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* Motivation
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Motivation: Reduced-Space
Optimization

f(z{p)
min Z_
Z,p 2 p
s.t. 22 —p=0
z€0,2]

p €[0.01,2] .
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Motivation: Reduced-Space

Optimization

min - D
po 2
s.t. p€/0.01,2]
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Motivation: Reduced-Space

Optimization

Want to solve dynamic optimization problems to guaranteed global optimality:

*

. | ¢ = min ¢(z,p,t,)
¢ = min ¢(x(p,t,),p) belacs
pePCR" s.t. z, =X (u P)

s.t. x(p,t) = f(x(p,t),p,1), Vtel—[to,tf] i -z, —hf( 2,p,1) =0

x(p,t,) = x,(p) S

< .

g(x(p,t,),p) <0 i —a_ —hf(@, ,p,t )=0

Dimensionality: np

g(iK,p) <0
Dimensionality: np x K




Background: EAGO

How do you get EAGO?
From Julia package manager:

using Pkg;
add EAGO
Pkg.add("EAGO"))

From GitHub:
https://www.qithub.com/PSORLab/EAGO.jl

FAGO


https://www.github.com/PSORLab/EAGO.jl

Background: EAGO

How do you get EAGO?
From Julia package manager:

using Pkg;
add EAGO
Pkg.add("EAGO")|

From GitHub:
https://www.qithub.com/PSORLab/EAGO.jl

How do you use EAGQO?
As a solver in the open-source algebraic modeling language JuMP.
As a stand-alone solver.
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I u b I I S I l ‘ ’ I 2 ‘ ’ u I tS EAGO.jl: easy advanced global optimization in Julia

M. E. Wilhelm © and M. D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular
Engineering, University of Connecticut, Storrs, CT, USA

« EAGO exhibits competitive performance on
benchmarking set

Performance Profile on Test Set

1.0

| |

tp’s

rp’s

~ min{t, : s €S}

ABSTRACT

An extensible open-source deterministic global optimizer (EAGO)
programmed entirely in the Julia language is presented. EAGO
was developed to serve the need for supporting higher-complexity
user-defined functions (e.g. functions defined implicitly via algo-
rithms) within optimization models. EAGO embeds a first-of-its-kind
implementation of McCormick arithmetic in an Evaluator structure
allowing for the construction of convex/concave relaxations using
a combination of source code transformation, multiple dispatch,
and context-specific approaches. Utilities are included to parse user-
defined functions into a directed acyclic graph representation and
perform symbolic transformations enabling dramatically improved
solution speed. EAGO is compatible with a wide variety of local opti-
mizers, the most exhaustive library of transcendental functions, and
allows for easy accessibility through the JuMP modelling language.
Together with Julia's minimalist syntax and competitive speed, these
powerful features make EAGO a versatile research platform enabling
easy construction of novel meta-solvers, incorporation and utiliza-
tion of new relaxations, and extension to advanced problem for-
mulations encountered in engineering and operations research (e.g.
multilevel problems, user-defined functions). The applicability and
flexibility of this novel software is demonstrated on a diverse set of
examples. Lastly, EAGO is demonstrated to perform comparably to
state-of-the-art commercial optimizers on a benchmarking test set.
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1. Introduction and motivation

Mathematical optimization problems are ubiquitous in scientific and technical fields.
Applications range from aerospace and chemical process systems to finance. However, even
relatively simple physical processes such as mixing, may introduce significant nonconvex-
ity into problem formulations [60]. As such, nonconvex programs often represent the most
faithtul representations of the system of interest. Multiple approaches have been developed
to address these cases. Heuristics such as evolutionary algorithms, may approximate good
solutions for select problems. However, heuristics may fail to guarantee that even a feasible

CONTACT M.D.Stuber &) stuber@alum.mitedu (@) Process Systems and Operations Research Laboratory,
Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3223, Starrs,
CT 06269-3222, USA

0 Supplemental data for this article can be accessed here. httpsy//doi.org/10.1080/10556788.2020.1786566

i 2020 Informa UK Limited, trading as Taylor & Francls Group




EAGO.|l: Core Optimizer
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McCormick-Based Relaxations

