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Engineered systems exhibit transient spatially dependent phenomena. Advances in compu-

tational methods enable applications of quantitative and formal methods for simulation of

complex spatiotemporal phenomena. This thesis develops advanced computational methods

for modeling, simulation, and optimization of dynamical systems with spatial dependence.

In particular, deterministic optimization-based approaches are developed and used to solve

parameter estimation problems for rigorous model validation, as well as optimal design and

design under uncertainty problems. The modeling and optimization methods developed in

this work are demonstrated through application to various spatiotemporal systems from dif-

ferent fields, providing deeper insights into system mechanisms to enable accurate prediction

and control of system behavior.

Three specific applications involving spatiotemporal systems motivated the development

of the methods detailed in this thesis. Advanced optimization methods were utilized and

their advantages are demonstrated through these studies. In the first study, non-ideal hetero-

geneous mixing models are developed and incorporated within advanced model predictive

control strategies to reduce the environmental discharge and the energy consumption of

wastewater treatment systems. The new technology platform, consisting of high-resolution

sensors, non-ideal heterogeneous mixing modeling, deterministic global dynamic optimiza-

tion, and model predictive control, offers superior performance over current approaches in

water and wastewater treatment processes. The second study is motivated by the need for
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rigorous in silico optimization methods for decision-making in cancer research. A combina-

tion of first-principles mechanistic modeling and artificial neural network surrogate modeling

is proposed to establish a digital testbed for solid tumors that is used with global optimiza-

tion to solve nonlinear programs for optimal dose selection and macromolecule design. The

experimentally-validated digital testbed approach enables optimal therapy design and anti-

cancer drug size design as well as provides insight into how model-based technologies assist

in medical-relevant studies. The last study demonstrates a process design problem that must

account for uncertainty: worst-case design of performance /safety-critical process systems.

An essential point with respect to worst-case designs, is the need for high-accuracy and

low-complexity models. Thus, in this study, hybrid first-principles data-driven models are

proposed to dramatically improve model prediction accuracy and simplify model structure,

stepping closer to the digital twin concept. A semi-infinite program (SIP), as an alternative

bilevel formulation which have better solution methods, is considered and formalized with

hybrid modeling approaches to enable their use in worst-case designs under uncertainty. This

approach is applied to a dynamical system that sufficiently demonstrates its practicability

for treating spatiotemporal systems.
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Chapter 1

Introduction

1.1 Motivation

Modeling and simulation are critical in engineering as they enable formal approaches to the

design and optimization of systems to enhance their performance, reduce costs, and improve

safety, among other benefits. Furthermore, modeling and simulation-based approaches of-

fer the advantage of exploring and verifying system behavior with respect to performance

and safety specifications in silico. Often, engineered systems of most interest exhibit phe-

nomena that are dependent on both spatial and temporal domains. In particular, ordinary

differential equations (ODEs) and transient partial differential equations (PDEs) are ubiqui-

tous in model-based systems engineering for modeling spatiotemporally varying phenomena.

Such models are encountered in a wide range of applications from traditional chemical en-

gineering fields, including reacting flow systems [1, 2, 3] and thermofluid systems [4, 5] to

non-traditional applications of drug delivery in solid tumors [6].The development of modeling

and simulation methods that lend themselves to mathematical programming techniques en-
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ables accurate prediction within optimization-based approaches for systems design, decision-

making, and advanced control architectures. The application of these methods provides an

immense opportunity for high-impact innovations and discovery in spatiotemporal systems.

Optimization plays a significant role in engineering applications for model validation,

optimal design, and optimal control of spatiotemporal systems, among many other appli-

cations. In particular, optimizing large-scale models, as the focus of this disseration on

PDE-constrained optimization problems, remains a popular and challenging research topic

[7]. In recent years, there has been development of useful methods for solving optimization

problems involving spatiotemporal systems.

Clason and Kaltenbacher [8] proposed a method for solving optimal control problems for

nonlinear PDE models involving singular solution-dependent terms. However, for general

problems, their approach could only provide suboptimal local solutions. Kolvenbach et al.

Kolvenbach et al. [9] developed a robust optimization framework utilizing quadratic approx-

imations of a worst-case objective with an assumption that the parameter is restricted to

an ellipsoidal set. Special convexity conditions are required to guarantee a global solution

by means of their proposed method, which utilizes the SQP algorithm. Sharma et al. [10]

proposed a new heuristic for solving PDE-constrained mixed-integer nonlinear programs that

combines a problem-specific rounding scheme with an improvement heuristic. Wu and Zhou

[11] proposed a diagonalization-based approach for solving parabolic PDE-constrained op-

timization problems that can dramatically reduce time cost. Pearson et al. [12] introduced

fast and efficient preconditioners that can improve the tractability of PDE-constrained op-

timization problems with the application of an interior-point scheme. However, all these

methods either rely on specific convexity assumptions, or are not concerned with guaranteed
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global optimality.

Developing and utilizing valid and efficient deterministic global optimization methods for

solving PDE-constrained nonlinear programs remains a challenging topic of current research.

Deterministic global optimization relies on the branch-and-bound (B&B) algorithm, which

iteratively partitions the domain of decision variables into successively smaller subdomains

and solves a sequence of upper-bounding and lower-bounding problems to bound a global

optimum. The algorithm is guaranteed to converge to an epsilon-optimal global solution in

finitely-many iterations. In this context, rigorous and tight bounds on solutions are criti-

cal for solving this difficult class of optimization problems. When applied within the B&B

algorithm, the efficient calculation of tight bounds can greatly reduce the total computa-

tional cost for solving these problems by potentially avoiding excessive subdivision of the

decision space. The incorporation of PDE models dramatically complicates global dynamic

optimization problems, since numerical techniques required for PDE discretization are often

computationally intensive and result in large-scale stiff systems. Thus, providing rigorous

bounds on the numerical solutions of PDEs with less conservatism and low computational

cost should be a research focus.

Another challenging problem with respect to spatiotemporal phenomena is the worst-

case design of engineering systems that are deemed “safety critical” and require rigorous

guarantees of system safety and performance before deployment and during operation. In

these cases, it is necessary to identify the worst-case performance with respect to uncertainty

of such safety-critical systems to mitigate the impacts of uncertainty at the design stage.

For example, in energy systems, engineers must guarantee that a safety-critical state, such

as the pressure in a steam boiler, is never higher than a maximum safe level to avoid an
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operational failure that may incur a severe cost, such as substantial system damage or loss

of life, while ensuring that a minimum required performance specification is met. From a

model-based perspective, robust design is a method capable of providing rigorous guarantees

of performance/safety of process systems under uncertainty [13, 14] to avoid operational

failures. These problems are typically formulated as bilevel programs, and deterministic

global optimization methods are required to guarantee worst-case realizations of uncertainty.

Bilevel optimization problems are extremely difficult to solve, which poses a tremendous

challenge to the class of systems with complicated spatiotemporal dynamics.

The objective of this work is to investigate valid and efficient methods to solve determin-

istic global optimization problems constrained by spatiotemporal systems models. Further,

their applications are explored in different engineering fields to demonstrate the practicabil-

ity. The contributions of this work can be summarized as follows:

1. Develop valid and efficient methods to construct bounds on the states of parametric

ODE/PDE models for solving global optimization problems involving spatiotemporal

systems;

2. Explore solution methods for solving challenging problems involving a variety of spa-

tiotemporal systems, including system designs of process control in traditional chemical

engineering field and drug delivery in cancer research;

3. Investigate efficient model-based methods to solve worst-case design problems of per-

formance/ safety-critical systems under uncertainty.
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1.2 Approaches for Solving Optimization Problems of

Spatiotemporal Systems

The main objective of this dissertation is to develop and validate system models of interest

from both wastewater treatment and cancer research fields, which are governed by systems

of ODEs/PDEs. In addition, validated models will be used to study the optimal design

and operation of such systems. Advanced optimization algorithms are utilized in these

studies, and their superiority in solving this challenging class of problems is demonstrated.

Classically, there are two local optimization strategies to solve these problems locally: Nested

Analysis and Design (NAND) and Simultaneous Analysis and Design (SAND) [15], which

are introduced below.

1.2.1 NAND for Local Optimization

In NAND, state variables are considered to be an implicit function of optimization variables

governed by the ODEs/PDEs, and the ODE/PDE solver is called as a nested routine for

the evaluation of the objective and constraint functions. This approach offers the benefit

that the dimensionality of the optimization variables corresponds with the low dimension-

ality of the original decision space (i.e., the original problem dimensionality is retained).

However, traditional NAND approaches are “black-box” in that the ODE/PDE solver is a

separate routine with an “input-output” relationship that is unable to provide exact gradi-

ent/sensitivity information along with numerical solutions, and such information is usually

provided using discrete function evaluations and finite differencing. This approach requires

repeatedly solving the system, which can be extremely time-consuming.
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1.2.2 SAND for Local Optimization

In SAND, the ODE/PDE constraints are treated explicitly as a system of discretized equa-

tions specified by a numerical method (e.g., collocation) and all the discretized state variables

are treated as decision variables in addition to the optimization variables of the original prob-

lem. SAND approaches formulate and solve (approximate) KKT systems to identify subop-

timal local solutions for nonconvex problems. One of the drawbacks of this approach is that

the problem dimensionality will be extremely large, especially when solving time-dependent

PDE-constrained optimization problems [16].

