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a b s t r a c t 

We present a novel methodology for the simultaneous robust design and scheduling of controlled envi- 

ronment agricultural (CEA) systems under multi-period risk. This problem is formulated as a semi-infinite 

program with several semi-infinite constraints pertaining to mean-variance risk exposure with uncertain 

covariance over each period in the planning horizon. The general model enables robust optimization of 

CEA systems for cultivation of any crop portfolio under any number of cultivation modes, with a solution 

that represents an optimal design and operating schedule that is robust to worst-case uncertainty. There- 

fore, this methodology provides a conservative basis for engineering and investment decision-making and 

represents, to our knowledge, the first robust optimization approach to CEA systems. Our approach effec- 

tively increases the robustness of CEA systems to market uncertainty, improves the long-term economics 

of CEA systems over naïve operating strategies, and validates the economic viability of single and multi- 

mode CEA production of distinct crop portfolios. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Conventional agribusiness operations are inherently risky as 

heir economic feasibility depends on highly uncertain factors such 

s weather and food supply and demand. Unpredictable environ- 

ental changes and extreme weather events such as droughts, 

oods, and fires pose direct threats to crop yields, which translate 

o significant revenue losses for agricultural producers over time 

 Deschênes and Greenstone, 2007; FAO, 2018 ). As the duration and 

requency of such events are projected to rise into the foresee- 

ble future, their impacts will continue to endanger the global food 

upply ( Field et al., 2012 ). Further, as global population growth in- 

ensifies, increasing food demand is projected to outpace the capa- 

ilities of traditional outdoor agriculture systems ( Fedoroff, 2015 ). 

s long as these trends persist, the compounding effects of greater 

eather variability and demand-driven market volatility will con- 

inue to endanger conventional agribusiness operations. The de- 

and for increased food production under heightened uncertainty 

ill not only increase pressure on existing agricultural operations, 

ut also pose a broader challenge to food security. To ensure grow- 

ng demand continues to be met under increasingly volatile condi- 
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ions, alternative agricultural approaches are being considered to 

upplement traditional outdoor growing methods. 

Controlled environment agriculture (CEA) is an alternative strat- 

gy in which crops are cultivated indoors in climate-controlled en- 

ironments. Decoupling crop growth from environmental condi- 

ions through CEA presents an opportunity to alleviate the stress 

laced on exhaustible natural resources by existing food produc- 

ion practices while increasing local food production and improv- 

ng food access and security ( Benke and Tomkins, 2017 ). Increased 

onsumer demand for year-round local availability of responsibly 

ourced fresh produce has already motivated the establishment of 

EA operations across the United States, Europe, Asia, and Australia 

 Despommier, 2009; Butturini and Marcelis, 2020 ). The adoption 

f this alternative growing model has risen in recent years and is 

xpected to grow significantly with rising consumer demand and 

limate awareness. It is estimated that the global vertical farm- 

ng market alone, a subset of the global CEA market, is projected 

o reach $9.96 billion by 2025, expanding at a compound annual 

rowth rate of more than 21% over the forecast period ( Grand View 

esearch, 2019 ). However, the high-risk low-reward nature of tra- 

itional agribusiness poses a challenge to the investment in and 

rowth of this more environmentally and socially responsible al- 

ernative to traditional cultivation methods. To reap the benefits 

f CEA, the economic motivation for investment in this approach 

https://doi.org/10.1016/j.compchemeng.2021.107285
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Nomenclature 

β the set of odd years contained in project horizon 

δ the set of even years contained in project hori- 

zon 

η SIP auxiliary variable 

γ maximum objective function evaluation of all 

feasibility programs of the Grower’s Model 

μ number of distinct growing modes 

κz set of indices for crops cultivated by mode z

� the discrete set of positive semidefinite matrices 

M ∈ M

� interval matrix ( ∈ IR 

n c ×n p ) bounding X for the 

Grower’s Model 

a cash flow discount rate 

b monthly capital financing interest rate 

C 1 ,z capital expenses of mode z that scale with 

capacity and are eligible for bulk discounting 

[USD/sq.ft.] 

C 2 ,z capital expenses of mode z that scale with ca- 

pacity and are ineligible for bulk discounting 

[USD/sq.ft.] 

C 3 ,z capital expenses of mode z that do not scale 

with capacity [USD] 

C cap (d ) total capital expenses over project horizon as a 

function of d [USD] 

C op ( d , X ) total cash-discounted operating expenses over 

project horizon as a function of d and X [USD] 

C op,e v en,z (X ) operating expenses of even years of project hori- 

zon specific to cultivation mode z as a function 

of X [USD] 

C op,od d ,z (X ) operating expenses of odd years of project hori- 

zon specific to cultivation mode z as a function 

of X [USD] 

C re v ( d , X ) total cash-discounted revenue over project hori- 

zon as a function of d and X [USD] 

C re v ,e v en (X ) revenue of even years of project horizon as a 

function of X [USD] 

C re v ,odd (X ) revenue of odd years of project horizon as a 

function of X [USD] 

d optimization design decision variables ( ∈ R 

n d ) 

d 1 location of CEA system east(+)/west( −) of city 

center [miles] 

d 2 location of CEA system north(+)/south( −) of city 

center [miles] 

d z+2 capacity of CEA system dedicated to cultivation 

mode z in [sq.ft.] 

F z annual operating expenses specific to cultivation 

mode z that do not scale with capacity [USD] 

g objective function evaluation of Trader’s Model 

feasibility problem 

G (d ) location-based land cost model as a function of 

d [USD/sq.ft.] 

H interval set bounding η ( ∈ IR ) 

i generic index used in NPV calculation and crop 

growing modes 

I op, j,z operating expenses of quarter j for cultivation 

mode z that scale with capacity [USD/sq.ft] 

IR set of all interval subsets of R 

j quarter of planning horizon 

k iteration number of cutting plane algorithm 

M interval matrix bounding M ( ∈ IR 

n c ×n c ) 

M covariance matrix of crop returns ( ∈ R 

n c ×n c ) 

n c number of crops 
(

2 
n d number of design decision variables 

n l capital financing repayment period [years] 

n p number of quarters in a planning horizon 

n y project horizon [years] 

P capital financing coefficient 

p min minimum annual production of each crop as a 

fraction of demand 

p min maximum annual production of each crop as a 

fraction of demand 

Q diagonal matrix with entries representing the 

annual market demand of each crop ( ∈ R 

n c ×n c ) 

[pounds/year] 

r expected quarterly returns on each crop ( ∈ R 

n c ) 

r d cash flow discount rate 

r min minimum portfolio return [%] 

S land cost at city center [USD] 

S min minimum land cost [USD] 

t r tolerable risk [%] 

u risk [%] 

V i capital discount factor of year i 

w expected market price of each crop [USD] 

x scale scaling factor for land cost depreciation in lati- 

tudinal direction from city center 

X Grower’s portfolio allocation ( ∈ R 

n c ×n p ) 

x Trader’s portfolio allocation ( ∈ R 

n c ) 

X interval vector [0 , 1] n c bounding x for Trader’s 

Model 

y scale scaling factor for land cost depreciation in longi- 

tudinal direction from city center 

Y diagonal matrix with entries representing an- 

nual yield of crop i [pounds/sq.ft.-year] 

z cultivation mode 

ust be strengthened through the development of tools offering 

mproved system robustness to financial uncertainty. 

In this work, we propose a novel design methodology with the 

otential to improve the economics and derisk the adoption of CEA 

echnology. The paper will be structured as follows. In Section 2 , 

ackground on established methodology is provided. In Section 3 , 

ur novel approach to optimizing CEA systems under market un- 

ertainty is developed in detail. In Section 4 , our approach is ap- 

lied to two case studies and results are discussed. In Section 5 , 

e conclude by summarizing the implications of our proposed ap- 

roach. Additional details of the solution strategy and extended re- 

ults can be found in the Supplementary Information. 

. Background 

Established methods for decision-making under uncertainty, ro- 

ust optimization, and portfolio optimization have been applied 

xtensively across process systems engineering, finance, and oper- 

tions research. In this section, we summarize the approaches we 

ave integrated to develop a robust decision-making strategy for 

isk mitigation in CEA systems. 

.1. Decision-making under uncertainty in agriculture 

Decision-making under uncertainty is the study of decision 

roblems in which various possible states of uncertainty are 

nown but insufficient information exists to assign probabilities of 

ccurrence to each state. Several decision-making models designed 

o improve the efficiency of agricultural systems have already been 

eveloped and are summarized in three comprehensive reviews 

 Ahumada and Villalobos, 2009; Glen, 1987; Dury et al., 2012 ). 
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The review by Ahumada and Villalobos (2009) summarizes 20 

eterministic and stochastic agricultural planning models based on 

ptimization approaches used, types of crops modeled, and the 

cope of plans considered. Existing applications of design under 

ncertainty to traditional outdoor agriculture include use of a de- 

erministic linear program (LP) with the objectives of satisfying 

arket demand and maximizing profit to make planting decisions 

hat provide a steady product supply over a long planning hori- 

on ( Hamer, 1994 ). Clustering heuristics and genetic algorithms 

ave also been applied to determine the spatial allocation of plants 

n a greenhouse during multiple production periods to minimize 

ost and maximize space utilization ( Annevelink, 1992 ) while fuzzy 

oal programming has been applied to solve land-use planning 

roblems for the production of several seasonal crops during a 

lanning year ( Biswas and Pal, 2005 ). While most of these mod- 

ls have been developed for use in the design of highly specific 

gricultural applications, there also exist more generalized plan- 

ing strategies such as that proposed by Nie et al. (2019) which 

ses data analytics and mixed-integer nonlinear modeling and op- 

imization methods to find optimal solutions to the land-use prob- 

em. This strategy effectively promotes food production with re- 

uced water and energy consumption and demonstrates robust 

erformance under different climate scenarios. Overall, existing 

gricultural planning strategies overwhelmingly focus on the cur- 

ently dominant method of traditional outdoor agriculture. 

While the application of several existing agricultural planning 

odels has yielded significant improvements in the performance 

f the systems for which they were designed, many of these mod- 

ls have been tailored to highly specific operations and cannot eas- 

ly be adapted for general use in CEA investment decision-making 

 Ahumada and Villalobos, 2009; Benke and Tomkins, 2017 ). Fur- 

her, the majority of existing agricultural planning models focus 

n traditional outdoor agriculture and do not explore mitigating 

he impacts of market uncertainty — the primary source of un- 

ertainty impacting large-scale CEA systems. Because most exist- 

ng models do not proactively account for the impact of future 

ncertainty on the system, they cannot guarantee that their so- 

utions will remain feasible when future uncertainty is realized. 

ased on review of existing agricultural planning models, Benke 

nd Tomkins (2017) identified the need for models providing ac- 

urate quantification of CEA economics and Ahumada and Villalo- 

os (2009) called for models that include more realistic features 

or planning crop production for robustness to market uncertainty. 

or these reasons we have adopted a more flexible approach utiliz- 

ng a single nonlinear economic objective to perform deterministic 

lobal optimization of the design and operation of CEA systems for 

ultivation of any crop portfolio under any number of cultivation 

odes for robustness to market uncertainty. 

.2. Robust optimization 

Robust optimization is a proactive decision-making method that 

akes into account uncertainty from the design stage. First intro- 

uced by Ben-Tal and Nemirovski (1998) as a method to incor- 

orate uncertainty into mathematical programming models, robust 

ptimization has since been applied across process systems engi- 

eering and operations research communities to improve process 

cheduling under uncertainty ( Li and Ierapetritou, 2008 ). In this 

ork, to our knowledge, we present the first robust optimization 

pproach to designing CEA systems. 

To devise an effective robust agricultural planning strategy, 

ources of uncertainty with the greatest impact on the system of 

nterest must be accounted for. In both traditional and CEA grow- 

ng models, revenue is directly dictated by crop yields and the 

arket prices at which crops are sold. As a result, crop yield and 

arket price uncertainty should be considered from the design 
3 
nd planning stages to provide both growers and investors with 

obustness to future market uncertainty. 

In traditional outdoor agriculture, crop yields vary drastically 

nder weather uncertainty since non-ideal growing conditions of- 

en negatively impact crop health and growth rates, translating 

o reduced bottom line economic performance. Due to its signifi- 

ant impact, weather-driven agronomic yield uncertainty has been 

dopted as the primary uncertainty consideration in agricultural 

rop planning models to date ( Ahumada and Villalobos, 2009 ). 

owever, CEA involves growing crops indoors in climate-controlled 

nvironments where plants are exposed to optimal growing condi- 

ions and are shielded from weather impacts. This enables highly 

ccurate yield prediction for well-established growing systems 

 Benke and Tomkins, 2017 ). As weather-driven agronomic yield un- 

ertainty is eliminated through the controlled environment grow- 

ng model, market uncertainty emerges as the primary source of 

ncertainty impacting the system and has therefore been adopted 

s the focus of this study. 

.3. Modern portfolio theory 

To quantify uncertainty in our system as market risk, the mod- 

rn portfolio theory (MPT) or mean-variance analysis definition of 

isk has been adopted. A recent study by Paut et al. (2019) demon- 

trated the efficacy of MPT as a method to quantify agronomic crop 

ield risk reduction by asset diversification for various crop classi- 

cations. However, this application of MPT only addressed agro- 

omic risk reduction and did not consider the effects of diversifi- 

ation on mitigating economic uncertainty in agricultural systems. 

he elimination of crop yield uncertainty that is achieved through 

he CEA growing model enables the application of MPT to perform 

 purely economic analysis ( Benke and Tomkins, 2017 ). This is the 

pproach we have adopted in this study where we propose apply- 

ng MPT in the development of investment decision-making and 

perations planning models to quantify the effects of diversifica- 

ion on mitigating economic uncertainty in commodities invest- 

ent and CEA growing operations. 

To achieve our stated objectives, we propose the joint applica- 

ion of MPT risk management and robust optimization as a novel 

pproach to inform decision-making in commodities investment 

nd CEA design and operations planning. To mitigate economic un- 

ertainty and boost investment in the CEA sector, we have devel- 

ped robust-optimal investment decision-making and operations 

lanning frameworks from both a commodities trader’s and a 

rower’s perspective. 

The trader’s perspective is first presented as a direct implemen- 

ation of established MPT and robust optimization methodologies. 

t is used to determine optimal investment allocations for portfo- 

ios of crop-specific commodities that minimize portfolio risk un- 

er worst-case uncertainty while delivering at least a minimum 

esired return on investment. While the Trader’s Model is effective 

n identifying commodities investment portfolios (i.e., crop alloca- 

ions) that are robust to worst-case risk, it is insufficient for op- 

imizing the design and operation of highly complex CEA systems 

s a whole, which is desired to promote investment in and adop- 

ion of CEA technology. This problem, unlike the Trader’s Model, 

s nontrivial because it requires solution of a bilevel program with 

 nonconvex outer program and multiple semidefinite inner pro- 

rams. Since existing approaches could not be directly applied to 

olve this type of problem, a new methodology is developed herein 

or the global solution of a semi-infinite program (SIP) with mul- 

iple semi-infinite constraints. This Grower’s Model was developed 

ased on an extension of the Trader’s Model and has been formu- 

ated generally to enable robust optimal decision-making for real- 

orld CEA systems. 
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The proposed modeling frameworks and solution algorithms 

uarantee globally optimal solutions that enable stakeholders to 

educe their risk exposure and financial vulnerability to worst-case 

arket risk realizations, resulting in more stable economic per- 

ormance of agricultural systems over the long term. The models’ 

erformance is assessed through two case studies involving culti- 

ation of multi-crop portfolios. The broader implications of both 

pproaches are discussed and the economic outcomes are com- 

ared against naïve investment and growing strategies from both 

erspectives. The risk reduction achieved through portfolio diver- 

ification and protection against worst-case risk achieved through 

obust optimization can be used to attract economic investment in 

his growing sector of the agriculture industry. 