« Most broadly known for convex/concave relaxations of bilinear terms

o (z,y) f(z,y) = zy f(z,y)
P
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Convex/Concave Relaxations

f(z) = 2* (1 - exp(-z))
Auxiliary Variable Method

Yy =2
y2 N 1 B exp(_x) 2\cv 2\cc
y3:y1y2 ([E ) Sylﬁ(f )

(I-exp(-2))" <y, <(1-exp(-z))”
(y,9,)" <y, <(yy,)"

An optimization formulation is “lifted”
from 1 original decision variable to 4.




Convex/Concave Relaxations

f(z) = 2*(1 - exp(-z))
Auxiliary Variable Method McCormick

y =1 y,(z) =27
y, =1—exp(-z) y,(z) =1—exp(-z)
— (z9)" <y, < (&) y,(2) = y,(x)y, ()
(1 - exp(=2))" <y, < (1-exp(=2))" f(z) = g,()
(v9,)" <. < (y1,)" [ () < flz) < [ (2)

An optimization formulation with 1
original decision variable remains in
the original dimensionality space.

An optimization formulation is “lifted”
from 1 original decision variable to 4.




EAGO.|l: McCormick Relaxations

Relaxations of g(x) at x in X y = f(g(x),..,h(x))

> Relaxations of
f(x) at xin X

Apply f composite relaxation rules

Relaxations of h(x) at x in X

¢ Improved (tighter) relaxations of composite bilinear and trilinear terms*
¢ Supports a variety of nonlinear expressions:
« Common algebraic expressions: log, log2, log10, exp, exp2, exp10, sqrt, +, -, *, min, max, /, X, abs, step, cbrt, ...
« Trigonometric Functions: sin, cos, tan, asin, acos, atan, sec, csc, cot, asec, acsc, acot...
* Hyperbolic Functions: sinh, cosh, tanh, asinh, acosh, atanh, sech, csch, coth, acsch, acoth
* Special Functions: erf, erfc, erfinv, erfcinv
* Activation Functions™**: relu, leaky relu, sigmoid, softsign, softplus, maxtanh, gelu, elu, selu, silu, ...
« Common Algebraic Expressions: xlogx, arh, xexpax

E & G O *In preparation  ** Under Review




EAGO.|l: New Multigraph Backend

Introduce support for multiple-output subexpressions.

h,(z,y) =0 g(z)

hi(y,x) =0

Separate caches of information from graph structure (extendibility).

A 4 A 4 A 4 A 4

Convexity . Set-valued
. Relaxations Etc.
Detection Enclosures

E&GO INFORMS 2021 - Oct 25, 2021 15 ‘9



EAGO.|l: New Multigraph Backend

Introduce support for multiple-output subexpressions.

h;(y,x) =0 h,(z,y) =0 g(z)

I /

» Introduce support for multiple-output subexpressions into graph representation (e.g., h, h,).

» Support introduction of auxiliary variables (distinct from decision variables).

» Allows for chaining of computation of auxiliary variables and general implicit functions.

E&GO INFORMS 2021 - Oct 25, 2021



EAGO.|l: Core Optimizer

Key Improvements to Global Optimization Routine:

O
O
@)
O

Heuristics to ensure numerically safe affine relaxations for lower-bounding problems
More computationally efficient approach to optimization-based bounds tightening
No-overhead user-defined subroutines (lower-bounding problem, etc.)

Improved parameter tuning

Other High-Level Improvements to EAGO’s Global Optimizer:

FAGO
— |
N\ Mf

O
O
O
O

Bridging + configuration for a large variety of subsolvers
Preliminary support for integer-variables (MINLP problem forms)
Detection of specialized problem forms (LP, MILP, convex)
Support for additional semi-infinite programming (SIP) routines

Improvements to MINLP
solution algorithm currently
under development.




