEA market, is projected
to reach $9.96 billion by 2025, expanding at a compound annual
growth rate of more than 21% over the forecast period (Grand View
Res h. 2019). However. the high-risk low-reward nature of tra-
ditional agribusiness poses a challenge to the investment in and
growth of this more environmentally and socially responsible al-
ternative to traditional cultivation methods. To reap the benefits
of CEA, the economic motivation for investment in this approach
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