. Method development 

In this section, the robust optimization modeling frameworks 

re formalized from the trader’s and grower’s perspectives. First, 

he trader’s perspective is considered as a straightforward appli- 

ation of robust portfolio optimization to CEA systems with crop- 

pecific commodities as assets. The trader’s approach is then ex- 

ended to the grower’s perspective where the simultaneous engi- 

eering design and operation of CEA systems is considered, en- 

bling full-operation economic feasibility assessment of CEA sys- 

ems. 

.1. Deterministic optimization from a trader’s perspective 

First, we develop a general method to generate agricultural 

ommodities portfolios that are robust to a user-specified level of 

arket uncertainty. This method can be applied to any agricultural 

ortfolio for which historical crop pricing information is known 

nd serves as a foundation for the development of our general ap- 

roach to optimizing CEA systems under market uncertainty pre- 

ented in Section 3.2 . 

To evaluate the economic feasibility of investment in agricul- 

ure from a commodities trader’s perspective, robust optimization 

f investment portfolios comprised of crop-specific commodities 

as been performed. To do this, it was assumed that investors seek 

 risk-averse investment strategy—a foundational assumption of 

PT—and that the risk (variance) associated with a given portfolio 

s calculated according to the MPT definition ( Markowitz, 1952 ): 

 = x 

T Mx (1) 

here x ∈ X ⊂ R 

n c is the portfolio allocation of each crop i =
 , . . . , n c with X = [0 , 1] n c and M ∈ R 

n c ×n c is the covariance matrix

f returns for all crop pairings over the investment period. Using 

his definition of risk, the trader seeks to minimize the maximum 

mpact of uncertainty (risk) by finding a portfolio allocation that 

ields at least a minimum desired return while avoiding exposure 

o greater risk than their appetite. 

The Trader’s Problem is formulated as the following min-max 

roblem: 

f ∗ = min 

x ∈ X 
max 
M ∈ M 

x 

T Mx − t r 

s . t . r T x ≥ r min (2) 

1 

T x = 1 . 

M � 0 

M ∈ IR 

n c ×n c , X = [0 , 1] n c 

here t r ∈ R is the trader’s tolerable risk level (user-specified pa- 

ameter), r ∈ R 

n c is the vector of expected returns on each crop, 

nd r min is the minimum required return on the portfolio. 

To generate portfolios robust to a user-specified level of worst- 

ase risk t r , the model requires an input of historical pricing infor- 

ation for each commodity. Bounds on the uncertain covariance 
4 
atrix of historical crop returns M were derived based on the as- 

umption that future crop returns will not vary with respect to one 

nother beyond the range by which they have done so historically 

ver the same period during the past five years. The minimum and 

aximum values for each entry of the covariance matrix (i.e., each 

rop pairing) observed across all five historical covariance realiza- 

ions considered under this assumption were selected as the lower 

nd upper bounds of the real interval matrix M ∈ IR 

n c ×n c (i.e., an 

 c × n c -dimensional matrix whose elements are nonempty com- 

act intervals). 

Since the portfolio allocation variable vector x represents the 

ractions of the total portfolio that are to be invested in each crop, 

ach component of x is bounded between 0 and 1 by components 

f X, and the vector sum is constrained to equal 1 (i.e., all available

nvestment funds are allocated). Lastly, a constraint limiting the 

nvestment portfolio’s minimum expected return r min is included 

o ensure that risk mitigation efforts are only applied to the ex- 

ent that at least a minimum economic return on investment can 

till be achieved. Note, since r min is specified prior to any uncer- 

ainty analysis, this formulation may be infeasible (i.e., minimum 

equired returns are too great). Further, since t r is specified inde- 

endently and prior to any uncertainty analysis, this problem (if 

easible) provides the user with a “yes/no” determination of ro- 

ustness. That is, a feasible solution is not robust if f ∗ > 0 as no

ortfolio could be found that minimizes the maximum impact of 

ncertainty and therefore results in greater risk exposure than tol- 

rable. 

Due to the complicated characterization of the feasible set of 

his optimization problem, the min-max program is not readily 

olvable using standard algorithms for nonlinear programs (NLPs), 

nd therefore must be reformulated. Min-max programs are often 

eformulated as SIPs since several algorithms exist to estimate so- 

utions of SIPs ( Rustem and Howe, 2002 ). The min-max program is 

rst reformulated as a bilevel program: 

∗ = min 

η∈ H⊂R , x ∈ X 
η

s . t . r T x ≥ r min (3) 

1 

T x = 1 

η ≥ max 
M ∈ M 

x 

T Mx − t r 

s . t . M � 0 

here η has been introduced as an auxiliary variable. 

Significant effort s have been made to solve various classifi- 

ations of bilevel programs using multiparametric programming 

 Pistikopoulos, 2009; Oberdieck et al., 2016 ). In multiparametric 

rogramming, the inner (multidimensional parametric) optimiza- 

ion problem is recast within a framework that seeks to character- 

ze parametric optimal solution profiles as explicit mappings, with 

arameters corresponding to the decision variables of the outer 

ptimization problem ( Pistikopoulos, 2009 ). This allows the bilevel 

rogram to be recast into single-level deterministic optimization 

roblems. Established methodologies for this approach are sum- 

arized in Oberdieck et al. (2016) , and barring some examples 

f approximate solution maps for certain problems (e.g., see Dua 

t al., 2004; Grancharova and Johansen, 2006; Bemporad and Fil- 

ppi, 2006 ), this approach has only been used broadly for prob- 

ems with inner programs as LPs and quadratic programs (QPs) 

 Oberdieck et al., 2016 ). For bilevel problems involving a noncon- 

ex outer program and a non-LP/QP inner program, such as the 

ne we aim to treat in this application, established multiparamet- 

ic programming methodology cannot be applied to furnish a glob- 

lly optimal solution. As a result, this approach is not applica- 

le to solve bilevel programs with an LP or NLP outer program 

nd a semidefinite (SDP) inner program, as is the case for the 
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Fig. 1. The cutting-plane algorithm of Blankenship and Falk (1976) is illustrated in 

this flowchart as an iterative sequential solution of two NLPs. This algorithm is used 

to solve the semi-infinite programming problems for the trader’s and grower’s per- 

spectives. 
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rader’s and Grower’s Problems considered herein. The approach 

f Bemporad and Filippi (2006) for approximate solutions of mul- 

iparametric SDPs, may be applicable here, albeit not directly as 

t was developed only for linear functions. Further, since only a 

nite number of SDPs must be solved to optimality and can be 

one so very efficiently with available solvers, the advantages of 

eveloping a new multiparametric programming approach for this 

lass of problems are not clear. For these reasons, we have decided 

o take an alternative approach and develop new solution strate- 

ies that exploit, as much as possible, efficient subprogram solvers 

o achieve our primary objective: the robust design of real-world 

EA systems (i.e., the development and global optimization of the 

rower’s Model). 

To achieve our objectives, we follow the approach of refor- 

ulating min-max and bilevel programs as SIPs (i.e., equivalent 

pigraph reformulations ( Falk and Hoffman, 1977; Halemane and 

rossmann, 1983; Žakovi ́c and Rustem, 2003; Stuber et al., 2014; 

tuber and Barton, 2015 )). The Trader’s Problem bilevel program 

3) is reformulated as the following SIP: 

∗ = min 

η∈ H⊂R , x ∈ X 
η

s . t . r T x ≥ r min (4) 

1 

T x = 1 

x 

T Mx − t r − η ≤ 0 , ∀ M ∈ M, M � 0 . 

he first (inequality) and second (equality) constraints are affine 

unctions of x , and therefore are trivially convex on X . Since M 

s positive semidefinite, the semi-infinite constraint is convex with 

espect to x ∈ X and η ∈ H ⊂ R for every M . Therefore, the SIP fea-

ible set (and any discretization) is convex. The Trader’s Problem 

IP can trivially be solved using existing algorithms. However, the 

rower’s Model SIP is significantly more complicated, and a new 

olution approach has been proposed in Section 3.2 . 

We propose using the Blankenship and Falk (1976) cutting- 

lane algorithm (illustrated in Fig. 1 ) to solve (4) which involves an 

terative procedure of sequentially solving two auxiliary programs. 

t iteration k, the first program solved is the outer program (Step 

 in Fig. 1 ): 

ηk , x 

k ) ∈ arg min 

η∈ H, x ∈ X 
η

s . t . r T x ≥ r min (5) 

1 

T x = 1 
5 
x 

T Mx − t r − η ≤ 0 

M ∈ �k , 

here �k ⊂ M is a discrete set of positive semidefinite matrices 

 ∈ M. Thus, (5) has a linear objective with affine and convex 

uadratic constraints. The second program solved is the inner pro- 

ram or feasibility problem (Step 2 in Fig. 1 ): 

 

k = max 
M ∈ M 

(x 

k ) T Mx 

k − t r − ηk 

s . t . M � 0 , (6) 

hich is an SDP. If g k > 0 , the corresponding optimal solution M 

k 

s added to the discrete matrix set for the next iteration: �k +1 := 

k ∪ { M 

k } in Step 3 of Fig. 1 . Otherwise, a feasible optimal solution

ηk , x k ) has been found and the algorithm terminates. 

heorem 3.1. Let H ∈ IR , X ∈ IR 

n x and M ∈ IR 

n x ×n x be nonempty. 

efine F M 

= { M ∈ M : M � 0 } . For any �0 ⊂ F M 

, the algorithm of

lankenship and Falk (1976) converges to the optimal objective func- 

ion value: { ηk } → η∗. 

roof. This result follows from compactness of F M 

and conti- 

uity of x T Mx − t r − η on X × F M 

, by Lemmas 2.2-2.3 of Mitsos

2011) . �

Note, since the inner program is an SDP, its feasible set F M 

s non-polyhedral and so convergence in finitely-many iterations 

annot be guaranteed ( Blankenship and Falk, 1976 ). The modifi- 

ation presented by Mitsos (2011) could be used, which involves 

olving an additional auxiliary problem to guarantee furnishing a 

easible point in finitely-many iterations under relatively mild as- 

umptions. For the cases considered herein, the Blankenship and 

alk (1976) algorithm converged within a few iterations and there- 

ore was adopted in favor of the Mitsos (2011) algorithm for its 

educed computational complexity. 

.2. Deterministic optimization from a grower’s perspective 

The Trader’s Model was extended to develop our novel Grower’s 

odel that can be used to optimize the economic performance 

f CEA systems under controlled risk exposure. Like the Trader’s 

odel, the Grower’s Model is a general approach that enables op- 

imization of CEA systems used to cultivate any crop portfolio for 

hich historical crop pricing information is known. This method 

as developed for use as a decision-making and planning tool for 

he implementation of CEA systems under market uncertainty. 

In contrast to the trader’s perspective, the grower’s perspective 

ccounts for the capital and operating expenses involved in run- 

ing a CEA system. The upfront capital investment in CEA systems 

an be significant but affords the grower a unique advantage over 

he trader, that is, the opportunity to profit from the value added 

y growing fresh produce from seed to plant. As the CEA indus- 

ry continues to grow, decision-making models capable of mitigat- 

ng uncertainty in CEA systems will be of increased demand as 

hey provide critical insight to assessing the long-term financial 

ustainability of these operations. The Grower’s Model presented 

erein represents, to our knowledge, the first robust optimization 

pproach to CEA systems and is intended to provide design and 

perational insight for CEA technology adoption by enabling eco- 

omic feasibility assessment of CEA systems under controlled risk 

xposure. 

As applied in the trader’s perspective, the strategy of achiev- 

ng robustness to market volatility through asset diversification has 

imilarly been applied to the grower’s perspective where planting 

llocations are diversified over multiple grow periods, each under 

ontrolled risk exposure, while the economic performance of the 

ntire system is simultaneously optimized over the CEA system’s 
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roject horizon. To optimize the Grower’s Model subject to uncer- 

ainty, the following bilevel program with a nonconvex outer pro- 

ram and several SDPs as inner programs, must be solved to global 

ptimality: 

f ∗ = max 
d ∈ D, X ∈ �

f NPV (d , X ) 

s . t . 1 

T x j = 1 , j = 1 , . . . , n p (7) 

d z+2 = 

( 

μ∑ 

ζ=1 

d ζ+2 

) ( ∑ 

i ∈ κz 

x i j 

) 

, j = 1 , . . . , n p , z = 1 , . . . , μ

Qp min ≤
( 

μ∑ 

ζ=1 

d ζ+2 

) ( 

Y 

4 ∑ 

j=1 

x j+4(q −1) 

) 

≤ Qp max , 

q = 1 , . . . , n y 

0 ≥ max 
j∈{ 1 , ... ,n p } 

{
max 
M j ∈ M j 

x 

T 
j M j x j − t r : M j � 0 , 

M j ∈ IR 

n c ×n c , j = 1 , . . . , n p 

} 

. 

n this model, crop allocation decisions that are robust to a spec- 

fied level of tolerable risk t r are made on a quarterly basis while 

he design of the CEA system is simultaneously optimized to 

chieve a maximum net present value (NPV) over a user-specified 

roject horizon of n y years. This model includes design decision 

ariables d ∈ R 

n d with components representing the capacity ded- 

cated to each cultivation mode (size of the proposed CEA sys- 

em in square feet) and location (x and y coordinates in miles 

est/east and north/south of a user-specified urban center repre- 

enting a location of peak demand) of the proposed CEA system. 

n the case of CEA systems with multiple cultivation modes, capac- 

ty is split between multiple decision variables d z+2 , z = 1 , . . . , μ,

ach representing the capacity dedicated to a single cultivation 

ode. Additionally, the model includes crop allocation decision 

ariables X ∈ R 

n c ×n p for the first n p quarterly grow cycles of oper- 

tion which are repeated to span the entire duration of the project 

orizon over which the NPV is maximized and are bounded by the 

et � ∈ IR 

n c ×n p as the interval matrix with elements as the in- 

erval [0,1]. The growing allocation for the jth grow cycle is rep- 

esented by the jth column vector of X denoted by x j ∈ [0 , 1] n c ,

z is an index set corresponding to the crops cultivated by mode 

, Y ∈ R 

n c ×n c is a diagonal matrix with entries representing the 

nnual yield per square foot of each crop, Q ∈ R 

n c ×n c is a diago-

al matrix with entries representing the annual market demand of 

ach crop, and p min , p max ∈ R 

n c are respectively the minimum and 

aximum crop production limits for the CEA system. 