1.2.3 Global Optimization

Approaches for solving ODE/PDE-constrained optimization problems to global optimality

rely on the spatial branch-and-bound (B&B) algorithm. In the B&B algorithm, lower and

upper bounds on all variables and functions are required. An upper bound can be simply

calculated as an objective function evaluation at any feasible point. However, the lower

bounds require rigorous and accurate calculations of global bounds for all state variables

and system functions, which poses significant challenges. When applied within the B&B al-

gorithm for deterministic global optimization, efficient calculation of tight global bounds can

greatly reduce the total computational cost to solve these problems by potentially avoiding

excessive subdivision of the decision space. In particular, spatiotemporal systems involv-

ing PDEs dramatically complicates global dynamic optimization problems since numerical

techniques required for PDE discretization are often computationally intensive and result in

large-scale stiff systems. Thus, efficient bounding methods that can provide rigorous bounds
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with less conservatism and low computational cost are required. Classically,these methods

are classified into two categories: the relax-then-discretize methods and the discretize-then-

relax methods. Both categories of methods are based on set-valued mapping approaches for

calculating rigorous bounds.

Relax-Then-Discretize Method

In relax-then-discretize methods, relaxations are derived for the continuous-time system prior

to discretization using numerical methods. This method constructs an auxiliary system of

parametric ODEs that describes convex/concave bounding functions of the parametric so-

lutions pointwise in time. There are two early contributions of the relax-then-discretize

method using different approaches. Papamichail and Adjiman [17] introduced a rigorous

method that utilized the αBB convexification theory [18]. In their method, a convex re-

laxation of the parametric ODE solutions is calculated at a given time point by adding a

large-magnitude quadratic term. Then, an enclosure of the interval Hessian matrix is com-

puted by bounding the second-order sensitivities of the ODEs to determine weights for the

quadratic terms. Concurrently, Singer and Barton [19] proposed to construct an auxiliary

initial value problem (IVP) in ODEs that describes convex/concave bounds on the ODE so-

lutions based on McCormick’s relaxation technique [20]. Many further developed approaches

[21, 22, 23, 24, 25, 26] based on the relax-then-discretize method pursue reducing the con-

servatism of the bounds and enhancing computational efficiency. The limitation inherent to

relax-then-discretize methods is that the truncation error cannot be accounted for due to

the numerical solution techniques (which neglect truncation error through calculation).
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Discretize-Then-Relax Method

The discretize-then-relax method constructs bounds based on an explicit integration scheme.

The bounding procedure utilizes interval-based methods for ODEs and propagates con-

vex/concave bounds at each integration step by using McCormick relaxations [27, 28, 29, 30].

One advantage of this method is that the truncation errors can be quantified and accounted

for by applying a two-step procedure at each integration step. First, a priori bounds en-

closing the ODE solutions over the integration step are calculated. Then, pointwise-in-time

convex/concave bounds are obtained that enclose the ODE solutions at the end of the in-

tegration step. Eventually, valid bounds of entire numerical solutions of the parametric

ODE-IVP are obtained.

Both of the introduced methods have problems in handling overestimation of bounds

caused by the dependency problem of interval arithmetic (IA). The dependency problem is

overestimation caused by multiple occurrences of the same variables in a function. Since

each occurrence is taken independently in IA calculations, this leads to an expansion of the

resulting bounds of a natural interval extension. The dependency problem may even lead

to rapid divergence of the bounds when implemented within ODE-IVP integration methods.

This motivates researchers to develop methods to reduce conservatism of the bounds for

parametric nonlinear dynamical systems. Taylor series and differential inequalities are two

common methods among these developments.
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Taylor Series

Taylor series methods make use of a Taylor series expansion of parameter-dependent state

variables to propagate lower and upper bounds through discrete time steps [30, 31, 32].

The resulting rigorous interval bounds enclose the truncation error. Modern approaches can

achieve high accuracy by representing the interval bounds as a Taylor model consisting of

the Taylor polynomial and an interval remainder bound enclosing errors associated with the

floating point representation of the Taylor polynomial [33]. The polynomial parts are com-

puted using real arithmetic, while the remainder terms are computed using IA. Advanced

developments following the Taylor model theory have achieved better accuracy than classi-

cal Taylor model methods by using ellipsoidal and other non-interval remainder bounds. As

stated above, one advantage of the Taylor series method is that the truncation and round-

off errors are also enclosed by the interval operations and explicitly expressed in the results

[34, 35]. Furthermore, Taylor series methods can reduce the dependency problem inherent in

IA with high-order polynomial approximations [36, 37]. However, higher accuracy requires

higher-order Taylor models, which significantly increases the computational cost [33, 38] of

this approach. In particular, the Taylor series methods have more difficulty in handling

discretized PDE system because it requires second or higher order Taylor models to combat

the dependency problem of large-scale discretized models. The considerably higher com-

putational cost limits applications of the Taylor series methods, especially for their use in

deterministic global optimization.
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Differential Inequalities

Differential inequalities (DI) is a computationally inexpensive bounding approach that uti-

lizes IA to construct bounds for ODEs [39]. This method uses rules of IA to construct

auxiliary ODEs that produce rigorous bounds on the states over the parameter domain at

each time node through integration. This approach can make use of a continuous-time form

that can be implemented using any state-of-the-art numerical integration rules, making it

an efficient method for global optimization. Although the resulting bounds do not explic-

itly account for the numerical truncation errors, the resulting enclosures are valid within an

acceptable margin of error because modern numerical integration algorithms perform very

well for stable systems controlling error with acceptable accuracy. Another problem is that

the bounds obtained by DI can be conservative when dealing with ODE-IVP systems that

are not quasimonotone [40, 41]. Several methods have recently been developed to reduce

the conservatism of the resulting bounds. [42] developed an algorithm utilizing the physi-

cal information from the system quantified as a crude set alongside an interval refinement

operation to calculate greatly enhanced bounds at the expense of additional computational

cost. [24, 25] utilized interval bounding information to construct McCormick-based convex

and concave bounding functions that are tighter than the interval bounds themselves and

address the wrapping effect associated with IA (i.e., the overestimation associated with an

interval box bounding a non-interval set). [26] found that including redundant forms of

modeling equations within the bounding calculations could result in refined bounds with less

conservatism.
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1.3 Scope of Dissertation

The goal of this dissertation is to develop valid and efficient methods for modeling and sim-

ulation of spatiotemporal systems specifically for their application in deterministic global

optimization for model validation and decision-making for system design. In the following

chapters, the theoretical developments of these methods and their applications in different

fields, from traditional chemical engineering systems to medical-relevant studies, are dis-

cussed sequentially.

In Chapter 2, an algorithm is presented to construct bounds that enclose the sets of

numerical solutions of parametric nonlinear PDEs. Compared with ODE systems, the ad-

ditional complexity from the spatial derivative terms poses a challenge to current bounding

procedures to provide accurate bounds. The proposed algorithm addresses this by exploit-

ing affine arithmetic to bound finite-difference approximations of the spatial derivatives.

This approach reduces the conservatism of state bounds caused by the interval dependency

problem introduced by finite difference approximations of the spatial derivative terms. The

algorithm is demonstrated on several PDE models relevant to process systems engineering,

including the ϵ-optimal global solution of PDE-constrained dynamic optimization problems.

In Chapter 3, an application of spatiotemporal systems is presented for the precise control

of water and wastewater treatment process systems. Non-ideal heterogeneous mixing models

are developed based on high-fidelity sensing. Deterministic global dynamic optimization is

used for training and recalibration of the non-ideal heterogeneous mixing models to guarantee

the best-possible fits to the sensor data. The models are then deployed within standard

model predictive control and two economic model predictive control strategies to demonstrate
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model-based decision making for disturbance rejection and optimal operation of aeration in a

continuous-flow nitrification system utilizing high-resolution sensor data from several spatial

positions.

Chapter 4 addresses another application of spatiotemporal system in cancer research.

This study uses mechanistic and machine learning modeling approaches to establish and

validate a model for mass transport in a tumor. The validated model not only contributes

to a better understanding of the fundamental transport mechanism, but also enables the

exploration of optimal treatment strategies for the best individual patient outcomes. In

particular, the new findings concerning the relative contributions of convection and diffusion

to transvascular transport elucidates the impacts of tumor microenvironment normalization

on drug delivery. In addition, the proposed optimal therapy design strategies demonstrate

how in silico modeling approaches aid in predicting dose response in preclinical studies.

Chapter 5 addresses a method to solve worst-case design problems of performance/safety-

critical process systems that involve hybrid models. Worst-case design problems are typically

formulated as bilevel programs, which are a class of optimization problems whose feasible

set is characterized by another optimization problem. These problems are extraordinar-

ily difficult to solve, especially when involving complex spatiotemporal models. Hybrid

first-principles data-driven models can be a promising approach because of their ability to

provide accurate simulations with reduced computational complexity. Within this context,

worst-case engineering design feasibility and reliability problems are formulated as a class

of semi-infinite programs governed by hybrid models. Two challenging case studies are ad-

dressed to demonstrate the practicability of the proposed method: a nitrification reactor

for a wastewater treatment system to address worst-case feasibility verification of dynamical
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systems; and a three-phase separation system plagued by numerical domain violations to

demonstrate how they can be overcome using a nonsmooth SIP formulation with hybrid

models and validity constraints.