EAGO.|l: Novel Relaxations

Improved relaxation subroutine performance due to intrinsic relaxation library upgrade:

o Relaxation of implicit functions® Standard McCormick Relaxation Improved Library

o Relaxations of ODEs!!
o Reverse propagation of relaxations!?

Simple ODE Relaxation

dx

E — exp(p) sin(x)(Z - X),

x(0) =1, pe€[0.01,1], te][0,5]

10. Stuber, MD et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software (2015), 30, 424-460
11. Scott, Joseph K., and Paul I. Barton. Improved relaxations for the parametric solutions of ODEs using differential inequalities. Journal of Global Optimization 57.1 (2013): 143-176.
12. Wechsung, Achim, et al. Reverse propagation of McCormick relaxations. Journal of Global Optimization 63.1 (2015): 1-36.

P
| 2
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EAGO.jl: Distributed Computing

Overall Framework:

Currently, under
development. Expected
by end of 2021.

» Support for distributed computing via ClusterManager abstraction

Lower Problem }

(MIP)
» User-specified entry point for parallelism Cluster
Manager
= Parallel evaluation of relaxations
Upper Problem }
= Parameter setting in optimizers used by subproblem (Local NLP)

= Lower bounding, upper bounding subproblems [ R }

FAGO
-
N\ Mf




EAGO.|l: Main Features

* Embedded Machine Learning (ML) Models
Wilhelm and Stuber, VSD63 (Sunday, Virtual Room 63)
“ Semi-infinite Programming

¢ Dynamic Optimization

... Composability thereof




EAGO.|l: Main Features

“» Embedded Machine Learning (ML) Models
Wilhelm and Stuber, VSD63 (Sunday, Virtual Room 63)
“* Semi-infinite Programming

¢ Dynamic Optimization

... Composability thereof
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Solving Nonconvex SIPs

EAGO.jl supports for general nonconvex SIP solving.

f* = minf (®)

XeX

s.t. gx,p)<0,VpeP

Composable with ML/dynamic relaxations.

New features: CD

= Added new hybrid-oracle SIP routine®.
=  Automatic subproblem tolerance specification?®.
= User-extendable SIP subproblems.

SIPres algorithm?

Update lower bound

—{ LLP 1

Add to discretization set (or update LLP tolerance)

LLP 2

UBD Feasible?

Update restriction parameter

Update upper bound, restriction parameter, LLP tolerance, discretization set

B. Bhattacharjee, P. Lemonidis, W.H. Green Jr, and P.I. Barton. Global solution of semi-infinite programs. Math. Program. 103 (2005), pp. 283-307.
Mitsos, Alexander. Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60.10-11 (2011): 1291-1308.

Djelassi, Hatim, and Alexander Mitsos. A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. Journal of Global Optimization 68.2 (2017): 227-253.




EAGO.|l: Main Features

“» Embedded Machine Learning (ML) Models
Wilhelm and Stuber, VSD63 (Sunday, Virtual Room 63)
“ Semi-infinite Programming

“* Dynamic Optimization

... Composability thereof




Dynamics, Relaxation

: . ; _Ti . 0 c[10,11,12]
> New support included for general nonlinear COntinuous-Time Relaxations

parametric ordinary differential equations. X (1,p) = £ (t,p, X" (t,p), X“(t,p)), X" (t,,p) =X (p)
X“(@,p) =1“@,p,x"(¢,p),x“(,p), x“(4.p)=x; (p)
» Incorporation into global optimizer:
o Relaxations & Domain Reduction:

o Interval bounds Discrete-Time Relaxations!13:14.15]
o Relaxations & (sub)gradients L o
o Local NLP solver: X(fq+1,p)eX(fq,p)+ZFf”’(X(rq,p),p)+mf“’“)(X(rq),P)
. . . . j=1 . .
o Automatic differentiation for upper- Taylor Series Remainder Bound

bounding problem

10. Scott, Joseph K., and Paul I. Barton. Improved relaxations for the parametric solutions of ODEs using differential inequalities. Journal of Global Optimization 57.1 (2013): 143-176.

11. Scott, Joseph K., and Paul |. Barton. Bounds on the reachable sets of nonlinear control systems. Automatica 49.1 (2013): 93-100.