The NPV of the system is calculated by the function: 

f NPV ( d , X ) = C re v ( d , X ) − (1 + P ) C cap (d ) − C op ( d , X ) , (8) 

here C re v is the lifetime revenue of the project, P is the capital fi- 

ancing coefficient, C cap is the total capital cost of the project, and 

 op is the lifetime operating cost of the project. Due to the struc- 

ure of our formulation, which involves forecasting dynamic crop 

ortfolios over a two-year planning horizon, annual revenues over 

ach odd year of the project horizon are identical as are those over 

ach even year of the project horizon. The same applies to oper- 

ting expenses. Lifetime revenue and operating expenses are first 

alculated on an annual basis for odd and even years of the project 

orizon as shown here: 

 re v ,odd (X ) = w 

T Y 

4 ∑ 

j=1 

x j (9) 
a

6 
 re v ,e v en (X ) = w 

T Y 

8 ∑ 

j=5 

x j (10) 

 op,od d ,z (X ) = 

4 ∑ 

j=1 

I op, j,z (x j ) (11) 

 op,e v en,z (X ) = 

8 ∑ 

j=5 

I op, j,z (x j ) , (12) 

here w ∈ R 

n c is the expected market price of each crop, I op, j,z ( x j )

s the operating cost over quarter j for cultivation mode z that 

cales with system capacity (e.g., quarterly water bill for cultiva- 

ion mode z). V i is defined as a cash flow discount coefficient of 

ear i accounting for a 12% cash flow discount rate to be applied 

o the revenue and operating expenses: 

 i = (1 + r d ) 
−i , (13) 

nd C re v ( d , X ) and C op ( d , X ) are calculated from (9) to (12) as: 

 re v ( d , X ) = 

( 

μ∑ 

ζ=1 

d ζ+2 

) ( 

C re v ,odd (X ) 
∑ 

i ∈ β
V i + C re v ,e v en (X ) 

∑ 

i ∈ δ
V i 

) 

(14) 

 op ( d , X ) = 

( 

μ∑ 

z=1 

d z+2 

( 

C op,od d ,z (X ) 
∑ 

i ∈ β
V i + . . . 

. . . + C op,e v en,z (X ) 
∑ 

i ∈ δ
V i 

) ) 

+ F (d ) 

n y ∑ 

i =1 

V i , 

(15) 

here we define β = { 2 x − 1 : x ∈ N , 1 ≤ 2 x − 1 ≤ n y } and δ = { 2 x :
 ∈ N , 1 ≤ 2 x ≤ n y } , and F (d ) accounts for the annual operating

xpenses that are independent of capacity and cultivation mode. 

apital expenses and capital financing are calculated by the equa- 

ions: 

 cap (d ) = 

μ∑ 

z=1 

C 1 ,z (d z+2 ) 
0 . 9 + C 2 ,z d z+2 + G (d ) d z+2 + C 3 ,z (16) 

 (d ) = S exp 

(
−x scale (d 1 ) 

2 + y scale (d 2 ) 
2 
)

+ S min (17) 

 = 

12 b(1 + b) 12 n l 

((1 + b) 12 n l − 1) 

n l ∑ 

i =1 

V i , (18) 

here C 1 ,z , C 2 ,z , and C 3 ,z are constants corresponding to each cul- 

ivation mode, z, that are independent of the design decision vari- 

bles d and must be determined for each unique portfolio. For 

ach cultivation mode z, C 1 ,z is the sum of capital expenses that 

cale with capacity to which a 10% volume discount is applied (e.g., 

uilding materials with a bulk discount), C 2 ,z is the sum of capital 

xpenses that scale with capacity to which no discount is applied 

e.g., building materials without a bulk discount), and C 3 ,z is the 

um of fixed capital expenses that do not scale with capacity (e.g., 

urchasing a fixed number of delivery trucks). A capital financing 

oefficient P, that is applied to capital expenses for NPV calcula- 

ion, is defined in (18) and accounts for monthly amortization of 

apital expenses at a monthly interest rate b over the duration of 

he loan repayment period n l in years. Capital financing has been 

mortized monthly while cash flows have been discounted annu- 

lly. 



S.A. Cetegen and M.D. Stuber Computers and Chemical Engineering 149 (2021) 107285 

c

o

e

l

t

t

o

p

e

t

i  

p

m

a

o

m

m

a

h

e

c

G

h

c

v

v

s

a

v

a

d

v

d

G

S

f

 

i

F  

P

v

t

n

t

t

N

r

g

d

e

l  

Fig. 2. The structure of the deterministic global optimization algorithm developed 

for solving the nonconvex outer program (20) of the Grower’s Model is illustrated 

with its core routine as a customized spatial branch-and-bound algorithm that 

branches only on the design space D . This algorithm is guaranteed to solve (20) to 

global optimality in finite time. 
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The land cost model G is defined in (17) where S is the land 

ost per square foot at the city center (i.e., the presumed location 

f peak demand to which all products are assumed to be deliv- 

red), x scale and y scale are scaling factors representing the rate of 

and depreciation in the outward latitudinal and longitudinal direc- 

ions from the city center, and S min is the minimum land cost as 

he distance from the city center approaches infinity (i.e., no free 

r negative-cost land available). This Gaussian function returns the 

er-square-foot land acquisition cost; a non-discountable capital 

xpense that scales with capacity. This term has been isolated from 

he C 2 ,z constant in the capital expense model since, unlike C 2 ,z , it 

s dependent on the location decision variables (d 1 , d 2 ) . This de-

endency introduces nonconvexity to the capital expense and NPV 

odels which necessitates the construction of custom affine relax- 

tions (see Supplementary Information) to ensure that a globally 

ptimal solution to the model can be obtained. Since this land cost 

odel is symmetric about the longitudinal and latitudinal axes, 

ultiple global optima arise. This land cost model (17) was cre- 

ted to represent a hypothetical cost model centered on a city with 

igh land costs that decrease exponentially from the center; how- 

ver, alternative models could be substituted in its place. The spe- 

ific costs associated with the economic objective function of the 

rower’s Problem that are considered in the case studies presented 

erein are detailed in the Supplementary Information. 

To summarize, capital expenses are dependent on all design de- 

ision variables d and independent of all crop allocation decision 

ariables X since the total crop allocation to an individual culti- 

ation mode remains constant over all n p periods because con- 

traints have been imposed to restrict modifying the system design 

fter its initial construction (i.e., capacity dedicated to each culti- 

ation mode and location of the CEA operation does not change 

fter initial system construction). Operating expenses are depen- 

ent on all design decision variables d and crop allocation decision 

ariables X . Revenue is dependent on capacity decision variables 

 z+2 , z = 1 , . . . , μ, and crop allocation decision variables X . 

Following a similar development to the Trader’s Problem, the 

rower’s Problem is then formulated as the following equivalent 

IP: 

 

∗ = max 
d ∈ D, X ∈ �

f NPV (d , X ) 

s . t . 1 

T x j = 1 , j = 1 , . . . , n p (19) 

d z+2 = 

( 

μ∑ 

ζ=1 

d ζ+2 

) ( ∑ 

i ∈ κz 

x i j 

) 

, j = 1 , . . . , n p , z = 1 , . . . , μ

Qp min ≤
( 

μ∑ 

ζ=1 

d ζ+2 

) ( 

Y 

4 ∑ 

j=1 

x j+4(q −1) 

) 

≤ Qp max , q = 1 , . . . , n y

x 

T 
j M j x j − t r ≤ 0 , ∀ M j ∈ M j ∈ IR 

n c ×n c , j = 1 , . . . , n p 

M j � 0 , j = 1 , . . . , n p , 

n order to utilize the algorithmic framework of Blankenship and 

alk (1976) , illustrated in Fig. 1 . The outer program of the Grower’s

roblem (19) determines the design and crop allocation decision 

ariables to maximize NPV, the discounted sum of cash flows over 

he duration of the user-specified planning horizon, while the in- 

er program selects covariance matrices for individual grow cycles 

hat result in worst-case risk. Using this approach, the program de- 

ermines the optimal design and crop allocations that maximize 

PV when the worst-case market volatility of all grow cycles is 

ealized. This approach ensures that risk exposure during any one 

row period does not exceed a user-specified risk tolerance and 

elivers the maximum possible NPV for the system, ensuring peak 

conomic performance under controlled risk exposure. 

At iteration k of the cutting-plane algorithm, we solve the fol- 

owing outer program (Step 1 of Fig. 1 ) as an NLP relaxation of the
7 
riginal SIP (19) , formulated as: 

d 

k , X 

k ) ∈ arg max 
d ∈ D, X ∈ �

f NPV (d , X ) 

s . t . 1 

T x j = 1 , j = 1 , . . . , n p (20) 

d z+2 = 

( 

μ∑ 

ζ=1 

d ζ+2 

) ( ∑ 

i ∈ κz 

x i j 

) 

, 

j = 1 , . . . , n p , z = 1 , . . . , μ

Qp min ≤
( 

μ∑ 

ζ=1 

d ζ+2 

) ( 

Y 

4 ∑ 

j=1 

x j 

) 

≤ Qp max 

Qp min ≤
( 

μ∑ 

ζ=1 

d ζ+2 

) ( 

Y 

8 ∑ 

j=5 

x j 

) 

≤ Qp max 

x 

T 
j M j x j − t r ≤ 0 , ∀ M j ∈ �k 

j , j = 1 , . . . , n p . 

ince each of the matrices M j ∈ �k 
j 

are positive semidefinite, the 

uadratic inequality constraints are convex. Similarly, the first 

quality constraints are affine and therefore convex. Unfortunately, 

he second equality constraints related to the cultivation mode al- 

ocation are bilinear (nonconvex), the market share inequality con- 

traints are bilinear (nonconvex), and f NPV is likely nonconcave 

ue to the existence of bilinear terms, summation of convex and 

oncave terms, and the nonconvex Gaussian term (17) . Therefore, 

20) must be solved to guaranteed global optimality. 

For this, we employ the extensible spatial branch-and-bound 

lgorithm from EAGO v0.5.2 ( Wilhelm and Stuber, 2018; 2020 ) 

ith custom upper- and lower-bounding problems as illustrated 

n Fig. 2 . The lower-bounding problem is defined simply as the 

LP (20) with the given decision space corresponding to the cur- 

ent node in the branch-and-bound tree. We solve this problem to 

ocal optimality using IPOPT ( Wächter and Biegler, 2006 ) through 

he Ipopt.jl package v0.6.3. The upper-bounding problem is defined 

sing a partial relaxation procedure whereby we calculate affine 

elaxations of all nonlinear terms such that only affine and bilin- 

ar terms remain. In this case, since only C cap involves such terms, 

nly affine relaxations of the terms C 1 ,z (d z+2 ) 
0 . 9 , z = 1 , . . . , μ and

he function G, on their respective domains, are required. De- 

ails of how the affine relaxations are constructed can be found 

n the Supplementary Information. We then employ Gurobi v9.1.1 
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 Gurobi Optimization, 2020 ) with its nonconvex algorithm option 

o solve the resulting (potentially nonconcave) program. 

The branch-and-bound algorithm is restricted to only branch 

n the d variables (i.e., those that are involved in the more com- 

licated nonlinear expressions requiring custom relaxations) as 

urobi branches on both the X variables and d variables within the 

urrent node of the branch-and-bound tree. This novel selective 

ranching strategy enables the combination of McCormick-based 

nvelopes ( McCormick, 1976 ) through custom routines in EAGO 

ith the bilinear relaxations of Gurobi for an extremely effective 

patial branch-and-bound algorithm capable of solving the large- 

cale Grower’s Problems to guaranteed global optimality. All opti- 

ization problems are formulated in JuMP v0.21.4 ( Dunning et al., 

017 ) in the Julia programming language v1.5.2 ( Bezanson et al., 

017 ). 

Since the Grower’s Problem contains multiple semi-infinite 

onstraints, at each iteration of the cutting-plane algorithm we 

olve in Step 2 of Fig. 1 , the following n p feasibility problems—

orresponding to the lower-level programs of the original bilevel 

ormulation— are solved to assess the feasibility of the design and 

ulti-period crop allocations: 

 

∗
j = max 

M j ∈ M j 

(x 

k 
j ) 

T M j x 

k 
j − t r (21) 

s . t . M j � 0 . 

ince x k 
j 

is treated as constant (determined by (20) ) and t r is 

 user-defined parameter, the feasibility problems are SDPs, and 

herefore convex. Feasibility of a design (d 

k , X 

k ) is then satisfied 

or γ ≤ 0 , with 

≡ max 
j∈{ 1 , ... ,n p } 

g ∗j . 

or every j ∈ { 1 , . . . , n p } such that g ∗
j 
> 0 , we add the correspond-

ng M 

∗
j 

to the discrete set �k 
j 

(i.e., �k +1 
j 

:= �k 
j 
∪ { M 

∗
j 
} ) as Step 3 of

ig. 1 . If an infeasible allocation for some grow period j is found, 

hen the corresponding realization of uncertainty M j is added to 

he discrete set � j of the corresponding SIP constraint in the up- 

er program by the cutting-plane algorithm. The feasibility pro- 

rams were solved using SCS ( O’Donoghue et al., 2016; 2019 ). The 

onvexity of the inner program ensures that the local optimum ob- 

ained using SCS is a guaranteed global optimum. 

In summary, the Grower’s Problem (19) is an SIP with n c ×
 p + μ + 2 upper-level decision variables corresponding to the sys- 

em design and growing decisions, and n p semi-infinite constraints 

ach with n c × n c lower-level variables corresponding to uncer- 

ainty for each grow period. In Section 4 , two Grower’s Model case 

tudies are considered with the largest exhibiting n c = 5 , n p = 8 ,

nd μ = 2 , resulting in an SIP with 44 upper-level decision vari- 

bles and 8 semi-infinite constraints each parameterized by 25- 

imensional uncertainty sets. As such, this is a large-scale prob- 

em that is significantly more complex than any problem reported 

n the nonconvex SIP literature ( Mitsos, 2011; Bhattacharjee et al., 

0 05b; 20 05a ). Although the semi-infinite constraints are convex, 

he SIP cannot be reduced to a standard NLP using a KKT reformu- 

ation approach, due to the semidefinite constraints. 

As formulated, this model can easily be adapted to optimize the 

esign and operation of CEA systems for cultivation of any num- 

er of crops n c via any number of distinct cultivation modes μ; 

owever, there exist some limitations to current formulation. For 

xample, the current formulation of the Grower’s Model assumes 

hat all crops grown in the CEA system are cultivated over quar- 

erly grow periods; however, the model can be adapted to account 

or grow periods of any duration by modifying the selection of his- 

orical pricing data used to construct bounds on M and updating 

he cash flow discounting and NPV formulations accordingly. As 

urrently formulated, this model is not equipped to optimize the 
8 
roduction of portfolios containing individual crops with distinct 

row periods, although this could be implemented with careful 

onsideration of risk and cash flows corresponding to each crop. 

nother limitation of the Grower’s Model arises from the large dis- 

repancy between the project horizon (i.e., 30 years) and planning 

ecision (i.e., 3 months) timescales for which long-term planning 

f crop portfolios may be more suitably performed using a dy- 

amic optimization approach. For this reason, crop planning de- 

isions were only made for the first two years of the project hori- 

on using our Grower’s Model. These plans were then repeated 15 

imes to span the full 30-year project horizon. This approach was 

dopted in favor of making planning decisions for all 120 of the 

uarterly periods over the 30-year project horizon. This is because 

ounding the covariances of crop returns thirty years into the fu- 

ure based on long outdated historical pricing data may yield inac- 

urate results for this deterministic approach. 

The presented Grower’s Model represents a conservative 

ethod for CEA systems design since it delivers a design that is 

obust to the worst-case market uncertainty across all grow pe- 

iods n p . For this reason, the approach is intended primarily to 

id in the initial design and planning of CEA systems. Once a CEA 

ystem design has been established, dynamic crop allocation and 

row scheduling optimization would be recommended to maxi- 

ize economic output under the chosen design accounting for the 

ost up-to-date risk information. 

. Case studies 

The Trader’s Problem (4) and Grower’s Problem (19) were each 

olved for two distinct case studies. To evaluate the proposed 

ethodology across models and case studies, the robust design ap- 

roaches employed were quantitatively compared to a naïve design 

pproach, which was contrived to represent an assumed standard 

pproach to decision-making in CEA systems design in the absence 

f CEA decision-making models. 