Lastly, Chapter 6 concludes the major contributions of this dissertation. A summary of

the essential methods and results for each previous chapters are discussed, and recommen-

dations for future research are proposed.
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Chapter 2

Bounding Numerical Solutions of

Parametric Partial Differential

Equations

As introduced in Section 1.2, multiple methods have been developed to bound solutions

of nonlinear dynamical systems. However, a crucial problem is that current state-of-the-

art algorithms are only targeted at ODE-IVP systems and lack systematic approaches to

be applied to PDE systems. In this chapter, a method is proposed to efficiently calculate

valid state bounds with reduced conservatism on solutions of initial boundary value problems

(IBVPs) on the domain of the parameters. The central idea is to combine numerical methods

for IBVPs, set-valued arithmetics, and DI to construct tight enclosures on the solutions of

PDE systems with improved efficiency. Specifically, we use the finite difference (FD) method

for the discretization of spatial derivatives and reformulate the parametric PDE as a large
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coupled system of ODE-IVPs using the method of lines. We addressed how set-valued

arithmetics are employed for calculating bounds on the states that are involved in spatial

and temporal derivatives. In this procedure, apart from applying traditional IA, an approach

utilizing affine arithmetic (AA) is developed to reduce the overestimation introduced by the

dependency problem of IA. Note that the method involving AA is empirically valid; however,

it requires further research and formal proof to ensure its validity rigorously. Then, a modified

DI method is implemented to calculate the state bounds of the large coupled ODE-IVP

system, effectively bounding the states over the spatial domain and parameter/uncertainty

domain of the original IBVP. We demonstrate this approach on several examples, including

common transient convection-diffusion-reaction models, a plug flow reactor (PFR) system,

and a multi-species model for atmospheric ozone reactions.

The performance of our approach is measured using two metrics: the computational cost

and the volume of the calculated bounds. As such, we formalize a computational procedure

to measure the conservatism of the state bounds of IBVPs. The results of the numerical

experiments indicate that the approach exhibits desirable properties of computational effi-

ciency, improved reduction in overestimation of bounds, and overall effectiveness for broad

applications. In addition to these numerical experiments, a case study is conducted whereby

the new bounding algorithm is used within a deterministic global optimization problem for

optimizing the operation of an unsteady PFR to demonstrate its applicability within the

context of PDE-constrained global dynamic optimization.
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2.1 Mathematical Preliminaries

In this section, the mathematical notation, definitions, and key foundational results used in

this chapter, are introduced.

2.1.1 Interval Arithmetic

In this chapter, an n-dimensional interval A = [aL, aU ] is defined in the standard way as

a nonempty compact set A ≡ {a ∈ Rn : aL ≤ a ≤ aU} with aL ∈ Rn and aU ∈ Rn as

the lower and upper bounds of A, respectively [43]. In addition, let IRn be the set of all

nonempty interval subsets of Rn. Thus, IA denotes the set of all nonempty interval subsets

of A ⊂ Rn. An interval vector A ∈ IRn is an n-dimensional vector with interval-valued

components denoted as A1, . . . , An.

IA is an arithmetic performed on interval numbers according to primitive interval com-

putation rules [43]. For A ⊂ Rm, an interval-valued function given by F : IA → IRm is

called an interval extension of the real-valued function f : A→ Rm on A, if

f(a) = y = [y,y] = F ([a, a]),∀a ∈ A.

Further, we call F inclusion monotonic on A if for every X,Z ∈ IA, we have

X ⊂ Z ⇒ F (X) ⊂ F (Z).
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Lastly, F is called an inclusion function of f on A if the following relationship holds:

f(B) = {f(b) : b ∈ B} ⊂ F (B), ∀B ∈ IA.

In other words, F (B) bounds the image ofB under the mapping f(·). F (B) may be calculated

as an inclusion monotonic interval extension of f on B ∈ IA by the Fundamental Theorem

of Interval Analysis (see Moore [44, p. 21]). If f consists of finitely many compositions of

elementary arithmetic operations and transcendental functions, and F (B) is calculated by

applying the primitive interval computation rules to the expression f with interval operand

B, it is called a natural interval extension of f on B. Natural interval extensions are inclusion

monotonic.

IA suffers from the dependency problem as the interval operands in an equation are treated

as entirely independent variables. When some of the interval operands depend on each other

(e.g., a variable occurs several times in an equation), the combinations of IA operations of

F may significantly overestimate the image set. This conservatism becomes amplified as

the function f becomes more complex. A simple example is f(a) = a − a. In this case, let

a ∈ A = [aL, aU ], then f(A) = [0, 0] for any given A, while F (A) = [aL − aU , aU − aL] does

not equal zero for nondegenerate intervals, and therefore can significantly overestimate the

image set.

2.1.2 Affine Arithmetic

Affine Arithmetic (AA) [45] aims to overcome the overestimation induced by the dependency

problem of traditional IA. AA keeps track of the dependency between the interval operands
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throughout the calculations, resulting in better interval approximations in most cases [46, 47].

In addition, the associated properties for the joint range of the interval variables can be

represented as a geometry by AA that reduces overestimation.

Definition 2.1.1 (Affine Form [45]). In AA, a number a ∈ R is represented by an affine

form â defined as a first-degree polynomial:

â = a0 +
m∑
i=1

aiεi,

where a0 is called the central value of â, and a1, . . . , am are called the partial deviations cor-

responding to the noise symbols ε1, . . . , εm of â. Each noise symbol εi is a symbolic unknown

real variable lying in the interval U = [−1, 1] that represents an independent component of

uncertainty for the quantity a.

Lemma 1 (Affine Forms and Interval Bounds). Let ε ∈ Um and let the function â : Um → R

represent an affine form of a ∈ R as a function of the noise symbols ε. Then, interval bounds

Â ∈ IR on a quantity a can be calculated from an associated affine form â(·). Furthermore,

an affine form â(·) of a quantity a can be constructed from its interval bounds A.

Proof. An interval Â can be calculated by taking a natural interval extension of â on Um,

which corresponds with Â = [âL, âU ] = [a0 − ra, a0 + ra], where ra =
∑m

i=1 |ai| is the total

deviation of the affine form â. As a result, a ∈ Â. Alternatively, a quantity a ∈ A =

[aL, aU ] ∈ IR can be transformed into an affine form â, defined in Definition 2.1.1, by setting

a0 = (aL + aU)/2, a1 = (aU − aL)/2, and ai = 0,∀i > 1.

Note that Â specifically denotes the interval bounds from taking an interval extension of
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the affine form â, distinguished from a general interval A. AA libraries can utilize intervals

both as inputs and outputs by this conversion.

Definition 2.1.2 (Affine Computation [47]). Affine computations in AA are defined as:

η1â+ η2b̂+ η3 = (η1a0 + η2b0 + η3) +
n∑

i=1

(η1ai + η2bi)εi,

where η1, η2, and η3 are scalar coefficients.

Note that AA can account for the dependency on each affine form through shared noise

symbols. For example, supposed that f(a) = a − a and a ∈ A = [aL, aU ] is nondegenerate.

If the standard subtraction rule of IA is used and a natural interval extension of f on A

is calculated, we obtain F (A) = A − A = [aL, aU ] − [aL, aU ] = [aL − aU , aU − aL] ̸= [0, 0].

In contrast, if the quantity a is represented by an affine form â(ε), then f(â(ε)) = a0 +∑
i aiεi − a0 −

∑
i aiεi = 0, and thus, taking the natural interval extension of the resulting

difference results in [0, 0].

The main feature of AA is the same noise symbol εi can be shared with multiple affine

forms representing the partial dependency between them [46]. The corresponding partial

deviation ai represents the magnitude of dependency for the component εi. For example,

consider two affine forms â and b̂:

â = a0 +
m∑
i=1

aiεi,

b̂ = b0 +
m∑
i=1

biεi.

These two affine forms â and b̂ provide the corresponding interval forms: Â = [a0−ra, a0+ra]
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and B̂ = [b0 − rb, b0 + rb] by Lemma 1. It is indicated by the shared noise symbols εi, that

the joint range J of the two affine forms â and b̂ is not only the rectangle R = A × B

calculated by IA. The actual range is J = {(â, b̂) ∈ R2 : εi ∈ U, i = 1, ...,m} ⊂ R and can be

represented by a convex polytope under the affine conversion Rm → R2:

 a0

b0

+

 a1 . . . am

b1 . . . bm

 · (ε1, ..., εm).

This convex polytope is centrally symmetric with respect to the point (a0, b0) and has 2m

sides assuming ai, bi ̸= 0,∀i ≥ 1. In general, n affine forms will yield a joint range as a

zonotope in Rn.

Note that for non-affine operations, such as multiplication, an extra noise term is required

to estimate the affine approximations of the non-affine part for each operation. Generally

speaking, this results in the elementary operations of AA to be more computationally ex-

pensive than standard IA. However, the method proposed in this chapter will only apply

AA for affine operations. As such, non-affine operations and the additional complexity that

they introduce, are ignored, resulting in no extra time cost over standard IA.