12. Scott, Joseph K., Benoit Chachuat, and Paul I. Barton. Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optimal Control Applications and Methods 34.2 (2013): 145-163.
13. Sahlodin, Ali M., and Benoit Chachuat. Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Applied Numerical Mathematics 61.7 (2011): 803-820.

14. Berz, Martin, and Georg Hoffstdtter. Computation and application of Taylor polynomials with interval remainder bounds. Reliable Computing 4.1 (1998): 83-97.

15. Sahlodin, AliMohammad, and Benoit Chachuat. Convex/concave relaxations of parametric ODEs using Taylor models. Computers & Chemical Engineering 35.5 (2011): 844-857.

FAGO




Dynamics, Implementation

Core Algorithms Abstraction Layer

» DynamicBoundspODEsDiscrete.jl \ 4
— Discrete time approaches : :>
» DynamicBoundspODEsineq.jl

i 134
-- Continuous time approaches DynamicBounds.jl

» DynamicBounds.jl

» DynamicBoundsBase.jl

34. Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository, https://github.com/PSORLab/DynamicBounds.jl

35. Wilhelm, M. E., and M. D. Stuber. EAGO. jl: easy advanced global optimization in Julia. Optimization Methods and Software (2020): 1-26.

36. Wilhelm, M. E., EAGODynamicOptimizer.jl, (2020), GitHub repository, https://github.com/PSORLab/EAGODynamicOptimizer.jl
37. Pulsipher, J.L., et al. A Unifying Modeling Abstraction for Infinite-Dimensional Optimization, https://arxiv.org/abs/2106.12689

E&GO INFORMS 2021 - Oct 25, 2021

Extendable Global Optimizer3®

E&GO

EAGODynamicOptimizer.jI®

Future Work: Integrate with JuMP-
based frontends (e.g., InfiniteOpt.jlI3?)

25 ‘9

OMR


https://github.com/PSORLab/DynamicBounds.jl
https://github.com/PSORLab/EAGODynamicOptimizer.jl
https://arxiv.org/abs/2106.12689

EAGO.|l: Main Features

“» Embedded Machine Learning (ML) Models
Wilhelm and Stuber, VSD63 (Sunday, Virtual Room 63)
“ Semi-infinite Programming

* Dynamic Programming

... Composability thereof




Robust Dynamic Optimization

Dynamic SIP Formulation

" = muin P (u) +—— Objective > Design under worst-case

_ realization of uncertainty.
s.t. g(x(u, p, tf),u, p) <0 +— Performance Constraint(s)

x = f(x(u, p, t), u, +—— Parametric ODEs
(x(u, p,t), u, p) » Safety-critical systems and
x(u, p,ty) =Xo(u, p) «— |nitial Condition high-impact defect elimination.

t €=ty tr],VpEP

1. Puschke, Jennifer, et al. Robust dynamic optimization of batch processes under parametric uncertainty: Utilizing approaches from semi-infinite programs. Computers &
Chemical Engineering 116 (2018): 253-267.

2. Puschke, Jennifer, and Alexander Mitsos. Robust feasible control based on multi-stage eNMPC considering worst-case scenarios. Journal of Process Control 69 (2018): 8-15.




Robust Dynamic Optimization

Batch MMA Polymerization Reaction : )
Adequate cooling at maximum

temperature to withstand sensor fault?

M

__________________ (D)
_ o Robust Operation SIP
Z s.t.y=1(ty,u) —p, VuelU
=0
j L Nonconvex semi-infinite program
Coolzmti Heater | | .
) S - 0 Embedded dynamic system

L Complex chemical kinetics (hybrid model desirable)




Robust Dynamic Optimization

Robust Operation SIP Rate Expression (Greatly Simplified....)
T* — max R :_Cm‘f{](kP'kam):
pePyel R; = —k;C;,

s.t.y=T(tf,u)—p, VuelU
[ &8k (0, Cmy T) = 20k Ci = 0. ]

Dynamical System (Mass & Energy Balance) => Use 3-layer GeLU ANN as in place of

solving nonlinear equation from

dc : .
m _ (1 +€Cmi{(jmo)ﬂm; . quasi Steady state assumption
dt Relaxations of
dC; .
d!; — R; +€¢Ci/Comy R, Dynamical System
AT _ aokpboCn | 0 o |:> . .
= (14 i —
At 1+€CmlCpy | 1V Able to solve SIP in 57.8 s using

a modified SIPres algorithm.