.1. Trader’s perspective 

.1.1. Trader’s perspective methods 

The Trader’s Problem (4) was applied in two case studies to an- 

lyze the effectiveness of our methodology against naïve invest- 

ent strategies. The model was solved for two multi-crop port- 

olios using an input of historical pricing information in the form 

f monthly time-series data sourced from Tridge, a global trade 

cosystem offering comprehensive market intelligence on agricul- 

ural products ( Tridge, 2019 ). The two portfolios considered in this 

nalysis were Portfolio A, containing lettuce, spinach, tomatoes, 

nd strawberries; and Portfolio B, containing the same crops with 

he addition of mushrooms, which were included to introduce a 

econd cultivation mode to the Grower’s Model. Note that these 

pecific crops were selected because they have been cultivated 

n existing CEA operations ( Gómez et al., 2019; Miles and Chang, 

004 ) and open-access crop-specific market pricing data is read- 

ly available for them, enabling consistent analysis across both the 

rader’s and grower’s perspectives. 

The Trader’s Problem (4) was solved to determine robust op- 

imal investment portfolios for quarterly periods over a two-year 

lanning horizon. To study any potential impact of the starting 

onth of the planning horizon on investment strategies (e.g., pos- 

ible seasonal impacts), the described quarterly planning exercise 

as conducted with the starting month set to each calendar month 

i.e., 12 independent studies). The expected risk and returns of the 

obust optimal solutions for each portfolio are reported and com- 

ared against the naïve strategy of investing in an equally dis- 

ributed portfolio in Section 4.1.2 . 
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Fig. 3. Robust optimal dynamic portfolio allocations for the November 1, 2017–November 1, 2019 planning horizon for the Trader’s perspective with 25% tolerable risk. 

Spinach is favored in Portfolio A and mushrooms are heavily favored in Portfolio B. 

Fig. 4. Normal distributions were fit to historical crop returns and used to assess performance of robust and naïve portfolios from a returns perspective. 
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.1.2. Trader’s perspective results 

Solving the trader’s problem yielded robust feasible dynamic 

row schedules for 31 out of the 33 unique quarterly periods sim- 

lated for Portfolio A and all 33 unique quarterly periods simu- 

ated for Portfolio B. Fig. 3 illustrates the results corresponding to 

he solution of the trader’s problem for a single two-year planning 

orizon with a tolerable quarterly risk of t r = 25% and minimum 

uarterly return of r min = 2% . These results show that optimization 

rom the trader’s perspective yields distinct investment portfolios 

ver each quarter of the two-year investment period considered. 

Once robust optimal dynamic portfolios were generated, their 

xpected risk and returns were compared against those of the 

aïve strategy. For returns comparison, distributions of historically- 

bserved quarterly returns on each crop were constructed from 

he past five years of data as shown for two crops in Fig. 4 .

hese data were assumed to be representative of the future ex- 

ected returns on each crop. Normal distributions were then fit to 

he historical data to obtain samplable approximations of the ex- 

ected quarterly return on each crop. Finally, a Monte Carlo sim- 

lation with 10 5 realizations of market returns sampled from the 

ormal distributions was performed to calculate the expected re- 

urns of the robust and naïve portfolios as shown in Fig. 6 . Sim-

larly, for risk comparison, normal distributions were constructed 

or the entries of M using the interval M by taking the means as 

he interval midpoints and the standard deviations as one-third 

f the interval radii. A Monte Carlo simulation with 5 × 10 5 re- 

lizations of market volatility M sampled as PSD matrices from 

hese probability distributions was then performed to calculate 

he expected risk of the robust and naïve portfolios shown in 

ig. 5 . 

Results of the Monte Carlo simulations show that robust op- 

imal portfolios effectively reduced risk exposure with respect to 

aïve portfolios in all quarters for which robust solutions were 

btained. Monte Carlo simulation results for risk and returns for 

ortfolio B over a single two-year planning horizon are shown 

n Figs. 5 and 6 , respectively. These results only compare naïve 

nd robust expected portfolio performance over a single two- 
9 
ear period simulated, but encompass the general trends observed 

hroughout all quarters for which robust feasible solutions were 

btained. 

The results show that expected worst-case risk performance 

highest risk) of the robust portfolios is lower than the best-case 

isk performance (lowest risk) of the naïve portfolios, demonstrat- 

ng a clear advantage of the robust approach from a risk perspec- 

ive. Robust portfolios also result in narrower risk distributions 

han naïve portfolios, meaning that the sensitivity of portfolio risk 

o market volatility is reduced using the robust optimization ap- 

roach. The results also show that expected average returns for the 

obust portfolios are lower than those of the naïve portfolios, as 

as expected due to the risk-returns trade-off otherwise referred 

o as the price of robustness. It is notable, however, that the worst- 

ase returns performance (lowest returns) of the robust portfolios 

s better than the worst-case returns performance (lowest return) 

f the naïve portfolios, demonstrating another advantage of this 

pproach from a returns perspective. Through the robust optimiza- 

ion approach, the sensitivities of both portfolio risk and returns 

o market volatility are reduced; a potentially useful result for in- 

orming agricultural commodities investment decision-making. 

The effectiveness of this approach over alternative approaches 

i.e., the naïve strategy) from a risk perspective is illustrated 

hrough Fig. 7 which shows risk exposure of robust and naïve 

ortfolios under worst-case and expected market conditions for all 

uarters simulated. Solutions of (4) provide portfolio allocations 

hat are robust to worst-case market volatility. Robust and naïve 

xpected risk was calculated using the robust and naïve portfolio 

llocations with a nominal covariance matrix that assumes each 

ntry takes the element-wise median of the interval matrix of M. 

his nominal covariance assumption represents the market condi- 

ions under which all assets vary with respect to one another by 

he average amount they did over the past five years. This was in- 

luded to contrast portfolio performance under nominal (expected) 

arket volatility with that under worst-case market volatility. Fi- 

ally, naïve worst-case risk was calculated by tuning the covariance 

atrix entries between the bounds on M to maximize naïve port- 
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Fig. 5. Risk performance of Portfolio B is compared for naïve and robust (generated using 25% tolerable risk) portfolios for 5 × 10 5 realizations of expected market behavior 

over the March 1, 2018–March 1, 2020 planning horizon. Robust portfolios show narrower distributions and significantly reduced mean risk. 

Fig. 6. Returns performance of Portfolio B is compared for naïve and robust (generated using 25% tolerable risk) portfolios for 5 × 10 5 realizations of expected market 

behavior over the March 1, 2018–March 1, 2020 planning horizon. Robust portfolios show narrower distributions but lower mean expected returns. 

Fig. 7. Risk is compared between robust and naïve portfolios under expected and worst-case market conditions for Portfolios A and B. 

10 
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Fig. 8. Minimum returns vs. worst-case risk trade-off for Portfolios A and B are shown with solutions below 25% tolerable risk (vertical red lines) representing robust optimal 

solutions and solutions above 25% tolerable risk representing non-robust optimal solutions. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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olio risk. This represents the upper-bound of naïve portfolio risk 

hat can be observed for these crop portfolios. 

As expected, and as shown in Fig. 7 , it was observed that for a

iven investment strategy (i.e., naïve or robust), portfolio risk ex- 

osure was lower under expected market conditions than under 

orst-case market conditions. By applying the robust optimization 

trategy, risk was reduced by an average of 37% for Portfolio A and 

7% for Portfolio B compared against the naïve strategy under ex- 

ected market volatility. Under worst-case market volatility, the ro- 

ust portfolios offer an average risk reduction of 51% for Portfolio 

 and 81% for Portfolio B over naïve portfolios. It is also interesting 

o note that the risk exposure of the robust portfolios under worst- 

ase market conditions was lower than that of the naïve portfolios 

nder expected market conditions for 68% of Portfolio A quarters 

nd 100% of Portfolio B quarters. 

The goal of implementing robust portfolio optimization is to 

itigate uncertainty, accounted for as variance/risk in this case. 

uch uncertainty mitigation, however, comes at the cost of reduced 

eturns. Therefore, it was expected that robust portfolios would 

educe investors’ exposure to risk while also reducing their ex- 

ected returns. The results observed from the trader’s approach 

gree with this expectation since returns were reduced by an aver- 

ge of 66% for Portfolio A and 74% for Portfolio B compared against 

he naïve strategy under expected market volatility. 

The minimum portfolio return used to solve (4) was arbitrarily 

et to 2% for this study. The risk-returns trade-offs of the Trader’s 

odel for Portfolios A and B shown in Fig. 8 , however, indicate that

t is possible to set the minimum return up to 12% for each port- 

olio while keeping worst-case risk exposure under 25% (i.e., still 

btaining a robust optimal solution of (4) ). This analysis demon- 

trates that while our approach is effective at drastically reduc- 

ng risk exposure at the expense of reduced returns, the same is 

ossible to a lesser extent (i.e., lower risk reduction with lower 

eturns reduction), which is why performing this analysis can be 

seful in identifying a risk-returns trade-off that is most desirable 

o investors based on their individual risk appetites and financial 

onsiderations. 

Comparison of robust and naïve portfolio performance between 

ortfolios A and B show that the robust investment approach is 

n effective risk mitigation strategy. The extent to which portfolio 

isk exposure can be reduced, however, depends on the assets that 

omprise the portfolio. Since the robust approach offers risk reduc- 

ion at the cost of portfolio returns, that trade-off should be as- 

essed on a case-by-case basis for unique portfolios before choos- 

ng one investment strategy over another. 

.2. Grower’s perspective 

.2.1. Grower’s perspective methods 

Deterministic global optimization of a large-scale CEA system 

as performed to investigate the economic viability of this emerg- 
11 
ng alternative approach to traditional outdoor agriculture from a 

rower’s perspective. The Grower’s Problem (19) was applied in 

wo case studies to analyze the effectiveness of our methodology 

gainst alternative strategies. The model was solved to generate ro- 

ust optimal designs and crop portfolios for CEA systems used to 

ultivate Portfolio A and Portfolio B crops under controlled risk ex- 

osure. 

The capital and operating expense models used in this study 

ere adapted from existing economic feasibility studies of CEA sys- 

ems. In a detailed economic feasibility analysis of controlled en- 

ironment lettuce and tomato cultivation, it was found that 98% 

f the total capital expenses were attributed to structure, illumi- 

ation, horticulture, and air and thermal management costs while 

8% of the total operating expenses were attributed to labor, en- 

rgy, and horticulture costs ( Zeidler et al., 2017 ). Specific expense 

odels used for the Grower’s Model case studies were based on a 

etailed cost breakdown for construction and operation of a large- 

cale CEA system presented by Zeidler et al. (2017) . Costs from this 

tudy were normalized to a per-square-foot-of-land-footprint basis 

or use in our model. Since the Zeidler et al. (2017) study involved 

ultivation of lettuce and tomatoes only, but our study involved 

dditional crops, it was assumed that spinach growing costs were 

qual to lettuce growing costs and strawberry growing costs were 

qual to tomato growing costs. 

Structural capital expenses considered in this model include 

and acquisition and construction costs. Construction costs were 

erived from the Zeidler et al. (2017) study. Land acquisition costs 

ere derived using a custom approach in which a location-based 

ost model (17) was generated using local land-cost data and in- 

orporated into the nonlinear objective function through the capi- 

al expense model. Specifically, a multivariate Gaussian distribution 

as fit to normalized land-cost data over a geographic site selec- 

ion region of interest. The Grower’s Model case studies presented 

erein assume site selection within the greater Boston area. Land 

cquisition costs are the only capital expenses considered in the 

apital expense model that scale with capacity but do not qual- 

fy for volume discounting. All other capital expenses considered 

erein are either volume-discountable expenses that scale with ca- 

acity, non-volume-discountable expenses that scale with capacity 

ut are independent of location decision variables, or fixed capital 

xpenses that do not scale with capacity, which respectively cor- 

espond to constants C 1 ,z , C 2 ,z , and C 3 ,z of the the capital expense 

odel (16) . 

The Grower’s Problem (19) with portfolio-specific capital and 

perating expense models was solved for each portfolio under vari- 

ble tolerable quarterly risk levels. To assess the performance of 

his approach, the economic performance (i.e., NPV) correspond- 

ng to a solution to the Grower’s Model, which represents a robust 

ptimal design with robust optimal crop allocations (RO/RO), was 

ompared against that of three alternative strategies: RO/N, RO/O, 

nd O/O. The RO/N strategy represents a system that implements 
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Table 1 

The solution times (s) for the Grower’s Problem (19) for each portfolio are tab- 

ulated over the range of tolerable risk levels considered. In the worst case, 

these problems can be solved within a few minutes using the proposed al- 

gorithm. Portfolio A consists of 35 upper-level (design) decision variables and 

8 semi-infinite constraints each parameterized by 16-dimensional uncertainty 

sets. Portfolio B consists of 44 upper-level (design) decision variables and 

8 semi-infinite constraints each parameterized by 25-dimensional uncertainty 

sets. 

Tolerable risk 10% 14% 21.75% 22.5% 23% 25% 

Portfolio A – – 133.05 15.953 9.254 4.395 

Portfolio B 288.66 379.20 8.879 5.406 5.191 6.236 
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e

e

 robust optimal design with naïve crop allocations substituted in 

lace of the robust allocations. The comparison between RO/RO 

nd RO/N performance was included to quantify the value of in- 

elligently choosing crop allocations. The RO/O strategy represents 

 system that implements a robust optimal design with crop al- 

ocations that have been optimized to maximize NPV without risk 

onsideration. The comparison between RO/RO, and RO/O was in- 

luded to assess the price of robustness associated with consider- 

ng market uncertainty only at the design stage (i.e., the price of 

mplementing a robust design and subsequently making crop al- 

ocations without consideration for uncertainty). Finally, the O/O 

trategy represents a system that implements optimal design and 

rop allocations obtained without risk consideration. The compari- 

on between RO/RO and O/O was included to assess the full price 

f robustness for this problem (i.e., the price of implementing a 

obust design and robust allocations versus a design that did not 

onsider uncertainty at all). To further demonstrate the robustness 

f the Grower’s Model, the risk performance of robust and naïve 

llocations under expected market behavior was also compared. All 

roblems were solved on a personal workstation running Windows 

0 v20H2 operating system with an Intel Core i7-5960x (8 core/16 

hread) CPU operating at 4.3 GHz with 32 GB of RAM. Solution 

imes were measured as an average of five runs for each case to 

uantify the computational performance of the proposed method. 

.2.2. Grower’s perspective results 

Solution of the Grower’s Problem yielded robust optimal de- 

igns and dynamic grow schedules (robust optimal allocations) for 

EA systems used to cultivate both crop portfolios. The NPVs of the 

obust optimal designs were positive over the 30-year project hori- 

on considered, which indicates an economically feasible system 

as identified for both cases. The CPU times for each experiment 

re reported in Table 1 . To assess the performance of this method, 

 comparison of the Portfolio A and Portfolio B results is shown 

n Table 2 , where the NPV of the Grower’s Problem solution (i.e., 

O/RO case) is compared against the three other scenarios: RO/N, 

O/O, and O/O. 

The NPVs corresponding to solutions of the Grower’s Problem 

19) , which represent robust optimal designs with robust optimal 

llocations (RO/RO), are reported in Table 2 for a range of tolera- 

le risk levels. NPVs were then calculated for the robust optimal 

esigns with naïve crop allocations substituted in place of the ro- 

ust allocations (RO/N). The RO/N results yielded, on average, a 

68% decrease in NPV for Portfolio A and a 163% decrease in NPV 

or Portfolio B. This means that the RO/N cases yield a negative 

PV, which indicates an economically infeasible design. This re- 

ult demonstrates that for a fixed design, sensitivity of the NPV to 

rop allocations can be significant, and in some cases, as observed 

ere, can make the difference between an economically feasible 

nd economically infeasible system. 