2.1.3 Parametric Partial Differential Equations

Let t ∈ I = [t0, tf ], D ⊂ Rnx open, y ∈ Y = [yl, yr] ∈ IR, p ∈ P ∈ IRnp , and define the

mappings f̃ : Y × I ×D×Rnx ×Rnx × P → Rnx , ζ̃0 : Y × P → D, f̃l : D×Rnx × P → Rnx ,

x̃l : I × P → Rnx , f̃r : D × Rnx × P → Rnx , and x̃r : I × P → Rnx , with the lower-case

subscripts l and r pertaining to the spatial position yl and yr (i.e., respectively the left and
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right boundaries of the spatial domain), respectively. Under these definitions, we consider a

PDE defined as the parametric IBVP:

∂tx̃(y, t,p) = f̃(y, t, x̃(y, t,p), ∂yx̃(y, t,p), ∂yyx̃(y, t,p),p) (2.1)

x̃(y, t0,p) = ζ̃0(y,p)

f̃l(x̃(yl, t,p), ∂yx̃(yl, t,p),p) = x̃l(t,p)

f̃r(x̃(yr, t,p), ∂yx̃(yr, t,p),p) = x̃r(t,p),

where ∂tx̃ : Y × I × P → Rnx is the first partial derivative of x̃ with respect to time t, and

∂yx̃ : Y ×I×P → Rnx and ∂yyx̃ : Y ×I×P → Rnx are the first and second partial derivatives

of x̃ with respect to y, respectively. The tilde accent signifies that the corresponding function

is involved in the continuous-space formulation (i.e., that it is continuous with respect to the

spatial variables). A typical plug flow reactor (PFR) system is illustrated in Figure 2.1 and

introduced as an example of a PDE system under consideration in this work.

Remark 1. For ease of introduction, (2.1) is defined for only one spatial dimension and

it can be extended to multiple spatial dimensions with the notation introduced in Section

2.2.3. If higher-order time derivatives are involved, auxiliary variables can be introduced to

transform the original system into a system of PDEs with first-order time derivatives. Such

cases are considered as out of the scope of this chapter and the reader is directed to reference

texts on numerical methods for ODE-IVPs and IBVPs, e.g. [48, 49].

Assumption 1. The parametric IBVP (2.1) satisfies the following conditions:

1. f̃ : Y × I × D × Rnx × Rnx × P → Rnx, ζ̃0 : Y × P → D, f̃l : D × Rnx × P → Rnx,
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Figure 2.1: A transient plug flow reactor (PFR) is illustrated as a typical system modeled
using PDEs. x̃(y, t,p) is a vector of system states, e.g. concentration of chemical species.
y is the horizontal spatial coordinate for this PFR, and yl and yr are the left and right
boundaries of the PFR, respectively. p are uncertain parameters that may affect the system
states, e.g. flowrate.

x̃l : I × P → Rnx, f̃r : D ×Rnx × P → Rnx and x̃r : I × P → Rnx are locally Lipschitz

continuous.

2. There exists a unique solution over the domain Y × I for every p ∈ P .

3. A solution of (2.1) is denoted x̃ : Y×I×P → D, and is twice continuously differentiable

for all y ∈ Y .

Definition 2.1.3 (Reachable Set). The reachable set of (2.1) at (y, t) ∈ Y × I is defined

as:

R(y, t) ≡ {x̃(y, t,p) : p ∈ P}. (2.2)

Definition 2.1.4 (State Bounds). Functions x̃L, x̃U : Y × I → Rnx are referred to as state

bounds of (2.1) if they satisfy:

x̃L(y, t) ≤ x̃(y, t,p) ≤ x̃U(y, t), ∀p ∈ P,

where x̃(y, t,p) are the state variables of (2.1).
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Under Definitions 2.1.3 and 2.1.4, we have R(y, t) ⊂ [x̃L(y, t), x̃U(y, t)]. The primary

objective of this work is to calculate valid state bounds enclosing the reachable set R(y, t)

without significant conservatism/overestimation.

2.1.4 Finite Difference Method

FD methods are a class of common numerical approaches to solving differential equations

by approximating derivative terms in differential equations using finite difference quotients

[50]. In this section, a convenient nomenclature is developed for the common finite difference

terms that enable an intuitive presentation of the bounding theory developed in this work.

Definition 2.1.5 (Finite Difference Approximations). Consider a twice-differentiable func-

tion ψ̃ : Y × I × P → R where y ∈ Y denotes the one-dimensional space variable. Let the

spatial domain Y = [yl, yr] be discretized into N nodes y1, . . . , yN , where y1 = yl, yN = yr,

and the discretization step be defined for each node (left node of the step) as ∆yi = yi+1− yi,

∀i = 1, . . . , N − 1. Define the function ψi : I × P → R such that ψi(· , · ) ≡ ψ̃(yi, · , · ) for

i = 1, . . . , N and define the vector-valued function ψ(· , · ) = (ψ1(· , · ), . . . , ψN(· , · )) ∈ RN

whose components are indexed corresponding to the discrete space nodes. Then, the forward,

backward, and centered FD approximations for the first-order spatial derivatives, ψf
i , ψ

b
i , ψ

c
i :
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I × P → R, respectively, are defined as:

ψf
i(t,p) ≡

ψi+1(t,p)− ψi(t,p)

∆yi
≈ ∂yψ̃(yi, t,p), ∀i = 1, . . . , N − 1,

ψb
i (t,p) ≡

ψi(t,p)− ψi−1(t,p)

∆yi−1

≈ ∂yψ̃(yi, t,p), ∀i = 2, . . . , N,

ψc
i (t,p) ≡

∆y2i−1ψi+1(t,p) + (∆y2i −∆y2i−1)ψi(t,p)−∆y2iψi−1(t,p)

∆yi−1∆yi(∆yi−1 +∆yi)

≈ ∂yψ̃(yi, t,p), ∀i = 2, . . . , N − 1,

for every (t,p) ∈ I ×P . Further, the centered FD approximation of the second-order spatial

derivative is defined as:

ψc2
i (t,p) ≡ 2 (∆yi−1ψi+1(t,p)− (∆yi−1 +∆yi)ψi(t,p) + ∆yiψi−1(t,p))

∆yi−1∆yi(∆yi−1 +∆yi)

≈ ∂yyψ̃(yi, t,p), ∀i = 2, . . . , N − 1,

for every (t,p) ∈ I × P .

Remark 2. IA can be applied to the FD approximations with Ψj
i (t, P ) representing an

interval extension of ψj
i (t, · ) on P at time t ∈ I with j ∈ {f, b, c, c2}. For example,

Ψf
i = (Ψi+1(t, P )−Ψi(t, P ))/∆yi. Interval bounds are denoted by Ψj

i (t, P ) = [ψj,L
i (t), ψj,U

i (t)].

We denote the interval vector as Ψj(t, P ) = (Ψj
1(t, P ), . . . ,Ψ

j
N(t, P )) ∈ IRN .

Remark 3. If equidistant step sizes are considered for spatial discretization, they are given

by ∆y = (yr − yl)/(N − 1). Then, the the centered FD approximations can be simplified to

ψc
i = (ψi+1−ψi−1)/(2∆y) and ψ

c2
i = (ψi+1−2ψi+ψi−1)/∆y

2 for first and second derivatives,

respectively.
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Remark 4. The truncation errors (i.e., the error introduced by truncating the Taylor se-

ries representations of discrete-space states) for the FD approximations are not considered

explicitly in this chapter. Specifically, when using the forward FD approximation of the first

derivative, the truncation error is O(∆yi); when using the backward FD approximation of the

first derivative, the truncation error is O(∆yi−1); when using the centered FD approximation

of the first derivative and second derivative, the truncation error is O(max{∆y2i ,∆y2i−1}).

However, in general, truncation errors cannot be fully quantified for spatial FD methods for

solving BVPs and IBVPs as closed-form analytical solutions, and their higher-order deriva-

tives, are unavailable. The reader is directed to numerical PDE texts for discussion on this

point, e.g. [50] and [48].

2.1.5 Differential Inequalities

[39] introduced the application of DI methods with IA for constructing the componentwise

lower and upper bounds on the reachable set of a system of ODE-IVPs. The DI methods

can be implemented relatively fast with any numerical integrator, but the numerical errors

are not accounted for in the calculation procedures. The DI methods can be categorized

into two types: continuous-time DI and discrete-time DI. In continuous-time DI [40], an

auxiliary system of ODE-IVPs is formulated and directly sent to a numerical integrator for

constructing the bounds. In contrast, the discrete-time DI introduced by [51] reformulates

the system of ODE-IVPs into a discrete-time form. Then the bounding rules are applied at

each discrete time point.
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Continuous-Time Differential Inequalities

Consider a continuous-time system of ODE-IVPs:

ẋ(t,p) = f(t,x(t,p),p), x(t0,p) = ζ0(p), t ∈ I. (2.3)

Here, I = [t0, tf ], D ⊂ Rnx is open, P ⊂ Rnp is compact, f : I×D×P → Rnx and ζ0 : P → D

are locally Lipschitz continuous, x(t,p) ∈ D is the vector of state variables, p ∈ P is the

vector of parameters in the system of ODE-IVPs, and ζ0 : P → D is the initial condition at

t = t0. It is assumed that there is a unique solution in I for every p ∈ P .

The purpose is to calculate the lower and upper bounds of the state variables x(t,p),

defined as xL,xU : I → Rnx , enclosing the reachable set R(t) = {x(t,p) : p ∈ P} ⊂

[xL(t),xU(t)]. For each i = 1, ..., nx, an interval extension of fi and ζ0,i will be denoted

Fi([t, t], D, P ) = [fL
i ([t, t], D, P ), f

U
i ([t, t], D, P )] and Z0,i(P ) = [ζL0,i(P ), ζ

U
0,i(P )], respectively.