Rate constants (R,,, R;) from pseudo-empirical models




Conclusions

« EAGO is an extensible deterministic global optimization solver
— Architected specifically for user-defined functions and routines
— Performance comparable with state-of-the-art solvers
— Open-source and free for non-commercial use

 Now and Near Future:

— Exhaustive library of relaxation envelopes for commonly encountered
subexpressions

— Additional relaxations (BB and AVM)
— Release of dynamic optimization (optimal control) package
— Integer variables

* Feature requests welcome on our GitHub!

FAGO
-
N\ Mf



Thank You — Any Questions?

This material is based upon work supported
¢ PSO RLab@UCON N by the National Science Foundation under
i o Grant No. 1932723. Any opinions, findings,
° INFORMS 2021 Organ 1Zers and conclusions or recommendations
. . . . expressed in this material are those of the
° Fu nd|ng: National Science Foundation authors and do not necessarily reflect the
views of the National Science Foundation.
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Motivation: Reduced-Space

Optimization

Want to solve dynamic optimization problems to guaranteed global optimality:

6 = min ¢(x(p,,),p)

pePCR P
s.t. x(p,t) = f(x(p,t),p,t),Vt € I = [to,tf]
x(p,t,) = %,(p)
g(x(p,t,),p) <0




Motivation: Reduced-Space

Optimization
Want to solve dynamic optimization problems to guaranteed global optimality:

*

6 = min ¢(x(p,,),p)

pcPCR P
s.t. | x(p,t) = f(x(p,t),p,t),Vt € I = [to,tf]
x(p,t,) = %,(p)
g(x(p,t,),p) <0

Parametric ordinary differential equation initial value problem (ODE-IVP)
constraints.

Arise from optimal control, parameter estimation, etc.




Motivation: Reduced-Space

Optimization

Want to solve dynamic optimization problems to guaranteed global optimality:

4 N

Z, = XO(P)
2 —z_—hf(z,p,t)=0
X(p’t): X(p )7:[)7 ) \V/tEI [ ] » 1 0 : ( 1:p 1)
X(p,t,) =%X,(P - -
( o) 0( ) ZK_ZK—1_hf(ZK7p7tK):O
K Discrete-time reformulation (implicit Euler) /

constraints.

Arise from optimal control, parameter estimation, etc.



Motivation: Reduced-Space

Optimization

Want to solve dynamic optimization problems to guaranteed global optimality:

*

. | ¢ = min ¢(z,p,t,)
¢ = min ¢(x(p,t,),p) belacs
pePCR" s.t. z, =X (u P)

s.t. x(p,t) = f(x(p,t),p,1), Vtel—[to,tf] i -z, —hf( 2,p,1) =0

x(p,t,) = x,(p) S

< .

g(x(p,t,),p) <0 i —a_ —hf(@, ,p,t )=0

Dimensionality: np

g(iK,p) <0
Dimensionality: np x K




Motivation: Reduced-Space

Optimization

Want to solve dynamic optimization problems to guaranteed global optimality:

*

§ = min ¢(z ,t
¢ = min ¢(x(p.t,),p) P B PEP )

pEPCR'? s.t. z, = x (u,p)
s.t. x(p,¢) = £(x(p,1),p,0), Vi€ T =[¢,1,] i -z, —hf( 2,p,1) =0
X(p’to)_ o(p) : X
g(x(p;¢,),p) <0 2 —2,_ —h(z, ,pt )=0

Dimensionality: np

g(z,,p) <0
Dimensionality: np x K

*

= min ¢(z(p),p, ;)
s.t. g(z,(p),p) <0 .
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