A second comparison was made by fixing the design variables 

t an obtained robust optimal design and optimizing crop alloca- 

ions to maximize NPV without considering risk (RO/O). As this 
12 
roblem was less constrained than the RO/RO case, it was expected 

hat the resulting NPV of this case would be greater, assuming the 

isk constraints were active at the robust optimal solutions. The 

ifference between the NPVs of the RO/RO and RO/O cases is the 

arginal cost of considering risk, (i.e., the price of robustness of 

rop allocations). The RO/O results yielded, on average, a 4.8% in- 

rease in NPV for Portfolio A and a 0.3% increase in NPV for Port- 

olio B. The lower improvement for Portfolio B is due to the rela- 

ively lower sensitivity of the design to risk and the greater degree 

f coupling between the design and crop allocations due to having 

ixed growing modes. 

Lastly, the optimal design with optimal allocations (O/O) case 

as considered. In this case both the design and crop allocations 

re optimized without risk constraints. Since the crop allocations X 

re considered in risk calculations and the design d is not, it was 

xpected that for greater tolerable risk levels, economically equiva- 

ent designs could be obtained for the considered cases, and there- 

ore the O/O results could be identical to the RO/O results (and 

ven the RO/RO results if the risk constraints were inactive). The 

/O results yielded, on average, a 7.1% increase in NPV for Portfo- 

io A and a 42.9% increase in NPV for Portfolio B over the RO/RO 

esults. Further, the O/O results yielded, on average, a 2.2% increase 

n NPV for Portfolio A and a 42.6% increase in NPV for Portfolio B 

s compared with the RO/O case results. 

It was observed that as tolerable risk was reduced, the ro- 

ust designs obtained became sensitive to tolerable risk. Thus, ro- 

ust optimal designs emerged that differed from those obtained 

or greater tolerable risk levels. As previously stated, this was ex- 

ected; because, as the feasible set becomes more restricted, there 

ay be a cost associated with a robust design in addition to a ro- 

ust allocation due to how the design and crop allocation variables 

re coupled in the objective and capacity constraint functions. For 

ortfolio A, this was observed for the RO/RO case with < 22 . 5% tol-

rable risk (see Supplementary Information), quantified by the dif- 

erence in NPVs between the RO/O and O/O cases. Similar behavior 

as observed for Portfolio B for tolerable risk below 23%. Inter- 

stingly, for the tolerable risk levels of 10% and 14%, the RO/RO 

nd RO/O cases yielded the same NPV. Again, this is the result of 

 greater degree of coupling between the design and crop alloca- 

ions from having mixed growing modes. This indicates that the 

ncorporation of mushrooms dramatically reduces risk exposure at 

he cost of having mixed growing modes that are fixed at the de- 

ign stage. 

To assess the performance of the Portfolio A CEA system’s ro- 

ust crop allocations against naïve allocations, a Monte Carlo sim- 

lation with 5 × 10 5 realizations of market uncertainty M was per- 

ormed, but the naïve strategy was preferred in this case as the 

orst-case risk of the naïve portfolio under expected market con- 

itions was less than the worst-case risk of the robust solution. 

he resulting performance for the first two years (i.e., eight quar- 

ers) of the project horizon, which are repeated over the full 30- 

ear project horizon, for this case can be viewed in the Supple- 

entary Information. 

Solution of (19) for the Portfolio B CEA system yielded disparate 

obust designs d 

∗ over the range of tolerable risk levels tested: de- 

igns heavily favoring mushrooms for tolerable risk levels below 

4% and far less so for tolerable risk levels above 21.75%. These re- 

ults are likely due to nonconvexity, nonsmoothness, and possibly 

isconnectedness of the feasible set. Although cases between 14% 

nd 21.75% are expected to be feasible, no solutions of (19) could 

e obtained within reasonable computation time ( ≤ 1 h). To assess 

he performance of the Portfolio B CEA system’s robust crop al- 

ocations against naïve allocations, a Monte Carlo simulation with 

 × 10 5 realizations of market uncertainty M was performed for 

ach design. The resulting performance for the first two years (i.e., 

ight quarters) of the project horizon, which are repeated over the 
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Table 2 

Multi-scenario economic performance comparison for Portfolios A and B is tabulated 

for the robust optimal design with robust optimal allocations (RO/RO), robust optimal 

design with naïve allocations (RO/N), robust optimal design with optimal allocations 

(RO/O), and optimal design with optimal allocations (O/O). RO/RO results are reported 

as NPVs in million USD. All other results are reported as percentages of the RO/RO 

NPV. 

Tolerable Risk 10% 14% 21.75% 22.5% 23% 25% 

Portfolio A 

RO/RO [ 10 6 USD] – – 17.81 20.48 21.42 21.68 

RO/N – – −195% −165% −157% −155% 

RO/O – – + 12.6% + 5.7% + 1.0% + 0.0% 

O/O – – + 21.5% + 5.7% + 1.0% + 0.0% 

Portfolio B 

RO/RO [ 10 6 USD] 9.49 9.49 19.64 21.16 21.28 21.28 

RO/N −116% −116% −201% −182% −180% −180% 

RO/O + 0.0% + 0.0% + 1.3% + 0.7% + 0.0% + 0.0% 

O/O + 124% + 124% + 8.5% + 0.8% + 0.0% + 0.0% 

Fig. 9. Risk performance of Portfolio B is compared for naïve and robust (generated using 10% and 25% tolerable risk) portfolios for 5 × 10 5 realizations of expected market 

behavior over the March 1, 2018–March 1, 2020 planning horizon. 
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ull 30-year project horizon, are shown in Fig. 9 for the relatively 

ow-risk and high-risk designs for Portfolio B. Risk performance of 

he Portfolio B CEA system with 10% tolerable risk exposure shows 

imilar results to the Portfolio A system with 25% tolerable risk ex- 

osure. For the lower-risk (10% tolerable risk) design case of Port- 

olio B, the expected risk distribution of robust crop allocations is 

hifted lower by an average of 5.6 percentage points and is nar- 

owed as compared with the naïve portfolio. In all eight quarters 

he worst-case performance (highest risk) of the robust portfolios 

s approximately equal to or less than the best-case performance 

lowest risk) of the naïve portfolios, which demonstrates a clear 

dvantage of the robust portfolios from a risk perspective. 

The higher-risk design case (25% tolerable risk), however, shows 

 different result. In this case the expected risk distribution of ro- 

ust crop allocations is shifted higher than the naïve allocations 

y an average of 8.0 percentage points and is widened as com- 

ared with the naïve portfolio. This behavior arises as a conse- 

uence of robust portfolios that grow an overwhelming majority 

f tomatoes which are a higher-risk crop than mushrooms, for ex- 

mple, whose contribution to the naïve portfolio brings its risk be- 

ow that of the portfolio that overwhelmingly favors tomatoes. In 

eneral, this type of result is possible when a robust optimal solu- 

ion is obtained in any case where the tolerable risk level has been 
p

13 
et higher than the worst-case risk exposure that can be expected 

ith the naïve portfolio. For this reason, it is important to consider 

he expected risk of the naïve portfolio prior to tolerable risk level 

election and robust optimization, which can be done easily using 

ur presented methods. 

. Conclusion 

In this work, a new methodology was developed for designing 

EA systems robust to market uncertainty. To do this, an investor’s 

pproach (i.e., the trader’s perspective for robust optimization of 

rop-specific commodities portfolios based on MPT), was first con- 

idered to validate diversification as an effective risk mitigation 

trategy for crop portfolios. Application of this so-called trader’s 

ethod to two case studies revealed that significant portfolio risk 

eduction was achievable using this approach, thereby enabling its 

xtension to a grower’s perspective. The so-called Grower’s Model 

as formulated as a nonconvex SIP and considers the simultane- 

us up-front design (scale and location) and long-term operation 

growing decisions) of a CEA system. Application of the grower’s 

ethod to two case studies revealed that this method effectively 

ncreased the robustness of CEA systems to market uncertainty, im- 

roved the long-term economics of CEA systems over naïve oper- 
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ting strategies, and validated the economic viability of single and 

ual-cultivation-mode CEA systems for production of distinct crop 

ortfolios. 

The flexibility of our approach enables robust optimization of 

EA systems composed of any number of cultivation modes for 

roduction of any crop portfolio for which historical pricing data 

s known and capital and operating expenses can be estimated. As 

he first robust optimization approach to CEA systems, we believe 

his approach not only offers valuable economic insight to guide 

ecision-making in CEA technology adoption, but also serves as 

 general framework for continued development of CEA decision- 

aking models. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Shaylin A. Cetegen: Methodology, Software, Formal analysis, In- 

estigation, Writing - original draft, Writing - review & editing, 

ata curation, Visualization. Matthew D. Stuber: Conceptualiza- 

ion, Methodology, Project administration, Software, Investigation, 

alidation, Resources, Supervision, Visualization, Writing - original 

raft, Writing - review & editing. 

cknowledgments 

The authors would like to thank Matthew Wilhelm for his con- 

ributions to formulating the Grower’s Problem economic objective 

unction and for providing EAGO software support. 

Funding: This research did not receive any specific grant from 

unding agencies in the public, commercial, or not-for-profit sec- 

ors. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at 10.1016/j.compchemeng.2021. 

07285 

eferences 

humada, O., Villalobos, J.R., 2009. Application of planning models in the agri-food 
supply chain: a review. Eur. J. Oper. Res. 196 (1), 1–20. doi: 10.1016/j.ejor.2008. 

02.014 . 
nnevelink, E., 1992. Operational planning in horticulture: optimal space allocation 

in pot-plant nurseries using heuristic techniques. J. Agric. Eng. Res. 51, 167–177. 

doi: 10.1016/0 021-8634(92)80 035-Q . 
emporad, A., Filippi, C., 2006. An algorithm for approximate multiparamet- 

ric convex programming. Comput. Optim. Appl. 35 (1), 87–108. doi: 10.1007/ 
s10589- 006- 6447- z . 

en-Tal, A., Nemirovski, A., 1998. Robust convex optimization. Math. Oper. Res. 23 
(4), 769–805. doi: 10.1287/moor.23.4.769 . 

enke, K., Tomkins, B., 2017. Future food-production systems: vertical farming and 

controlled-environment agriculture. Sustainability 13 (1), 13–26. doi: 10.1080/ 
15487733.2017.1394054 . 

ezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: a fresh approach to 
numerical computing. SIAM Rev. 59 (1), 65–98. doi: 10.1137/1410 0 0671 . 

hattacharjee, B., Green, W.H., Barton, P.I., 2005. Interval methods for semi-infinite 
programs. Comput. Optim. Appl. 30 (1), 63–93. doi: 10.1007/s10589- 005- 4556- 8 . 

hattacharjee, B., Lemonidis, P., Green Jr., W.H., Barton, P.I., 2005. Global solu- 
tion of semi-infinite programs. Math. Program. 103 (2), 283–307. doi: 10.1007/ 

s10107- 005- 0583- 6 . 

iswas, A., Pal, B.B., 2005. Application of fuzzy goal programming technique to 
land use planning in agricultural system. Omega 33 (5), 391–398. doi: 10.1016/j. 

omega.20 04.07.0 03 . 
lankenship, J.W., Falk, J.E., 1976. Infinitely constrained optimization problems. J. 

Optim. Theory Appl. 19 (2), 261–281. doi: 10.10 07/BF0 0934096 . 
14 
utturini, M., Marcelis, L.F.M., 2020. Vertical farming in Europe: present status and 
outlook. In: Plant Factory. Elsevier, pp. 77–91. doi: 10.1016/B978- 0- 12- 816691- 8. 

0 0 0 04-2 . 
eschênes, O., Greenstone, M., 2007. The economic impacts of climate change: evi- 

dence from agricultural output and random fluctuations in weather. Am. Econ. 
Rev. 97 (1), 354–385. doi: 10.1257/aer.97.1.354 . 

espommier, D., 2009. The rise of vertical farms. Sci. Am. 301 (5), 80–87. doi: 10.
1038/scientificamerican1109-80 . 

ua, V., Papalexandri, K.P., Pistikopoulos, E.N., 2004. Global optimization issues in 

multiparametric continuous and mixed-integer optimization problems. J. Glob. 
Optim. 30 (1), 59–89. doi: 10.1023/b:jogo.0 0 0 0 049091.73047.7e . 

unning, I., Huchette, J., Lubin, M., 2017. JuMP: a modeling language for mathemat- 
ical optimization. SIAM Rev. 59 (2), 295–320. doi: 10.1137/15M1020575 . 

ury, J., Schaller, N., Garcia, F., Reynaud, A., Bergez, J.E., 2012. Models to support 
cropping plan and crop rotation decisions. A review. Agron. Sustain. Dev. 32 (2), 

567–580. doi: 10.1007/s13593- 011- 0037- x . 

alk, J.E., Hoffman, K., 1977. A nonconvex max-min problem. Nav. Res. Logist. Q. 24 
(3), 441–450. doi: 10.10 02/nav.380 0240307 . 

edoroff, N.V., 2015. Food in a future of 10 billion. Agric. Food Secur. 4 (1), 11. doi: 10.
1186/s40066- 015- 0031- 7 . 

ield, C.B. , Barros, V. , Stocker, T.F. , Dahe, Q. , 2012. Managing the Risks of Extreme
Events and Disasters to Advance Climate Change adaptation: Special Report of 

the Intergovernmental Panel on Climate Change (IPCC). Cambridge University 

Press . 
ood and Agriculture Organization of the United Nations (FAO), 2018. The state 

of agricultural commodity markets 2018: Agricultural Trade, Climate Change 
and Food Security. Technical Report. FAO. URL http://www.fao.org/3/I9542EN/ 

i9542en.pdf . 
len, J.J., 1987. Mathematical models in farm planning: a survey. Oper. Res. 35 (5), 

641–666. doi: 10.1287/opre.35.5.641 . 

ómez, C., Currey, C.J., Dickson, R.W., Kim, H.-J., Hernández, R., Sabeh, N.C., 
Raudales, R.E., Brumfield, R.G., Laury-Shaw, A., Wilke, A.K., Lopez, R.G., Bur- 

nett, S.E., 2019. Controlled environment food production for urban agriculture. 
HortScience 54 (9), 1448–1458. doi: 10.21273/HORTSCI14073-19 . 

rancharova, A., Johansen, T.A., 2006. Explicit approximate approach to feedback 
min-max model predictive control of constrained nonlinear systems. In: Pro- 

ceedings of the 45th IEEE Conference on Decision and Control. IEEE doi: 10.1109/ 

cdc.2006.377772 . 
rand View Research, 2019. Vertical farming market worth $9.96 bil- 

lion by 2025. URL https://www.grandviewresearch.com/press-release/ 
global- vertical- farming- market . Accessed: 2020- 05-21. 

urobi Optimization, LLC, 2020. Gurobi optimizer reference manual. URL http:// 
www.gurobi.com 

alemane, K.P., Grossmann, I.E., 1983. Optimal process design under uncertainty. 

AIChE J. 29 (3), 425–433. doi: 10.1002/aic.690290312 . 
amer, P.J., 1994. A decision support system for the provision of planting plans 

for brussels sprouts. Comput. lectron. Agric. 11 (2-3), 97–115. doi: 10.1016/ 
0168-1699(94)90 0 01-9 . 

i, Z., Ierapetritou, M., 2008. Process scheduling under uncertainty: review and chal- 
lenges. Comput. Chem. Eng. 32 (4-5), 715–727. doi: 10.1016/j.compchemeng.2007. 