The interval form of (2.3) is given by an interval extension of systems of ODE-IVPs:

ẋLi = fL
i ([t, t], [x

L(t),xU(t)], P ), (2.4)

ẋUi = fU
i ([t, t], [x

L(t),xU(t)], P ),

[xLi (t0), x
U
i (t0)] = Z0,i(P )

Due to the dependency problems induced by IA, the bounds derived by (2.4) are often

extremely weak. Especially for complicated nonlinear systems, calculated bounds will be

more likely to rapidly diverge to ±∞. To mitigate this expansiveness, standard DI exploits

the following flattening operators.
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Definition 2.1.6 (Flattening Operator [39]). Flattening operators βL
i , β

U
i : IRnx → IRnx

are defined as:

βL
i ([x

L,xU ]) = {x ∈ [xL,xU ] : xi = xLi },

βU
i ([x

L,xU ]) = {x ∈ [xL,xU ] : xi = xUi }.

State bounds of the system (2.3) can be obtained by solving the following auxiliary system

of ODE-IVPs:

ẋLi = fL
i ([t, t], β

L
i ([x

L(t),xU(t)]), P ), (2.5)

ẋUi = fU
i ([t, t], β

U
i ([x

L(t),xU(t)]), P ),

[xLi (t0), x
U
i (t0)] = Z0,i(P )

It is guaranteed by the initial condition that Z0,i(P ) encloses all solutions of (2.3) at t = t0.

Furthermore, (2.5) ensures propagation of this inclusion property for t ∈ (t0, tf ]. This can

be visualized, for example, with the lower bound as follows. The “flattening” operator βL
i

guarantees that fL
i computes the lower bound of fi on the ith lower face of [xL(t),xU(t)]

where xLi (t) decreases faster than all trajectories of (2.3) because it has already been set

incident on the ith lower bound (xi(t,p) = xLi (t)). Propagation of much narrower intervals

refined by βL
i , β

U
i will help overcome the dependency problem and dramatically enhance the

effectiveness of the calculated bounds.

For systems in which additional bounding information Xs is known a priori, say by

some physical information, and we have Xs ⊂ R(t), an interval refinement operator can be
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applied to the standard DI for further reducing overestimation of the bounding results [42].

Furthermore, redundant model equations could also be utilized to reduce the conservatism

of the bounds, as detailed in the recent work by Shen and Scott [26].

Discrete-Time Differential Inequalities

In discrete-time DI, the system of ODE-IVPs (2.3) is reformulated using the explicit Euler

method by discretizing the time domain I into K + 1 nodes:

xk+1 = xk + hf(tk,xk,p), x0 = ζ0(p), k = 0, . . . , K, (2.6)

where k ∈ {0, . . . , K} is the time node after explicit Euler discretization, and h = (tf−t0)/K

is the step size. Analogous to solving the interval-based system (2.4), the explicit Euler

algorithm can be extended for bounding the system by implementation of IA calculations

numerically:

xLk+1,i = xLk,i + hfL
i ([tk, tk], [x

L
k ,x

U
k ], P ), x

L
0,i = ζL0,i(P ), (2.7)

xUk+1,i = xUk,i + hfU
i ([tk, tk], [x

L
k ,x

U
k ], P ), x

U
0,i = ζU0,i(P ).

The key idea of discrete-time DI is applying βL
i , β

U
i defined by Definition 2.1.6 to the dis-

cretized system of ODEs (2.6). Thus, the standard discrete-time DI algorithms using the
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explicit Euler method can be defined as:

xLk+1,i = xLk,i + hfL
i ([tk, tk], β

L
i ([x

L
k ,x

U
k ]), P ), x

L
0,i = ζL0,i(P ), (2.8)

xUk+1,i = xUk,i + hfU
i ([tk, tk], β

U
i ([x

L
k ,x

U
k ]), P ), x

U
0,i = ζU0,i(P ).

In the continuous-time system, the trajectories of x cannot leave the interval enclosure X

without crossing its bounds. Therefore, in the discrete-time system, only ensuring xLk,i and

xUk,i decrease or increase, respectively, faster than all trajectories xi(t), as k → K for the

ith lower and upper face of X will guarantee that all trajectories of the continuous-time

solutions xi(t) lie within the calculated bounds. The discrete-time DI method can also be

improved by introducing the interval refinement operator when extra physical information

can be extracted from the physical or logical properties of the original system and quantified

as physical bounds Xs [51].

2.1.6 Optimization Problem Formulation

The development of bounding strategies is motivated by the need to solve optimization

problems constrained by spatiotemporal PDEs to guaranteed global optimality. A general
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formulation of this problem is:

ϕ∗ = min
p∈P⊂Rnp

ϕ(x̃(yi, tf ,p),p)

s.t. ∂tx̃(y, t,p) = f̃(y, t, x̃(y, t,p), ∂yx̃(y, t,p), ∂yyx̃(y, t,p),p), ∀t ∈ I = [t0, tf ] (2.9)

x̃(y, t0,p) = ζ̃0(y,p)

f̃l(x̃(yl, t,p), ∂yx̃(yl, t,p),p) = x̃l(t,p)

f̃r(x̃(yr, t,p), ∂yx̃(yr, t,p),p) = x̃r(t,p)

g(x̃(yi, tf ,p),p) ≤ 0,

where ϕ : D × P → R is the objective function and g : D × P → Rng are the inequality

constraints. These functions are shown to have explicit dependence on the final time node

tf and spatial node yi; however, these functions could explicitly depend on multiple discrete

time and spatial nodes (e.g., for parameter estimation problems). The major complicating

detail in this optimization formulation (2.9), is that it is constrained by an IBVP. Thus,

simply verifying feasibility of a point requires the solution of the IBVP. In addition, (2.9) is

nonconvex, in general, and therefore requires deterministic global optimization to guarantee

optimality. Thus, providing rigorous and efficient global bounds are extremely important for

enabling the solution of this problem.

2.2 Methods

In this section, a new algorithm is developed for bounding solutions of parametric PDEs.

In addition, a method for quantifying the tightness or conservatism of calculated bounds
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Figure 2.2: A flowchart of the high-level structure of our proposed algorithm for bounding
IBVPs is illustrated. The IBVP is first reformulated into a system of ODE-IVPs by applying
the spatial finite difference (FD) method. The user can select the set-valued arithmetic (con-
ventional IA or the new IA/AA method) and type of differential inequalities (DI) approach
(discrete- or continuous-time) to calculate state bounds.

is developed to enable quantitative comparisons of different approaches. Moreover, an ap-

proach for applying the new bounding methods to deterministic global optimization problems

constrained by spatiotemporal PDEs, is introduced.

2.2.1 Bounding Solutions of Parametric IBVPs

The algorithm flowchart for bounding a PDE system is illustrated in Figure 2.2. The basic

approach is to use the method of lines with spatial FD approximations, and subsequently

calculate state bounds of the resulting large-scale ODE-IVP system. For ease of introduction,
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we consider a simplified case of (2.1) where the state x̃(y, t,p) is a scalar:

∂tx̃(y, t,p) = f̃(y, t, x̃(y, t,p), ∂yx̃(y, t,p), ∂yyx̃(y, t,p),p) (2.10)

x̃(y, t0,p) = ζ̃0(y,p)

f̃l(x̃(yl, t,p), ∂yx̃(yl, t,p),p) = x̃l(t,p)

f̃r(x̃(yr, t,p), ∂yx̃(yr, t,p),p) = x̃r(t,p),

with y ∈ Y = [yl, yr] ∈ IR and p ∈ P ∈ Rnp . First, the FD method is applied to

discretize the spatial domain of the IBVP (2.10). By Definition 2.1.5, the continuous

state variable x̃(· , · , · ) is converted into an unknown discrete space state variable vec-

tor x(· , · ) = (x1(· , · ), . . . , xN(· , · )) ∈ RN . Then, the spatial derivatives ∂yx̃(· , · , · ) and

∂yyx̃(· , · , · ) are approximated using the FD approximations. In general, the FD approx-

imations for the convection term ∂yx̃(· , · , · ) should respect the direction of information

propagation for numerical stability. In this study, we consider all forward, backward, and

centered FD approximations separately to fully demonstrate the results of the bounding

procedure for each form. The FD approximations for the spatial derivatives are given by

Definition 2.1.5 and represented here by xf(t,p), xb(t,p), and xc(t,p), for the forward, back-

ward, and centered FD approximations of the first derivatives, respectively, and xc2(t,p) for

the second derivatives, with (t,p) ∈ I × P . Based on this notation, interval extensions

of these FD approximations on P at time t are represented by Xj(t, P ) = [x̃(t)j,L, x̃(t)j,U ]

with j ∈ {f, b, c, c2}. Consequently, the original IBVP (2.10) can be converted into an N -

dimensional system of ODE-IVPs and the equations for the interior nodes (i = 2, . . . , N −1)
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are given by:

d

dt
xi(t,p) = fi(t, xi(t,p), x

j
i (t,p), x

c2
i (t,p),p) (2.11)

where fi : I × D × R × R × P → R is defined as fi(· , · , · , · , · ) = f̃(yi, · , · , · , · , · ), for i =

2, . . . N −1, and j ∈ {f, b, c} represent forward, backward, and centered FD approximations,

respectively. The initial conditions for the interior nodes can be set as xi(t0,p) = ζ̃0(yi,p).

Boundary Conditions

The theory of boundary conditions are summarized by [48]. For consistency and complete-

ness, we introduce in this section the notation and formatting for each type of boundary

condition (i ∈ {1, N}) considered herin for discrete-space systems discretized from (2.10).

