

Robust Optimization With Hybrid First-Principles Data-Driven Models

Chenyu Wang, Matthew E. Wilhelm PhD Candidates

Matthew D. Stuber*, Assistant Professor

11/10/2021

AIChE ANNUAL MEETING Process Systems and Operations Research Laboratory

Robust Optimization

Background

[1] von Stosch, M.; Oliveira, R.; Peres, J.; de Azevedo, S. F. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. *Computers & Chemical Engineering* 2014,60, 86–101.

Hybrid Model Architecture

• Parallel structure

Hybrid Model Architecture

• Serial structure

$$\begin{array}{c} \mathbf{x} \\ \mathbf$$

Artificial Neural Network

• Multilayer perceptron

 Convex/concave envelopes of activation functions

2

Envelope

Equality-Constrained Bilevel program

Reformulation: Semi-Infinite Program

- How to solve the min-max problems?
 - Assume there exists a unique implicit function $\mathbf{z}: X \times \Pi \rightarrow Z$ such that

 $\mathbf{h}(\mathbf{z}(\mathbf{x},\boldsymbol{\pi}),\mathbf{x},\boldsymbol{\pi})=\mathbf{0}$

— Use equivalent semi-infinite constraints for the lower-level program:

 $0 \geq \max_{\boldsymbol{\pi} \in \Pi, \hat{\boldsymbol{z}} \in Z} g(\hat{\boldsymbol{z}}, \boldsymbol{x}, \boldsymbol{\pi}) \Leftrightarrow g(\boldsymbol{z}(\boldsymbol{x}, \boldsymbol{\pi}), \boldsymbol{x}, \boldsymbol{\pi}) \leq 0, \forall \boldsymbol{\pi} \in \Pi$

— Then, the min-max program can be reformulated as a semi-infinite program (SIP): $\min_{\mathbf{x}\in X} f(\mathbf{x})$ $\min_{\mathbf{x}\in X} f(\mathbf{x})$

s.t.
$$0 \ge \max_{\pi \in \Pi, \hat{z} \in Z} g(\hat{z}, \mathbf{x}, \pi) \iff \sup_{\mathbf{x} \in X} f(\mathbf{x})$$

s.t. $\mathbf{h}(\hat{z}, \mathbf{x}, \pi) = \mathbf{0}$
s.t. $h(\hat{z}, \mathbf{x}, \pi) = \mathbf{0}$
s.t. $g(\mathbf{z}(\mathbf{x}, \pi), \mathbf{x}, \pi) \le 0, \forall \pi \in \Pi$
 Π is a nonempty, compact interval,

AIChE Annual Meeting 2021 there are infinitely-many constraints

SIP Algorithm

Cutting plane algorithm

Global Optimization

- Every realization of uncertainty should be considered
- Functions are likely nonconvex, global solution is required

EAGO.jl: Global Deterministic Optimization of Simulations

EAGO.jl: A deterministic global optimizer in Julia

EAGO

https://www.github.com/PSORLab/EAGO.jl

- Can solve formulations with userdefined expressions (simulations, etc.)
- Uses composite relaxation framework that enables expansion to an esoteric set of problems
- Includes a full library of envelopes for activation functions and other common expressions/transcendental functions
- 1. Wilhelm, M.E., and Stuber, M.D.. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software, 1-26.

Case Study: Nitrification CSTR

Case Study: Subsea Separators

[1] Worst-case design of subsea production facilities using semi-infinite programming. Stuber, M.D. et al. (2014) *AIChE Journal*, 60, 2513-2524

AIChE Annual Meeting 2021

13

Case Study: Subsea Separators

Problem Statement

For any inlet gas fraction (*stream 1*) within typical bounds, is there a control setting that will prevent the effluent gas fraction of the liquid-liquid separator (*stream 7*) from exceeding the specification and damaging the pump.

Problem Statement (Max-Min-Max Program)

 $h(z, u, \pi) = 0 \longrightarrow z = x(u, \pi)$

[1] Worst-case design of subsea production facilities using semi-infinite programming. Stuber, M.D. et al. (2014) *AIChE Journal*, 60, 2513-2524

Semi-infinite constraint:

$$g(\mathbf{x}(\mathbf{u},\boldsymbol{\pi}),\mathbf{u},\boldsymbol{\pi}) \equiv x_{G7}(\mathbf{u},\boldsymbol{\pi}) - 0.05 \le 0$$

Uncertain Parameter (Inlet Gas Fraction)

 $\pi = (\xi_{G1}) \in [0.35, 0.5]$

State Variables

$\mathbf{z} = \left(\xi_{G4}, \xi_{W4}, \xi_{O4}, \xi_{G7}, \xi_{O7}, H_{GLS}, \dot{m}_3, \dot{m}_4, \dot{m}_6, \dot{m}_7, \dot{m}_8\right)$

AIChE Annual Meeting 2021

Control Settings (Valve Position)

 $\mathbf{u} = (u_1, u_2) \in [0.3, 0.85] \times [0.3, 0.85]$

Case Study: Subsea Separators

- The part of the simulation not replaced with surrogate models was evaluated in a block sequential fashion.
- \circ Solved using the SIPres¹ in EAGO² to an absolute tolerance of 10^{-3} .
- \circ Optimal solution found at -6.6×10^{-4} , ensure the robust feasibility.
- The algorithm terminated within an optimal value in 3 iterations, taking 2.9 CPU seconds.
- Results in a 70x improvement in computational time relative to implicit function method used with original simulation in [1].

[1] Worst-case design of subsea production facilities using semi-infinite programming. Stuber, M.D. et al. (2014) *AIChE Journal*, 60, 2513-2524

Acknowledgements

- Group members
 - Prof. Matthew D. Stuber,
 - Matthew Wilhelm,
 - Gottlieb Robert,
 - Other group members

Funding

- University of Connecticut
- National Science Foundation, Award No.: 1932723

Any opinions, finding and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

AIChE ANNUAL MEETING

Process Systems and Operations Research Laboratory

Any questions?

Process Systems and Operations Research Laboratory