03.001 . 
arkowitz, H., 1952. Portfolio selection. J. Finance 7 (1), 77–91. doi: 10.1111/j. 

1540-6261.1952.tb01525.x . 

cCormick, G.P., 1976. Computability of global solutions to factorable nonconvex 
programs: part I–convex underestimating problems. Math. Program. 10 (1), 147–

175. doi: 10.1007/BF01580665 . 
iles, P.G. , Chang, S.-T. , 2004. Mushrooms: Cultivation, Nutritional Value, Medicinal 

Effect, and Environmental Impact. CRC Press, Boca Raton, FL . 
itsos, A., 2011. Global optimization of semi-infinite programs via restriction of 

the right-hand side. Optimization 60 (10-11), 1291–1308. doi: 10.1080/02331934. 

2010.527970 . 
ie, Y., Avraamidou, S., Xiao, X., Pistikopoulos, E.N., Li, J., Zeng, Y., Song, F., Yu, J.,

Zhu, M., 2019. A food-energy-water nexus approach for land use optimization. 
Sci. Total Environ. 659, 7–19. doi: 10.1016/j.scitotenv.2018.12.242 . 

berdieck, R., Diangelakis, N.A., Nascu, I., Papathanasiou, M.M., Sun, M., Avraami- 
dou, S., Pistikopoulos, E.N., 2016. On multi-parametric programming and its 

applications in process systems engineering. Chem. Eng. Res. Des. 116, 61–82. 

doi: 10.1016/j.cherd.2016.09.034 . 
’Donoghue, B., Chu, E., Parikh, N., Boyd, S., 2016. Conic optimization via operator 

splitting and homogeneous self-dual embedding. J. Optim. Theory Appl. 169 (3), 
1042–1068. doi: 10.1007/s10957- 016- 0892- 3 . 

’Donoghue, B., Chu, E., Parikh, N., Boyd, S., 2019. SCS: splitting conic solver, version 
2.1.2. https://github.com/cvxgrp/scs . 

aut, R., Sabatier, R., Tchamitchian, M., 2019. Reducing risk through crop diversi- 

fication: an application of portfolio theory to diversified horticultural systems. 
Agric. Syst. 168, 123–130. doi: 10.1016/j.agsy.2018.11.002 . 

istikopoulos, E.N., 2009. Perspectives in multiparametric programming and explicit 
model predictive control. AIChE J. 55 (8), 1918–1925. doi: 10.1002/aic.11965 . 

ustem, B. , Howe, M. , 2002. Algorithms for Worst-Case Design and Applications to 
Risk Management. Princeton University Press, Princeton, NJ . 

tuber, M.D., Barton, P.I., 2015. Semi-infinite optimization with implicit functions. 

Ind. Eng. Chem. Res. 54, 307–317. doi: 10.1021/ie5029123 . 
tuber, M.D., Wechsung, A ., Sundaramoorthy, A ., Barton, P.I., 2014. Worst-case design 

of subsea production facilities using semi-infinite programming. AIChE J. 60 (7), 
2513–2524. doi: 10.1002/aic.14 4 47 . 

https://doi.org/10.1016/j.compchemeng.2021.107285
https://doi.org/10.1016/j.ejor.2008.02.014
https://doi.org/10.1016/0021-8634(92)80035-Q
https://doi.org/10.1007/s10589-006-6447-z
https://doi.org/10.1287/moor.23.4.769
https://doi.org/10.1080/15487733.2017.1394054
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s10589-005-4556-8
https://doi.org/10.1007/s10107-005-0583-6
https://doi.org/10.1016/j.omega.2004.07.003
https://doi.org/10.1007/BF00934096
https://doi.org/10.1016/B978-0-12-816691-8.00004-2
https://doi.org/10.1257/aer.97.1.354
https://doi.org/10.1038/scientificamerican1109-80
https://doi.org/10.1023/b:jogo.0000049091.73047.7e
https://doi.org/10.1137/15M1020575
https://doi.org/10.1007/s13593-011-0037-x
https://doi.org/10.1002/nav.3800240307
https://doi.org/10.1186/s40066-015-0031-7
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0019
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0019
http://www.fao.org/3/I9542EN/i9542en.pdf
https://doi.org/10.1287/opre.35.5.641
https://doi.org/10.21273/HORTSCI14073-19
https://doi.org/10.1109/cdc.2006.377772
https://www.grandviewresearch.com/press-release/global-vertical-farming-market
http://www.gurobi.com
https://doi.org/10.1002/aic.690290312
https://doi.org/10.1016/0168-1699(94)90001-9
https://doi.org/10.1016/j.compchemeng.2007.03.001
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1007/BF01580665
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0031
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0031
https://doi.org/10.1080/02331934.2010.527970
https://doi.org/10.1016/j.scitotenv.2018.12.242
https://doi.org/10.1016/j.cherd.2016.09.034
https://doi.org/10.1007/s10957-016-0892-3
https://github.com/cvxgrp/scs
https://doi.org/10.1016/j.agsy.2018.11.002
https://doi.org/10.1002/aic.11965
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0039
http://refhub.elsevier.com/S0098-1354(21)00063-6/sbref0039
https://doi.org/10.1021/ie5029123
https://doi.org/10.1002/aic.14447


S.A. Cetegen and M.D. Stuber Computers and Chemical Engineering 149 (2021) 107285 

T

W

W

W

Ž

Z

ridge, 2019. Market intelligence. URL https://www.tridge.com/prices . Accessed: 
2020-05-21. 

ächter, A., Biegler, L.T., 2006. On the implementation of an interior-point filter 
line-search algorithm for large-scale nonlinear programming. Math. Program. 

106 (1), 25–57. doi: 10.1007/s10107- 004- 0559- y . 
ilhelm, M. E., Stuber, M. D., 2018. EAGO: easy advanced global optimization Julia 

package. URL https://github.com/PSORLab/EAGO.jl 
ilhelm, M.E., Stuber, M.D., 2020. EAGO.jl: easy advanced global optimization in 

Julia. Optim. Methods Softw. doi: 10.1080/10556788.2020.1786566 . 
15 
akovi ́c, S., Rustem, B., 2003. Semi-infinite programming and applications to 
minimax problems. Ann. Oper. Res. 124 (1-4), 81–110. doi: 10.1023/b:anor. 

0 0 0 0 0 04764.76984.30 . 
eidler, C., Schubert, D., Vrakking, V., 2017. Vertical Farm 2.0: Designing an Eco- 

nomically Feasible Vertical Farm – A combined European Endeavor for Sustain- 
able Urban Agriculture. Technical Report. Association for Vertical Farming. URL 

https://elib.dlr.de/116034/ 

https://www.tridge.com/prices
https://doi.org/10.1007/s10107-004-0559-y
https://github.com/PSORLab/EAGO.jl
https://doi.org/10.1080/10556788.2020.1786566
https://doi.org/10.1023/b:anor.0000004764.76984.30
https://elib.dlr.de/116034/


Supplementary Information
Optimal Design of Controlled Environment Agricultural Systems Under Market

Uncertainty

Shaylin A. Cetegena,1, Matthew D. Stubera,∗

aProcess Systems and Operations Research Laboratory, Dept. of Chemical and Biomolecular Engineering, University of
Connecticut, 191 Auditorium Road, Unit 3222, Storrs, CT 06269, USA.

1. Affine Relaxations of Non-affine and Non-bilinear Terms

In this section, we develop affine relaxations of the relevant terms of the grower’s model objective
function

fNPV(d,X) = Crev(d,X)− (1 + P )Ccap(d)− Cop(d,X). (1)

Only the functions

Ccap,z(d) = C1,zd
0.9
z+2 + C2,zdz+2 +G(d)dz+2 + C3,z, z = 1, . . . , µ (2)

must be considered as all other functions consist only of bilinear or affine terms. Further, only the terms
uz+2 = d0.9z+2, z = 1, . . . , µ, and the Gaussian function

G(d) = S exp
(
−xscale(d1)2 + yscale(d2)2

)
+ Smin (3)

must be considered. Since the function Ccap(·) appears in fNPV(·, ·) with a negative prefactor, and we are
always maximizing fNPV(·, ·), we must develop affine underestimators of uz+2(·) and G(·) so that we can
calculate valid upper bounds on the global optimal solution value f∗ within the spatial branch-and-bound
algorithm.

Definition 1 (Affine Underestimator/Relaxation). Let Z ⊂ Rn and let f : Z → R. An affine function
fa : Z → R is called an affine underestimator or affine relaxation of f on Z if fA(z) ≤ f(z) for every z ∈ Z.

Definition 2. For q = 3, . . . , µ+2, let Dq = {x ∈ R : dLq ≤ x ≤ dUq } = [dLq , d
U
q ] and uq : Dq → R : dq 7→ d0.9q .

Then, for every dq ∈ Dq, an affine relaxation of uq on Dq is given by

uAq (dq) ≡ (dLq )0.9 +
(dUq )0.9 − (dLq )0.9

dUq − dLq
(dq − dLq ). (4)

Since uq is strictly concave and scalar-valued, uAq is trivially the secant function defined between the

points dLq and dUq .

To calculate affine relaxation of G(·) on D, we must define the concepts of convex relaxations and
subgradients.

Definition 3 (Convex and Concave Relaxations (Mitsos et al., 2009)). Given a convex set Z ⊂ Rn and a
function w : Z → R, a convex function wcv : Z → R is a convex relaxation of w on Z if wcv(z) ≤ w(z) for
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every z ∈ Z. A concave function wcc : Z → R is a concave relaxation of w on Z if wcc(z) ≥ w(z) for every
z ∈ Z.

Definition 4 (Subgradients (Stuber et al., 2015)). Let Z ⊂ Rn be a nonempty convex set, wcv : Z → R
be convex and wcc : Z → R be concave. A function scvw : Z → Rn is a subgradient of wcv on Z if for each
z̄ ∈ Z,wcv(z) ≥ wcv(z̄) + scvw (z̄)T(z− z̄),∀z ∈ Z. Similarly, a function sccw : Z → Rn is a subgradient of wcc

on Z if for each z̄ ∈ Z,wcc(z) ≤ wcc(z̄) + sccw (z̄)T(z− z̄),∀z ∈ Z.

An affine relaxation of G(·) is then defined in the following.

Definition 5. Let D1 = {x ∈ R : dL2 ≤ x ≤ dU2 } and D2 = {x ∈ R : dL3 ≤ x ≤ dU3 }. Let ucv1 : D1 ×D2 → R
be a convex relaxation of u1 = G on D1 ×D2. Let δ = (d1, d2) and δ̄ = (d̄1, d̄2) such that d̄1 = (dU1 + dL1 )/2
and d̄2 = (dU2 + dL2 )/2. Then, for every δ ∈ D1 ×D2, an affine relaxation of u1 on D1 ×D2 is given by

uA1 (δ) ≡ ucv1 (δ̄) + scvu1
(δ̄)T(δ − δ̄) (5)

There are several ways to define convex relaxations (e.g., αBB (Adjiman and Floudas, 1996), auxiliary
variable methods (Sahinidis, 1996), McCormick composition (McCormick, 1976), etc.). In this work, we
utilize the McCormick-based library in EAGO (Wilhelm and Stuber, 2018, 2020) to construct and evaluate
relaxations and subgradients.

Finally, a capital expense model only involving affine and bilinear terms is given by

Ĉcap,z(d) = C1,zu
A
z+2(dz+2) + C2,zdz+2 + uA1 (δ)dz+2 + C3,z, z = 1, . . . , µ

where δ = (d1, d2) as in Definition 5. Then, the relaxed objective, containing only linear and bilinear terms,
is formulated as

f̂NPV(d,X) = Crev(d,X)− (1 + P )

µ∑
z=1

Ĉcap,z(d)− Cop(d,X).

By construction, we have the following upper-bounding result:

f̂NPV(d,X) ≥ fNPV(d,X), ∀(d,X) ∈ D × Ξ,

and so f̂NPV can be used to calculate valid upper bounds on the global optimal solution value within the
spatial branch-and-bound algorithm.

2. Case-Study Numerical Values

Specific numerical values used to solve our model for the presented case studies are detailed in Table
S1. C1,1, C2,1, C3,1 and C1,2, C2,2, C3,2 are all capital expense costs associated with cultivation modes 1 and
2, respectively.C1,1 and C1,2 are the volume-discountable capital expenses that scale with capacity. These
values were calculated as the total sum of per-square-foot structural, illumination, horticultural equipment,
and thermal management costs for the relevant cultivation mode that were derived based on proposed CEA
systems presented by Zeidler et al. (2017) and Çelik and Peker (2009). C2,1 and C2,2 costs were not considered
in this study but were presented in the formulation for generalization purposes. C3,1 and C3,2 costs represent
the total sum of non-volume-discountable capital expenses that do not scale with capacity. In the case studies
presented herein, the only qualified expense for this constant was the one-time upfront cost of purchasing a
produce delivery truck for product distribution. This cost was associated with C3,1 only since this cost does
not need to be replicated as additional cultivation modes are added to the system.

Operating-cost-related parameters Iop,j,1 and Iop,j,2 represent the per-capacity quarterly operating ex-
penses associated with cultivation modes 1 and 2, respectively. These values were calculated as the total
sum of per-square-foot labor, energy, and horticultural materials costs for the relevant cultivation mode that
were derived based on proposed CEA systems (Zeidler et al., 2017; Çelik and Peker, 2009). F (d) are annual
operating expenses that do not scale with capacity and are independent of the cultivation mode. The only
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Parameter Numerical Value Units
µ 1 or 2 (Portfolio A or Portfolio B) -
b 0.05/12 -
C1,1 1192.3 USD
C2,1 0.00 USD
C3,1 70,000 USD
C1,2 948.55 USD
C2,2 0.00 USD
C3,2 0.00 USD
F (d) 1752.00(d1 + d2) USD
Iop,j,1(xj) 173.56+(39.96(x1j + x2j) + 6.91(x3j + x4j)) USD
Iop,j,2(xj) 160.36 USD
nl 15 years
np 8 -
ny 30 years
pmin (0.1, 0.1, 0.1, 0.1, 0.1) -
pmax [10 10 10 10 10] -
rd 0.12 -
S 764 USD
Smin 5.00 USD
xscale 0.028 -
yscale 0.031 -
Y (25.05, 3.76, 100.16, 6.26, 62.6)∗ pounds/sq.ft.
w (2.5, 5.0, 4.0, 6.5, 10.0)∗ USD/pound

Table S1: Numerical values used in robust optimization from the grower’s and trader’s perspectives. * indicates diagonal entries
of the corresponding matrix ∈ Rnc×nc are reported as a vector ∈ Rnc

such cost considered in this model was the distribution cost which depends on location design variables
(d1, d2).

Crop allocation decision-making was performed over an np quarter planning horizon. The resulting
allocations were repeated to span the ny year project horizon over which the NPV of the full CEA system was
calculated. It was assumed that capital financing was amortized monthly at an interest rate of b, discounted
annually at a cash flow discount rate of rd, and was paid off over the first nl years of the project horizon.
Additionally annual production of each crop was limited to between 0.1-10% of the annual market demand
for the greater Boston area based on daytime population and land-cost parameters S, Smin, xscale, and
yscale were derived based on fitting the model to publicly-available land cost data for the greater Boston and
surrounding area. Finally, CEA yield estimates for each crop on a pound-per-square-foot-of-land-footprint
basis and expected market prices on a USD-per-pound basis were estimated based on previous studies and
current market prices, respectively (Zeidler et al., 2017; Çelik and Peker, 2009).