A Dirichlet boundary condition takes the form

x̃(yl, t,p) = x̃l(t,p), or

x̃(yr, t,p) = x̃r(t,p).

When a Dirichlet boundary condition is applied, we simply set the value/form of the corre-

sponding node and take the time derivative:

d

dt
x1(t,p) =

d

dt
x̃l(t,p),

d

dt
xN(t,p) =

d

dt
x̃r(t,p),

and the initial value of the corresponding variable is set to the specified value (e.g., x1(t0,p) =

x̃(yl, t0,p)).
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A Neumann boundary condition takes the form

∂yx̃(yl, t,p) = x̃l(t,p), or

∂yx̃(yr, t,p) = x̃r(t,p).

When a Neumann boundary condition is applied, different formats of the corresponding

ODE-IVP are defined based on the type of FD approximations. If the discretized right-hand

side function only contains forward or backward FD approximations, a Neumann boundary

condition may be directly applied at the left node as

xf1(t,p) = x̃l(t,p)

⇒ d

dt
x1(t,p) = f1(t, x1(t,p), x̃l(t,p),p),

and directly applied at the right node as

xbN(t,p) = x̃r(t,p)

⇒ d

dt
xN(t,p) = fN(t, xN(t,p), x̃r(t,p),p),

If centered FD approximations are used for the interior nodes, to retain the same level of

accuracy, fictitious spatial nodes should be introduced. On the left-hand boundary yl, a

fictitious node y∗ should be introduced with a corresponding value of x̃(y∗, t,p) = x∗(t,p).

Then, the centered FD approximation can be used at the left boundary condition: (x2(t,p)−

x∗(t,p))/(2∆y1) = x̃l(t,p). As a result, the value of the fictitious node can be solved for
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as x∗(t,p) = x2(t,p) − 2x̃l(t,p)∆y1 and this result is substituted into the right-hand side

equation for the interior nodes evaluated at node i = 1 as

d

dt
x1(t,p) = f1(t, x1(t,p), x

c
1(t,p), x

c2
1 (t,p),p).

The initial condition for this boundary node can be set the same as the rest of the in-

terior nodes as x1(t0,p) = ζ̃0(y1,p). The same procedures can be applied for the Neu-

mann boundary condition at the right boundary node (i = N) with the fictitious node as

x∗ = xN−1(t,p) + 2̃xr(t,p)∆yN−1.

A Robin boundary condition takes the form

α1∂yx̃(yl, t,p) + α2x̃(yl, t,p) = x̃l(t,p), or

α1∂yx̃(yr, t,p) + α2x̃(yr, t,p) = x̃r(t,p).

When a Robin boundary condition is applied, a combined strategy with that of the

Dirichlet and Neumann conditions is applied. For example, with a Robin condition on the

right boundary, if centered FD approximations are used, a fictitious spatial node y∗ is intro-

duced with a corresponding state x∗(t,p). Then we set α1(x∗(t,p)−xN−1(t,p))/(2∆yN−1)+

α2xN(t,p) = x̃r(t,p) and obtain the following expression for the fictitious node:

x∗(t,p) =
2∆yN−1

α1

(x̃r(t,p)− α2xN(t,p)) + xN−1(t,p).

Then, this expression can be substituted into the discretized right-hand side function for
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interior nodes evaluated at node N as

d

dt
xN(t,p) = fN(t, xN(t,p), x

c
N(t,p), x

c2
N (t,p),p).

The initial condition at this node set as xN(t0,p) = ζ̃0(yN ,p). The same procedures can

be applied for the Robin boundary condition at the left boundary node (i = 1) with the

fictitious node as

x∗(t,p) =
2∆y1
α1

(α2x1(t,p)− x̃l(t,p)) + x2(t,p).

State Bounds of Discrete-Space ODE-IVPs

The vector form of the discrete-space system with interior equations defined as (2.11) and

boundary equations given by Section 2.2.1 can be expressed as

ẋ(t,p) = f(t,x(t,p),xj(t,p),xc2(t,p),p), x(t0,p) = ζ0(p), ∀t ∈ I, (2.12)

where ζ0(· ) = (ζ0,1(· ), . . . , ζ0,N(· )) ∈ RN , and ζ0,i(· ) = ζ̃0(yi, · ) for i = 2, . . . , N − 1. As

for boundary nodes (i = 1 or N), the value of ζ0,i(· ) depends on the type of boundary

conditions, and details are introduced in Section 2.2.1.

The objective is to compute state bounds for the system (2.12) on I × P . As indicated

by Definition 2.1.3, the reachable set for the continuous PDE (2.10) is given by R(y, t) =

{x̃(y, t,p) : p ∈ P}. Similarly, the reachable set of (2.12) is defined for every i ∈ {1, . . . , N}

by:

Ri(t) = {xi(t,p) : p ∈ P}, (2.13)
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and xLi (t), x
U
i (t) are state bounds for xi(t,p) if Ri(t) ⊂ [xLi , x

U
i ], with t ∈ I. It is assumed

that an interval extension and inclusion function F : [t, t]× ID × IP → IRN is available for

f . The i-th component of F is denoted Fi([t, t], D, P ) = [fL
i ([t, t], D, P ), f

U
i ([t, t], D, P )]. For

the initial condition, ζ0(p) ∈ Z0(P ) = [ζL0 , ζ
U
0 ]. With these definitions, the bounds for each

component xi from (2.12) on P can be derived as:

ẋLi (t) = fL
i ([t, t], [x

L(t),xU(t)], [xj,L(t),xj,U(t)], [xc2,L(t),xc2,U(t)], P ), (2.14)

ẋUi (t) = fU
i ([t, t], [x

L(t),xU(t)], [xj,L(t),xj,U(t)], [xc2,L(t),xc2,U(t)], P ),

[xLi (t0), x
U
i (t0)] = Z0,i(P ),

where j ∈ {f, b, c}. The bounds for FD approximations [xj,L(t),xj,U(t)] can be calculated

by taking natural interval extensions of the FD approximations on the interval [xL(t),xU(t)]

based on Definition 2.1.5. Then, DI methods should be applied to the interval-valued ODE-

IVPs (2.14) to further reduce conservatism of the state bounds. In particular, flattening

operations on FD approximations are introduced in the following definition.

Definition 2.2.1 (Flattening Operator on Finite Difference Approximations). Let F j :

IRN → IRN be such that F j(X) ≡ Xj with j ∈ {f, b, c, c2}, that represents the FD approx-

imation function based on the corresponding FD scheme (Definition 2.1.5) and boundary

conditions (Section 2.2.1). Then, the flattening operators BL
i ,BU

i : IRN → IRN are defined
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for FD approximations as:

BL
i ([x

j,L,xj,U ]) = F j(βL
i ([x

L,xU ])),

BU
i ([x

j,L,xj,U ]) = F j(βU
i ([x

L,xU ])),

where j ∈ {f, b, c, c2}. In other words, BL
i ,BU

i are applied to interval extensions of FD

approximations as polynomial expressions of βL
i ([x

L,xU ]) and βU
i ([x

L,xU ]).

While applying DI methods, the flattening operators in Definitions 2.1.6 and 2.2.1 are

utilized to create state bounds as the solutions of the following auxiliary ODE-IVPs:

ẋLi (t) = fL
i ([t, t], β

L
i ([x

L(t),xU(t)]),BL
i ([x

j,L(t),xj,U(t)]),BL
i ([x

c2,L(t),xc2,U(t)]), P ), (2.15)

ẋUi (t) = fU
i ([t, t], β

U
i ([x

L(t),xU(t)]),BU
i ([x

j,L(t),xj,U(t)]),BU
i ([x

c2,L(t),xc2,U(t)]), P ),

[xLi (t0), x
U
i (t0)] = Z0,i(P ),

where j ∈ {f, b, c}. Both discrete-time and continuous-time integration approaches can be

used here. When applying discrete-time DI, we have:

xLk+1,i = xLk,i + hfL
i ([tk, tk], β

L
i ([x

L
k ,x

U
k ]),BL

i ([x
j,L
k ,xj,U

k ]),BL
i ([x

c2,L
k ,xc2,U

k ]), P ), (2.16)

xUk+1,i = xUk,i + hfU
i ([tk, tk], β

U
i ([x

L
k ,x

U
k ]),BU

i ([x
j,L
k ,xj,U

k ]),BU
i ([x

c2,L
k ,xc2,U

k ]), P ),

[xL0,i, x
U
0,i] = Z0,i(P ).

Note that the validity of (2.16) can only be established according to the hypotheses of

Theorem 1 of [51].
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If prescribed bounding information Xs ⊂ RN is known a priori by physical or mathemati-

cal arguments, an interval refinement operator can also be applied to (2.15). However, it was

observed through several proof-of-concept experiments, that this approach is typically much

more computationally expensive due to the dimensionality of the ODE-IVP system formed

by discretizing the IBVP. It was observed that the proposed DI algorithm will take around 50

to 100 times longer with the interval refinement operators than without. The significant dis-

parity in time cost overshadows any improvements gained in the reduction of conservatism in

the resulting bounds. This result is only compounded for global optimization. [42] reached

an opposite conclusion (i.e., the additional time cost was “far outweighed by the quality

of the resulting enclosures”. We suspect that the much larger problem dimensionality is a

major factor here.

The method of incorporating AA is also proposed as an alternative to purely using IA

for calculating interval extensions and inclusion functions of the FD approximations for the

spatial derivatives xji with j ∈ {f, b, c, c2}.

Definition 2.2.2 (Finite Difference Approximations in Affine Form). Let x̂i(t, ε) = χ0,i +∑m
l=1 χl,iεl denote the affine form of the real quantity xi(t,p) ∈ [xLi (t), x

U
i (t)], ∀(t,p) ∈ I×P ,

where χ0,i = (xLi (t) + xUi (t))/2, χ1,i = (xUi (t) − xLi (t))/2, and χl,i = 0, ∀l > 1. Written

compactly in vector form, we have x̂(t, ε) = (x̂1(t, ε), . . . , x̂N(t, ε)). The FD approximations
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for the spatial derivatives in affine form are defined as:

x̂fi(t, ε) =
x̂i+1(t, ε)− x̂i(t, ε)

∆yi
, ∀i = 1, . . . , N − 1

x̂bi (t, ε) =
x̂i(t, ε)− x̂i−1(t, ε)

∆yi−1

, ∀i = 2, . . . , N

x̂ci (t, ε) =
∆y2i−1x̂i+1(t, ε) + (∆y2i −∆y2i−1)x̂i(t, ε)−∆y2i x̂i−1(t, ε)

∆yi−1∆yi(∆yi−1 +∆yi)
, ∀i = 2, . . . , N − 1

x̂c2i (t, ε) =
2(∆yi−1x̂i+1(t, ε)− (∆yi−1 +∆yi)x̂i(t, ε) + ∆yix̂i−1(t, ε))

∆yi−1∆yi(∆yi−1 +∆yi)
, ∀i = 2, . . . , N − 1

Remark 5. Interval bounds for these FD approximations in affine form are denoted X̂j(t) =

[x̂j,L(t), x̂j,U(t)] with j ∈ {f, b, c, c2}. The upper and lower bounds can be computed based on

Lemma 1.

Remark 6. When using equidistant step sizes ∆y = (yr − yl)/(N − 1), FD approximations

in affine form can be simplified to x̂fi = (x̂i+1− x̂i)/∆y, x̂bi = (x̂i− x̂i−1)/∆y and x̂ci = (x̂i+1−

x̂i−1)/(2∆y) for first derivatives and x̂c2i = (x̂i+1 − 2x̂i + x̂i−1)/∆y
2 for second derivatives.

If we use AA for calculating FD approximations and apply DI with flattening operators

defined in Definition 2.1.6 and Definition 2.2.1, state bounds are calculated by integrating:

ẋLi (t) = fL
i ([t, t], β

L
i ([x

L(t),xU(t)]),BL
i ([x̂

j,L(t), x̂j,U(t)]),BL
i ([x̂

c2,L(t), x̂c2,U(t)]), P ), (2.17)

ẋUi (t) = fU
i ([t, t], β

U
i ([x

L(t),xU(t)]),BU
i ([x̂

j,L(t), x̂j,U(t)]),BU
i ([x̂

c2,L(t), x̂c2,U(t)]), P ),

[xLi (t0), x
U
i (t0)] = Z0,i(P ),
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where j ∈ {f, b, c}. The discrete-time analog of (2.17) is established as:

xLk+1,i = xLk,i + hfL
i ([tk, tk], β

L
i ([x

L
k ,x

U
k ]),BL

i ([x̂
j,L
k , x̂j,U

k ]),BL
i ([x̂

c2,L
k , x̂c2,U

k ]), P ), (2.18)

xUk+1,i = xUk,i + hfU
i ([tk, tk], β

U
i ([x

L
k ,x

U
k ]),BU

i ([x̂
j,L
k , x̂j,U

k ]),BU
i ([x̂

c2,L
k , x̂c2,U

k ]), P ),

[xL0,i, x
U
0,i] = Z0,i(P ).

To save computational cost for converting between traditional intervals and affine forms

(see Lemma 1), we reformulate the subtraction rule of AA for two correlated intervals. This

is because we only invoke AA rules for calculating interval bounds of FD approximations

and the addition rule is identical between IA and AA. Therefore, reformulating the AA

subtraction rule into an interval-valued format avoids conversion and invocation of an AA

library to greatly accelerate calculation speeds.

Lemma 2. Consider two correlated real scalars a ∈ A = [aL, aU ] and b ∈ B = [bL, bU ]. They

are converted to their affine forms based on Lemma 1 as â = a0 + a1ε1 and b̂ = b0 + b1ε1.

Define ĉ = â− b̂ and an interval extension and inclusion function of ĉ as Ĉ. Then,

Ĉ =


[aL − bL, aU − bU ] ∀a1 ≥ b1

[aU − bU , aL − bL] else.

(2.19)

Proof. By Lemma 1, a0 = (aL+aU)/2, a1 = (aU −aL)/2, b0 = (bL+ bU)/2, b1 = (bU − bL)/2.
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Then,

ĉ = â− b̂ = (a0 + a1ε1)− (b0 + b1ε1)

= (a0 − b0) + (a1 − b1)ε1

=

(
aL + aU

2
− bL + bU

2

)
+

(
aU − aL

2
− bU − bL

2

)
ε1

In interval form, we can write Ĉ = [c0 − rc, c0 + rc] with c0 = (a
L+aU

2
− bL+bU

2
) and rc =

|(aU−aL

2
− bU−bL

2
)|. Suppose a1 ≥ b1. Then, a

U−aL ≥ bU−bL, and we get rc = (a
U−aL

2
− bU−bL

2
).

In interval form we get

Ĉ = [c0 − rc, c0 + rc]

=

[
aL + aU + aL − aU

2
− bL + bU + bL − bU

2
,
aL + aU − aL + aU

2
− bL + bU − bL + bU

2

]
= [aL − bL, aU − bU ]

Now, suppose a1 < b1. Then, we have the opposite case (aU − aL < bU − bL), and we get

rc = −(a
U−aL

2
− bU−bL

2
). Therefore, in interval form we get

Ĉ = [c0 − rc, c0 + rc]

=

[
aL + aU + aU − aL

2
− bL + bU − bL + bU

2
,
aL + aU + aL − aU

2
− bL + bU + bL − bU

2

]
= [aU − bU , aL − bL]
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In the proposed method, AA is only applied for calculations of bounds for FD approx-

imations, and the affine forms x̂1, . . . , x̂N are regarded as correlated. This is because the

discrete-space states xi(t,p), ∀i are all discretized forms of the same continuous-space states

x̃(yi, t,p). Note that this approach should follow the assumption that affine forms of the

states share the same noise term ε1. The inclusion property of this approach requires further

research and proof. However, several numerical examples have been implemented to verify

empirically the validity of the approach.

As will be demonstrated through several numerical experiments in Section 2.3, using AA

instead of conventional IA for FD approximations does not sacrifice computational efficiency.

In addition, the resulting bounds constructed by means of this mixed IA/AA approach are

at least as tight as the IA approach with similar computational cost. In particular, while

using the centered FD approximation for discretization of the first-order spatial derivative,

performing mixed IA/AA method can provide evidently better bounds without violating the

inclusion properties. To deal with more complicated PDE systems, the superiority of using

the IA/AA method instead of the pure IA method becomes more apparent with equivalent

time cost.

2.2.2 IBVPs with Coupled States

In many chemical engineering applications, models capture conservation of several species

and energy, simultaneously. Consequently, IBVPs modeling these systems have multiple

spatiotemporal states that are coupled. To consider these cases, in this section a gen-

eralization of the discrete-space form (2.12) to nx states, originally defined in (2.1) as
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x̃(y, t,p) = (x̃1(y, t,p), . . . , x̃nx(y, t,p)) ∈ D ⊂ Rnx , is presented.

First, the spatial domain is again discretized into N nodes y1, . . . , yN by Definition 2.1.5.

Thus, at each node yi, there are corresponding values of each state x̃1(yi, t,p), . . . , x̃nx(yi, t,p)

to be determined. In other words, there are nx ×N unknown dependent state variables:

xm,i(t,p) ≡ x̃m(yi, t,p), m = 1, . . . , nx, i = 1, . . . , N.

Next, a global state variable vector is defined that interlaces the individual state variables

pertaining to each spatial node i as:

z(t,p) = (x1(t,p),x2(t,p), . . . ,xN(t,p)) ∈ RnxN

with xi = (x1,i, . . . , xnx,i) ∈ Rnx for i = 1, . . . N .

In terms of the global index l = nx · i− (nx −m) with m = 1, . . . , nx and i = 1, . . . N , we

have

zl = xm,i, l = 1, . . . , nxN. (2.20)

Therefore, all of the equations in (2.1) can be rewritten in terms of z and the system of IBVPs

is converted into an nx × N -dimensional system of ODE-IVPs. Then, the same bounding

methods can be applied to compute the state bounds for this system.