3. Extended Results

Extended robust optimization results from the trader’s and grower’s models are reported in detail in
Sections 3.1 and 3.2, respectively. The reported results contain multiple references to crops 1, 2, 3, 4, and 5
which correspond to lettuce, spinach, tomatoes, strawberries, and mushrooms, respectively.

3.1. Trader’s Results

The following are the robust optimization results for 12 independent studies of Portfolios A and B
simulated over planning horizons spanning from April 1, 2017 to March 1, 2020. The trader’s model was run
with a fixed tolerable risk level of 25% in all cases over 12 independent two-year planning horizons spanning
from April 1, 2017 to March 1, 2020. The trader’s model results include quarterly expected return, quarterly
worst-case risk, and quarterly crop allocations.

3



3.1.1. Portfolio A Results

Planning horizon: April 1, 2017 - April 1, 2019 (See Table S2)

Planning horizon: May 1, 2017 - May 1, 2019 (See Table S3)

Planning horizon: June 1, 2017 - June 1, 2019 (See Table S4)

Planning horizon: July 1, 2017 - July 1, 2019 (See Table S5)

Planning horizon: August 1, 2017 - August 1, 2019 (See Table S6)

Planning horizon: September 1, 2017 - September 1, 2019 (See Table S7)

Planning horizon: October 1, 2017 - October 1, 2019 (See Table S8)

Planning horizon: November 1, 2017 - November 1, 2019 (See Table S9)

Planning horizon: December 1, 2018 - December 1, 2019 (See Table S10)

Planning horizon: January 1, 2018 - January 1, 2020 (See Table S11)

Planning horizon: February 1, 2018 - February 1, 2020 (See Table S12)

Planning horizon: March 1, 2018 - March 1, 2020 (See Table S13)

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 3.4 9.6 0 0.90 0.10 0
Q2 2.9 5.5 0 0.98 0.02 0
Q3 3.4 6.1 0.08 0.88 0.04 0
Q4 6.7 23.9 0.44 0.04 0.52 0
Q5 2.0 9.9 0 0.84 0.14 0.02
Q6 2.0 6.7 0 0.96 0 0.04
Q7 2.2 6.1 0.08 0.88 0.04 0
Q8 6.0 25.9 0 0.43 0.55 0.03

Table S2: Trader’s perspective robust optimization results for Portfolio A simulated over April 1, 2017 - April 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 3.2 7.9 0 0.94 0.06 0
Q2 3.9 5.4 0.26 0.72 0.02 0
Q3 5.5 11.8 0.35 0.36 0.29 0
Q4 11.4 23.6 0.37 0 0.28 0.35
Q5 2.0 8.4 0.01 0.85 0.12 0.02
Q6 3.0 5.5 0.31 0.69 0 0
Q7 2.0 7.0 0.02 0.98 0 0
Q8 10.8 26.4 0 0.3 0.41 0.29

Table S3: Trader’s perspective robust optimization results for Portfolio A simulated over May 1, 2017 - May 1, 2019 planning
horizon.
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 4.0 8.7 0 0.91 0.05 0.04
Q2 2.9 4.0 0 0.96 0.04 0
Q3 2.0 6.7 0 0.96 0.04 0
Q4 7.9 21.2 0 0.21 0.6 0.19
Q5 2.0 8.8 0 0.94 0.03 0.03
Q6 2.0 4.0 0.10 0.90 0 0
Q7 3.5 10.4 0.10 0.90 0 0
Q8 9.3 21.3 0 0.2 0.6 0.2

Table S4: Trader’s perspective robust optimization results for Portfolio A simulated over June 1, 2017 - June 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 2.9 5.5 0 0.98 0.02 0
Q2 3.4 6.1 0.08 0.88 0.04 0
Q3 6.7 23.9 0.44 0.04 0.52 0
Q4 2 9.9 0 0.84 0.14 0.02
Q5 2 6.7 0 0.96 0 0.04
Q6 2.2 6.1 0.08 0.88 0.04 0
Q7 6.0 25.9 0 0.43 0.55 0.02
Q8 2.0 10.0 0 0.99 0.01 0

Table S5: Trader’s perspective robust optimization results for Portfolio A simulated over July 1, 2017 - July 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 3.9 5.4 0.26 0.72 0.02 0
Q2 3.0 6.9 0 1.0 0 0
Q3 11.4 23.6 0.37 0 0.28 0.35
Q4 2 8.3 0.01 0.85 0.12 0.02
Q5 3.0 5.5 0.31 0.69 0 0
Q6 2 7.0 0.02 0.98 0 0
Q7 10.8 26.4 0 0.3 0.41 0.29
Q8 2.3 7.9 0 0.94 0.06 0

Table S6: Trader’s perspective robust optimization results for Portfolio A simulated over August 1, 2017 - August 1, 2019
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 2.9 4.0 0 0.96 0.04 0
Q2 2 6.7 0 0.96 0.04 0
Q3 7.9 21.2 0 0.21 0.6 0.19
Q4 2 8.8 0 0.94 0.03 0.03
Q5 2 4.0 0.10 0.90 0 0
Q6 3.5 10.4 0.09 0.8 0.11 0
Q7 9.5 21.1 0.04 0.19 0.57 0.2
Q8 2.5 8.8 0 0.96 0.02 0.02

Table S7: Trader’s perspective robust optimization results for Portfolio A simulated over September 1, 2017 - September 1,
2019 planning horizon.
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 3.4 6.1 0.08 0.88 0.04 0
Q2 6.7 23.5 0.44 0.03 0.52 0
Q3 2 9.9 0 0.84 0.14 0.02
Q4 2 6.7 0 0.96 0 0.04
Q5 2.2 6.1 0.08 0.88 0.04 0
Q6 6.0 25.6 0 0.43 0.55 0.02
Q7 2.3 6.7 0 1.0 0 0
Q8 2.3 6.7 0 1.0 0 0

Table S8: Trader’s perspective robust optimization results for Portfolio A simulated over October 1, 2017 - October 1, 2019
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 5.5 11.8 0.35 0.36 0.29 0
Q2 11.4 23.6 0.37 0 0.28 0.35
Q3 2 8.4 0.01 0.85 0.12 0.02
Q4 3 5.5 0.31 0.69 0 0
Q5 2 7 0.02 0.98 0 0
Q6 10.8 26.4 0 0.3 0.41 0.29
Q7 2.3 7.9 0 0.94 0.06 0
Q8 2.6 6.0 0.04 0.96 0 0

Table S9: Trader’s perspective robust optimization results for Portfolio A simulated over November 1, 2017 - November 1, 2019
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 2 6.7 0 0.96 0.04 0
Q2 7.9 21.2 0 0.21 0.6 0.19
Q3 2 8.8 0 0.94 0.03 0.03
Q4 2 4.0 0.1 0.9 0 0
Q5 3.5 10.4 0.09 0.8 0.11 0
Q6 9.3 21.3 0 0.2 0.6 0.2
Q7 2.5 8.8 0 0.97 0.02 0.01
Q8 2.5 4.0 0.02 0.98 0 0

Table S10: Trader’s perspective robust optimization results for Portfolio A simulated over December 1, 2017 - December 1,
2019 planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 6.7 23.9 0.44 0.03 0.52 0.01
Q2 2 9.9 0 0.84 0.14 0.02
Q3 2 6.7 0 0.96 0 0.04
Q4 2.2 6.1 0.08 0.88 0.04 0
Q5 6 25.9 0 0.43 0.55 0.02
Q6 2 10 0 0.99 0.01 0
Q7 2.3 6.7 0 1.0 0 0
Q8 2.7 6.2 0.03 0.93 0.04 0

Table S11: Trader’s perspective robust optimization results for Portfolio A simulated over January 1, 2018 - January 1, 2020
planning horizon.
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 11.4 23.6 0.37 0 0.28 0.35
Q2 2 8.3 0.01 0.85 0.12 0.02
Q3 3 5.5 0.31 0.69 0 0
Q4 2 7 0.02 0.98 0 0
Q5 10.8 26.4 0 0.3 0.41 0.29
Q6 2.3 7.9 0 0.94 0.06 0
Q7 2.6 6 0.04 0.96 0 0
Q8 2.5 6.9 0 1 0 0

Table S12: Trader’s perspective robust optimization results for Portfolio A simulated over February 1, 2018 - February 1, 2020
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4
Q1 7.9 21.2 0 0.21 0.6 0.19
Q2 2 8.8 0 0.94 0.03 0.03
Q3 2 4.0 0.1 0.9 0 0
Q4 3.5 10.4 0.09 0.8 0.11 0
Q5 9.5 21.1 0.04 0.19 0.57 0.2
Q6 2.5 8.8 0 0.96 0.02 0.02
Q7 2.5 4 0.02 0.98 0 0
Q8 3.2 10.4 0.09 0.8 0.11 0

Table S13: Trader’s perspective robust optimization results for Portfolio A simulated over March 1, 2018 - March 1, 2020
planning horizon.

3.1.2. Portfolio B Results

Planning horizon: April 1, 2017 - April 1, 2019 (See Table S14)

Planning horizon: May 1, 2017 - May 1, 2019 (See Table S15)

Planning horizon: June 1, 2017 - June 1, 2019 (See Table S16)

Planning horizon: July 1, 2017 - July 1, 2019 (See Table S17)

Planning horizon: August 1, 2017 - August 1, 2019 (See Table S18)

Planning horizon: September 1, 2017 - September 1, 2019 (See Table S19)

Planning horizon: October 1, 2017 - October 1, 2019 (See Table S20)

Planning horizon: November 1, 2017 - November 1, 2019 (See Table S21)

Planning horizon: December 1, 2018 - December 1, 2019 (See Table S22

Planning horizon: January 1, 2018 - January 1, 2020 See Table S23)

Planning horizon: February 1, 2018 - February 1, 2020 (See Table S24)

Planning horizon: March 1, 2018 - March 1, 2020 (See Table S25)
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.7 0 0.11 0.02 0.02 0.85
Q2 2.0 0.9 0 0 0 0.02 0.98
Q3 2.0 1.8 0.09 0.03 0 0 0.88
Q4 2.0 3.2 0 0.01 0.01 0.03 0.95
Q5 2.0 3.9 0.02 0.02 0 0.03 0.93
Q6 2.0 1.4 0 0 0 0.05 0.95
Q7 2.0 2.3 0.13 0 0 0.01 0.86
Q8 2.0 3.5 0.01 0 0.03 0.04 0.92

Table S14: Trader’s perspective robust optimization results for Portfolio B simulated over April 1, 2017 - April 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.7 0.01 0.24 0.02 0 0.73
Q2 2.0 2.2 0.10 0 0 0 0.90
Q3 2.0 3.0 0.06 0.16 0 0 0.78
Q4 2.0 3.1 0 0 0 0.04 0.96
Q5 2.0 4.4 0.01 0.10 0.04 0.03 0.82
Q6 2.0 2.4 0.15 0 0 0 0.85
Q7 2.0 3.5 0.13 0 0.02 0 0.85
Q8 2.0 3.3 0 0 0 0.05 0.95

Table S15: Trader’s perspective robust optimization results for Portfolio B simulated over May 1, 2017 - May 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 1.0 0 0 0 0.02 0.98
Q2 2.0 1.8 0.08 0.11 0 0 0.81
Q3 2.0 3.2 0.09 0 0.02 0 0.89
Q4 2.0 4.1 0 0 0 0.04 0.96
Q5 2.0 1.3 0 0 0 0.04 0.96
Q6 2.0 2.1 0.15 0 0 0 0.85
Q7 2.0 3.5 0.12 0 0.03 0 0.85
Q8 2.0 4.1 0 0 0 0.05 0.95

Table S16: Trader’s perspective robust optimization results for Portfolio B simulated over June 1, 2017 - June 1, 2019 planning
horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 0.9 0 0 0 0.02 0.98
Q2 2.0 1.8 0.09 0.03 0 0 0.88
Q3 2.0 3.2 0 0.01 0.01 0.03 0.95
Q4 2.0 3.9 0.02 0.02 0 0.03 0.93
Q5 2.0 1.4 0 0 0 0.04 0.96
Q6 2.0 2.3 0.13 0 0 0.01 0.86
Q7 2.0 3.5 0.01 0 0.03 0.04 0.92
Q8 2.0 4.1 0.03 0.02 0 0.04 0.91

Table S17: Trader’s perspective robust optimization results for Portfolio B simulated over July 1, 2017 - July 1, 2019 planning
horizon.
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 2.2 0.10 0 0 0 0.90
Q2 2.0 3.0 0.06 0.16 0 0 0.78
Q3 2.0 3.1 0 0 0 0.04 0.96
Q4 2.0 4.4 0.15 0 0 0 0.85
Q5 2.0 2.4 0.15 0 0 0 0.85
Q6 2.0 3.5 0.13 0 0.02 0 0.85
Q7 2.0 3.3 0 0 0 0.05 0.95
Q8 2.0 4.2 0 0.18 0.06 0.03 0.73

Table S18: Trader’s perspective robust optimization results for Portfolio B simulated over August 1, 2017 - August 1, 2019
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 1.8 0.08 0.11 0 0 0.81
Q2 2.0 3.2 0.09 0 0.02 0 0.89
Q3 2.0 4.1 0 0 0 0.04 0.96
Q4 2.0 1.3 0 0 0 0.04 0.96
Q5 2.0 2.1 0.15 0 0 0 0.85
Q6 2.0 3.5 0.12 0 0.03 0 0.85
Q7 2.0 4.1 0 0 0 0.05 0.95
Q8 2.0 1.5 0 0 0 0.06 0.94

Table S19: Trader’s perspective robust optimization results for Portfolio B simulated over September 1, 2017 - September 1,
2019 planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 1.8 0.09 0.03 0 0 0.88
Q2 2.0 3.2 0 0.01 0.01 0.03 0.95
Q3 2.0 3.9 0.02 0.02 0 0.03 0.93
Q4 2.0 1.4 0 0 0 0.05 0.95
Q5 2.0 2.3 0.13 0 0 0.01 0.86
Q6 2.0 3.5 0.01 0 0.03 0.04 0.92
Q7 2.0 4.1 0.03 0.02 0 0.04 0.91
Q8 2.0 1.6 0 0 0 0.06 0.94

Table S20: Trader’s perspective robust optimization results for Portfolio B simulated over October 1, 2017 - October 1, 2019
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.0 0.06 0.16 0 0 0.78
Q2 2.0 3.1 0 0 0 0.04 0.96
Q3 2.0 4.4 0.01 0.10 0.04 0.03 0.82
Q4 2.0 2.4 0.15 0 0 0 0.85
Q5 2.0 3.5 0.13 0 0.02 0 0.85
Q6 2.0 3.3 0 0 0 0.05 0.95
Q7 2.0 4.2 0 0.18 0.06 0.03 0.73
Q8 2.0 3.0 0.01 0 0.01 0.05 0.93

Table S21: Trader’s perspective robust optimization results for Portfolio B simulated over November 1, 2017 - November 1,
2019 planning horizon.
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Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.2 0.09 0 0.02 0 0.89
Q2 2.0 4.1 0 0 0 0.04 0.96
Q3 2.0 1.3 0 0 0 0.04 0.96
Q4 2.0 2.1 0.15 0 0 0 0.85
Q5 2.0 3.5 0.12 0 0.03 0 0.85
Q6 2.0 4.1 0 0 0 0.05 0.95
Q7 2.0 1.5 0 0 0 0.06 0.94
Q8 2.0 2.5 0.09 0.31 0 0 0.76

Table S22: Trader’s perspective robust optimization results for Portfolio B simulated over December 1, 2017 - December 1,
2019 planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.2 0 0.01 0.01 0.03 0.95
Q2 2.0 3.9 0.02 0.02 0 0.03 0.93
Q3 2.0 1.4 0 0 0 0.05 0.95
Q4 2.0 2.3 0.13 0 0 0.01 0.86
Q5 2.0 3.5 0.01 0 0.03 0.04 0.92
Q6 2.0 4.1 0.03 0.02 0 0.04 0.91
Q7 2.0 1.6 0 0 0 0.06 0.94
Q8 2.0 2.8 0.08 0.11 0.01 0.02 0.78

Table S23: Trader’s perspective robust optimization results for Portfolio B simulated over January 1, 2018 - January 1, 2020
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 3.1 0 0 0 0.04 0.96
Q2 2.0 4.4 0.01 0.10 0.04 0.03 0.82
Q3 2.0 2.4 0.15 0 0 0 0.85
Q4 2.0 3.5 0.13 0 0.02 0 0.85
Q5 2.0 3.3 0 0 0 0.05 0.95
Q6 2.0 4.2 0.01 0.18 0.06 0.03 0.72
Q7 2.0 3.0 0.01 0 0.01 0.05 0.93
Q8 2.0 3.8 0.16 0.06 0 0 0.78

Table S24: Trader’s perspective robust optimization results for Portfolio B simulated over February 1, 2018 - February 1, 2020
planning horizon.

Quarter Returns [%] Risk [%] Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 2.0 4.1 0 0 0 0.04 0.96
Q2 2.0 1.3 0 0 0 0.04 0.96
Q3 2.0 2.1 0.15 0 0 0 0.85
Q4 2.0 3.5 0.12 0 0.03 0 0.85
Q5 2.0 4.1 0 0 0 0.06 0.94
Q6 2.0 1.5 0 0 0 0.06 0.94
Q7 2.0 2.5 0.09 0.31 0 0 0.6
Q8 2.0 3.5 0.07 0.02 0.02 0.03 0.86

Table S25: Trader’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon.
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3.2. Grower’s Results

The following are the robust optimization results for three independent studies of Portfolio A and six
independent studies of Portfolio B simulated for various tolerable risk levels over the same planning horizon
spanning from March 1, 2018 to March 1, 2020. The grower’s model was run for various tolerable risk levels
between 22.5% and 25% for Portfolio A and between 10% and 25% for Portfolio B. The grower’s model
results include the optimal capacity, location, crop allocations, and NPV of the CEA system in addition to
the capital expenses, non-discounted average quarterly operating expenses and revenue.

3.2.1. Portfolio A Results

Tolerable Quarterly Risk∗ 25%
Optimal Capacity 26,672 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S30

Optimal NPV $21.68 million
Capital Expenses $11.5 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.94 million

Table S26: Grower’s perspective robust optimization results for Portfolio A simulated over March 1, 2018 - March 1, 2020
planning horizon for 25% tolerable risk.
∗ See corresponding risk profiles in Figure S1

Tolerable Quarterly Risk 23%
Optimal Capacity 26,672 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S31

Optimal NPV $21.42 million
Capital Expenses $11.5 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.91 million

Table S27: Grower’s perspective robust optimization results for Portfolio A simulated over March 1, 2018 - March 1, 2020
planning horizon for 23% tolerable risk.

Tolerable Quarterly Risk 22.5%
Optimal Capacity 26,672 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S32

Optimal NPV $20.48 million
Capital Expenses $11.5 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.79 million

Table S28: Grower’s perspective robust optimization results for Portfolio A simulated over March 1, 2018 - March 1, 2020
planning horizon for 22.5% tolerable risk.
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Tolerable Quarterly Risk 21.75%
Optimal Capacity 27,554 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S33

Optimal NPV $17.82 million
Capital Expenses $11.9 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.72 million

Table S29: Grower’s perspective robust optimization results for Portfolio A simulated over March 1, 2018 - March 1, 2020
planning horizon for 21.75% tolerable risk.

Quarter Crop 1 Crop 2 Crop 3 Crop 4
Q1 0.0199 0.0287 0.932 0.0193
Q2 0.0191 0.0245 0.937 0.0193
Q3 0.0190 0.0242 0.940 0.0172
Q4 0.0304 0.0350 0.893 0.0419
Q5 0.0149 0.0190 0.945 0.0211
Q6 0.0219 0.0234 0.913 0.0413
Q7 0.0206 0.0219 0.938 0.0197
Q8 0.0310 0.0482 0.905 0.0157

Table S30: Robust optimal quarterly crop allocations for Portfolio A under 25% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4
Q1 0.0114 0.0517 0.912 0.0252
Q2 8.04e-3 6.53e-3 0.972 0.0132
Q3 7.99e-3 6.54e-3 0.973 0.0121
Q4 0.0609 0.0477 0.844 0.0473
Q5 4.02e-6 0.0443 0.907 0.0489
Q6 6.27e-6 0.0443 0.907 0.0489
Q7 2.41e-6 2.12e-6 1.0 9.53e-6
Q8 0.0941 0.0422 0.864 5.66e-6

Table S31: Robust optimal quarterly crop allocations for Portfolio A under 23% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4
Q1 8.15e-5 0.0847 0.892 0.0236
Q2 5.85e-5 4.51e-5 1.0 1.50e-4
Q3 5.85e-5 4.51e-5 1.0 1.49e-4
Q4 0.0882 0.0277 0.810 0.0738
Q5 1.46e-6 0.0793 0.872 0.0488
Q6 7.49e-6 0.0792 0.872 0.0489
Q7 1.02e-6 8.88e-7 1.0 3.26e-6
Q8 0.0938 0.0632 0.843 1.32e-5

Table S32: Robust optimal quarterly crop allocations for Portfolio A under 22.5% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

12



Quarter Crop 1 Crop 2 Crop 3 Crop 4
Q1 1.79e-5 0.133 0.795 0.0717
Q2 9.58e-6 7.31e-6 1.0 2.11e-5
Q3 9.58e-6 7.31e-6 1.0 2.1e-5
Q4 0.188 0.00194 0.788 0.0229
Q5 3.8e-6 0.161 0.791 0.0473
Q6 3.8e-6 0.161 0.791 0.0473
Q7 5.44e-6 4.7e-6 1.0 6.34e-6
Q8 0.0943 0.0941 0.812 7.2e-6

Table S33: Robust optimal quarterly crop allocations for Portfolio A under 21.75% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Figure S1: Risk performance of Portfolio A is compared for näıve and robust (generated using 25% tolerable risk) portfolios for
5·105 realizations of expected market behavior over the March 1, 2018 - March 1, 2020 planning horizon.

3.2.2. Portfolio B Results

Tolerable Quarterly Risk 25%
Optimal Capacity 26,747 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S40

Optimal NPV $21.28 million
Capital Expenses $11.7 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.94 million

Table S34: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 25% tolerable risk.

13



Tolerable Quarterly Risk 23%
Optimal Capacity 26,747 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S41

Optimal NPV $21.28 million
Capital Expenses $11.7 million

Average Quarterly Operating Expenses $5.0 million
Average Quarterly Revenue $9.94 million

Table S35: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 23% tolerable risk.

Tolerable Quarterly Risk 22.5%
Optimal Capacity 26,747 sq.ft.
Optimal Locations 0 miles west/east

15.8 miles south/north
Optimal Crop Allocations See Table S42

Optimal NPV $21.16 million
Capital Expenses $11.7 million

Average Quarterly Operating Expenses $4.9 million
Average Quarterly Revenue $9.92 million

Table S36: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 22.5% tolerable risk.

Tolerable Quarterly Risk 21.75%
Optimal Capacity 27,556 sq.f.
Optimal Locations 0 miles west/east

15.9 miles south/north
Optimal Crop Allocations See Table S43

Optimal NPV $19.64 million
Capital Expenses $12.1 million

Average Quarterly Operating Expenses $5.07 million
Average Quarterly Revenue $10.0 million

Table S37: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 21.75% tolerable risk.

Tolerable Quarterly Risk 14%
Optimal Capacity 9,810 sq.ft.
Optimal Locations 0 miles west/east

14.7 miles south/north
Optimal Crop Allocations See Table S44

Optimal NPV $9.49 million
Capital Expenses $4.3 million

Average Quarterly Operating Expenses $1.64 million
Average Quarterly Revenue $3.70 million

Table S38: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 14% tolerable risk.
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Tolerable Quarterly Risk 10%
Optimal Capacity 9,810 sq.ft.
Optimal Locations 0 miles west/east

14.7 miles south/north
Optimal Crop Allocations See Table S45

Optimal NPV $9.49 million
Capital Expenses $4.3 million

Average Quarterly Operating Expenses $1.64 million
Average Quarterly Revenue $3.70 million

Table S39: Grower’s perspective robust optimization results for Portfolio B simulated over March 1, 2018 - March 1, 2020
planning horizon for 10% tolerable risk.

Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 0.0318 0.0287 0.901 0.0353 0.00283
Q2 0.0198 0.0251 0.918 0.0342 0.00283
Q3 0.0245 0.026 0.921 0.0258 0.00283
Q4 0.012 0.0323 0.951 0.00209 0.00283
Q5 0.0112 0.00321 0.948 0.0345 0.00283
Q6 0.0202 0.0264 0.918 0.0323 0.00283
Q7 0.0283 0.0299 0.926 0.0128 0.00283
Q8 0.0285 0.0527 0.898 0.0179 0.00283

Table S40: Robust-optimal quarterly crop allocations for Portfolio B under 25% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 0.0126 0.0461 0.912 0.0270 0.00283
Q2 0.00938 0.00731 0.966 0.0147 0.00283
Q3 0.00924 0.0073 0.967 0.0134 0.00283
Q4 0.0569 0.0514 0.846 0.0424 0.00283
Q5 0.00697 0.0383 0.900 0.052 0.00283
Q6 0.0049 0.00447 0.971 0.0167 0.00283
Q7 0.00495 0.00446 0.973 0.015 0.00283
Q8 0.0713 0.0649 0.847 0.0138 0.00283

Table S41: Robust-optimal quarterly crop allocations for Portfolio B under 23% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 0.00155 0.0768 0.887 0.0318 0.00283
Q2 0.00103 8.04e-4 0.993 0.00222 0.00283
Q3 0.00103 8.03e-4 0.993 0.00218 0.00283
Q4 0.0845 0.0338 0.818 0.0613 0.00283
Q5 5.26e-6 0.0587 0.841 0.0975 0.00283
Q6 4.68e-7 4.18e-7 0.997 1.58e-6 0.00283
Q7 4.68e-7 4.18e-7 0.997 1.58e-6 0.00283
Q8 0.0936 0.0604 0.843 7.16e-6 0.00283

Table S42: Robust-optimal quarterly crop allocations for Portfolio B under 22.5% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.
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Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 6.46e-6 0.127 0.801 0.0688 0.00275
Q2 1.41e-8 8.94e-9 0.997 3.34e-8 0.00275
Q3 1.41e-8 8.94e-9 0.997 3.34e-8 0.00275
Q4 0.185 3.57e-6 0.787 0.0259 0.00275
Q5 1.25e-6 0.126 0.777 0.0946 0.00275
Q6 1.95e-9 6.67e-10 0.997 1.61e-8 0.00275
Q7 1.95e-9 6.67e-10 0.997 1.61e-8 0.00275
Q8 0.0981 0.0878 0.811 3.05e-6 0.00275

Table S43: Robust-optimal quarterly crop allocations for Portfolio B under 21.75% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 0.0558 0.0607 0.0273 0.0843 0.772
Q2 0.0583 0.0774 0.0240 0.0683 0.772
Q3 0.0645 0.0864 0.0247 0.0525 0.772
Q4 0.0616 0.0812 0.0247 0.0606 0.772
Q5 0.0657 0.0811 0.0260 0.0554 0.772
Q6 0.0541 0.0745 0.0247 0.0748 0.772
Q7 0.0619 0.0788 0.0253 0.0621 0.772
Q8 0.0585 0.0715 0.0247 0.0734 0.772

Table S44: Robust-optimal quarterly crop allocations for Portfolio B under 14% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.

Quarter Crop 1 Crop 2 Crop 3 Crop 4 Crop 5
Q1 0.0569 0.0652 0.0259 0.0801 0.772
Q2 0.0556 0.0775 0.0248 0.0703 0.772
Q3 0.0661 0.0817 0.0246 0.0557 0.772
Q4 0.0617 0.0815 0.0253 0.0597 0.772
Q5 0.0563 0.0608 0.0262 0.0849 0.772
Q6 0.0563 0.0785 0.0247 0.0687 0.772
Q7 0.0659 0.0829 0.0249 0.0544 0.772
Q8 0.0618 0.0835 0.0249 0.0578 0.772

Table S45: Robust-optimal quarterly crop allocations for Portfolio B under 10% tolerable quarterly risk exposure simulated
over March 1, 2018 - March 1, 2020 planning horizon.
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Yusuf Çelik and Kenan Peker. Benefit/cost analysis of mushroom production for diversification of income
in developing countries. Bulgarian Journal of Agricultural Science, 15(3):228–237, 2009.

Garth P. McCormick. Computability of global solutions to factorable nonconvex programs: Part I-convex
underestimating problems. Math. Program, 10:147–175, 1976. doi:10.1007/BF01580665.

Alexander Mitsos, Benoit Chachuat, and Paul I. Barton. McCormick-based relaxations of algorithms. SIAM
Journal of Optimization, 20(2):573–601, December 2009. doi:10.1137/080717341.

Nikolaos V. Sahinidis. BARON: A general purpose global optimization software package. Journal of Global
Optimization, 8(2):201–205, 1996. ISSN 1573-2916. doi:10.1007/BF00138693.

M. D. Stuber, J. K. Scott, and P. I. Barton. Convex and concave relaxations of implicit functions. Opti-
mization Methods and Software, 30(3):424–460, 2015. doi:10.1080/10556788.2014.924514.

Matthew E. Wilhelm and Matthew D. Stuber. EAGO: Easy advanced global optimization Julia package,
2018. URL https://github.com/PSORLab/EAGO.jl.

Matthew E. Wilhelm and Matthew D. Stuber. EAGO.jl: Easy advanced global optimization in Julia.
Optimization Methods & Software, Accepted, 2020. doi:10.1080/10556788.2020.1786566.

Conrad Zeidler, Daniel Schubert, and Vincent Vrakking. Vertical farm 2.0: Designing an economically
feasible vertical farm – a combined european endeavor for sustainable urban agriculture. Technical report,
2017.

17

https://doi.org/10.1007/BF00121749
https://doi.org/10.1007/BF01580665
https://doi.org/10.1137/080717341
https://doi.org/10.1007/BF00138693
https://doi.org/10.1080/10556788.2014.924514
https://github.com/PSORLab/EAGO.jl
https://doi.org/10.1080/10556788.2020.1786566

	Optimal design of controlled environment agricultural systems under market uncertainty
	1 Introduction
	2 Background
	2.1 Decision-making under uncertainty in agriculture
	2.2 Robust optimization
	2.3 Modern portfolio theory

	3 Method development
	3.1 Deterministic optimization from a trader’s perspective
	3.2 Deterministic optimization from a grower’s perspective

	4 Case studies
	4.1 Trader’s perspective
	4.1.1 Trader’s perspective methods
	4.1.2 Trader’s perspective results

	4.2 Grower’s perspective
	4.2.1 Grower’s perspective methods
	4.2.2 Grower’s perspective results


	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References

	optimal design of controlled environment agriculture Supplementary Information.pdf
	Affine Relaxations of Non-affine and Non-bilinear Terms
	Case-Study Numerical Values
	Extended Results
	Trader's Results
	Portfolio A Results
	Portfolio B Results

	Grower's Results
	Portfolio A Results
	Portfolio B Results