2.2.3 IBVPs With Higher Spatial Dimensionality

In this section, IBVPs with more than one spatial dimension are considered. Specifically,

notation for systems with two spatial dimensions (y = (y1, y2)) is presented to demonstrate
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the the higher-dimensionality generalization approach. Let t ∈ I = [t0, tf ], D ⊂ R open,

Y ∈ IR2, P ∈ IRnp , f̃ : Y × I ×D × Rnx × Rnx × Rnx × Rnx × P → Rnx , ζ̃0 : Y × P → D,

f̃l : D×Rnx×I×P → Rnx , x̃l : I×P → Rnx at the left boundary, f̃r : D×Rnx×I×P → Rnx ,

x̃r : I × P → Rnx at the right boundary, f̃t : D × Rnx × I × P → Rnx , x̃t : I × P → Rnx

at the top boundary, and f̃b : D × Rnx × I × P → Rnx , x̃b : I × P → Rnx at the bottom

boundary, then an IBVP with two spatial dimensions is defined as:

∂tx̃(y, t,p) = f̃(y, t, x̃(y, t,p), ∂y1x̃(y, t,p), ∂y2x̃(y, t,p), ∂y1y1x̃(y, t,p), ∂y2y2x̃(y, t,p),p)

(2.21)

x̃(y, t0,p) = ζ̃0(y,p),

f̃l(x̃((yl, y2), t,p), ∂y1x̃((yl, y2), t,p),p) = x̃l(t,p),

f̃r(x̃((yr, y2), t,p), ∂y1x̃((yr, y2), t,p),p) = x̃r(t,p),

f̃t(x̃((y1, yt), t,p), ∂y2x̃((y1, yt), t,p),p) = x̃t(t,p),

f̃b(x̃((y1, yb), t,p), ∂y2x̃((y1, yb), t,p),p) = x̃b(t,p),

which is a generalization of (2.1) in two spatial dimensions.

The multivariate state variable is defined as x̃(y, t,p) = (x̃1(y, t,p), . . . , x̃nx(y, t,p)). The

spatial domain in this case is a plane that is discretized with discrete points y1,1, . . . , y1,N1

over the y1 dimension and y2,1, . . . , y2,N2 over the y2 dimension. The discretization step sizes

are then ∆y1,i = y1,i+1 − y1,i and ∆y2,i = y2,i+1 − y2,i. For problems that lack complicated

geometries and/or highly nonlinear phenomena, equidistant step sizes can be used to give

∆y1 = (yr − yl)/(N1 − 1) and ∆y2 = (yt − yb)/(N2 − 1). Non-uniform discretization is
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useful when dealing with systems with strong nonlinearities or when spatial dimensions

are not normalized. For spatial discretization, a grid of N1 × N2 spatial nodes can be

created as yi,j = (y1,i, y2,j) for 1 ≤ i, j ≤ N1N2. Thus, there are N1 × N2 unknown states

x̃((y1,i, y2,j), t,p) required to be determined over the integration time horizon:

xm,i,j(t,p) ≡ x̃m(yi,j, t,p), m = 1, . . . , nx, i = 1, . . . , N1, j = 1, . . . , N2.

For the spatial node (i, j), a global index is introduced as q = i+(j−1)N1 with i = 1, . . . , N1

and j = 1, . . . , N2. Thus, we have

xm,q = xm,i,j, m = 1, . . . , nx, q = 1, . . . , N1N2.

Using the method introduced in Section 2.2.2 to interlace the individual state variables

pertaining to each spatial node q, a single vector of unknown dependent variables is defined:

z(t,p) = (x1(t,p), . . . ,xN1N2(t,p)) ∈ RnxN1N2 ,

with xq = (x1,q, . . . , xnx,q) ∈ Rnx for q = 1, . . . , N1N2.

Similarly, a global index for multiple coupled states is introduced as l = nx · q− (nx−m)

with m = 1, . . . , nx and q = 1, . . . , N1N2. Thus, the components of z are defined as:

zl = xm,q, l = 1, . . . , nxN1N2.

For the interior nodes (2 ≤ i ≤ N1 − 1 and 2 ≤ j ≤ N2 − 1), the spatial derivatives can
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be approximated using the same FD approximations by Definition 2.1.5 corresponding with

the 2D indices. For example, ∂y1y1x̃m((y1,i, y2,j), t,p) ≈ (xm,i+1,j − 2xm,i,j + xm,i−1,j)/∆y
2
1.

For the boundaries of the domain, the equations for the edges (excluding corner nodes)

should be determined by the type of boundary conditions using the same methods from

Section 2.2.1 applied based on the specific conditions. There may be discontinuities at the

corners when two adjacent edges have different boundary conditions. Thus, we should use

the average value of the adjacent variables for these nodes. In the case where one side of

the corner has a Dirichlet boundary condition and the other side has a Neumann or Robin

boundary condition, the Dirichlet condition takes precedence [48].

As a result, a system of nx × N1 × N2-dimensional ODE-IVPs is established and the

proposed bounding method can be implemented with this system. Spatial dimensionalities

greater than 2 (i.e., y ∈ Rn, n > 2) may also be considered using the same approach, but

care must be taken to establish the appropriate global indexing schemes for the unknown

dependent variable vector z.

2.2.4 Volume of State Bounds for IBVP Systems

To compare the effectiveness of different bounding procedures, a method is required to

quantify the tightness of the state bounds produced by each method. In the PDE context,

the volume Vα of the enclosure produced by method α is defined as the volume between

the upper and lower state bounds on x̃(y, t,p). For systems with a single spatial dimension,

this is a three-dimensional region calculated as the distance between the upper and lower

state bounds integrated over the spatial dimension y and time dimension t. We propose
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that the volume enclosed by the state bounds can be regarded as a criterion to evaluate

the performance of different algorithms. The smaller the volume of the computed enclosure

for the PDE system indicates less conservatism of the bounds. The 2D trapezoidal rule is

used to integrate the volume numerically. From a continuous-space perspective, we want to

evaluate

IY (II(x̃
q
α(y, t))) =

∫ yr

yl

∫ tf

t0

x̃qα(y, t)dtdy (2.22)

for bounding method α for each bound q ∈ {L,U}, and take the difference. The inner integral

can be defined as Iq
I (y) =

∫ tf
t0
x̃qα(y, t)dt, and then the integral (2.22) can be rewritten as

IY (Iq
I (y)) =

∫ yr
yl

Iq
I (y)dy. For the discrete-space system, the spatial variable y is discretized

into N nodes y1, . . . , yN , and thus, the outer integral of IY (Iq
I (y)) can be approximated using

the one-dimension (1D) trapezoidal rule:

IY (Iq
I (y)) ≈ ∆y

(
1

2
Iq
I (y1) + Iq

I (y2) + . . .+ Iq
I (yN−1) +

1

2
Iq
I (yN)

)
.

Next, the time variable t is discretized into K + 1 nodes: t0, . . . , tK . The inner integral for

each Iq
I (yi) is approximated by the 1D trapezoidal rule as:

Iq
I (yi) ≈ h

(
1

2
x̃qα(yi, t0) + x̃qα(yi, t1) + . . .+ x̃qα(yi, tK−1) +

1

2
x̃qα(yi, tK)

)
,

where tk = t0+kh, ∀k = 0, . . . , K, and the step size is h = (tf −t0)/K. Since the FD method

is used to discretize the spatial domain, we have xqi,α(tk) ≈ x̃qα(yi, tk). Then the total integral
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can be approximated numerically as:

IY (II(x̃
q
α(y, t)) ≈

N∑
i=1

K∑
k=0

ωi,kx
q
i,α(tk)h∆y,

with

ωi,k =


1/4 at corner nodes

1/2 at edge nodes

1 at interior nodes.

The truncation error for this approach is O(∆y2 + h2).

The volume Vα of the enclosure calculated by method α can then be approximated as:

Vα = IY (II(x̃
U
α (y, t)))− IY (II(x̃

L
α(y, t)))

≈
N∑
i=1

K∑
k=0

ωi,k(x
U
i,α(tk)− xLi,α(tk))h∆y. (2.23)

2.2.5 Deterministic Global Optimization

In this section, we formalize the application of the bounding procedure for enabling global

dynamic optimization of spatially varying dynamical models. First, we formulate the dy-

namic optimization problem within the context of the spatially discretized system in this

section. An IBVP as (2.10) was discretized into a system of ODE-IVPs as (2.12) for numer-
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ical solution. In this context, (2.9) is rewritten as the dynamic optimization problem:

ϕ∗ = min
p∈P⊂Rnp

ϕ(x(tf ,p),p)

s.t. ẋ(t,p) = f(t,x(t,p),xj(t,p),xc2(t,p),p), j ∈ {f, b, c}, ∀t ∈ I = [t0, tf ] (2.24)

x(t0,p) = ζ0(p)

g(x(tf ,p),p) ≤ 0

where ϕ and g are continuously differentiable on their domains. This generalized formulation

represents an objective function and inequality constraints dependent on the final time tf ,

which accounts for typical process control applications where a decision is determined based

on a desired final-time state. However, we do not restrict the optimization formulation to

this and can also define an objective and constraints that depend on several discrete time

points. We denote the global optimal solution value as ϕ∗ and a global optimal solution as

p∗.

When applying a discrete-time scheme, such as explicit Euler, for integrating the equality

constraints, the system of N ODE-IVPs is reformulated into a system of N×(K+1) algebraic

equations. Thus, (2.24) is reformulated as:

ϕ∗ = min
p∈P⊂Rnp

ϕ(xK(p),p)

s.t. xk+1(p) = xk(p) + hf(tk,xk(p),x
j
k(p),x

c2
k (p),p), j ∈ {f, b, c}, ∀k = 0, . . . , K

(2.25)

g(xK(p),p) ≤ 0
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where x0, . . . ,xK are the vector of state variables at each time node tk, k = 0, . . . , K.

The architecture of the B&B algorithm for deterministic global optimization is illustrated

in Figure 2.3. At a high level, the B&B algorithm iteratively partitions the original domain P

(i.e., branches) into successively smaller subdomains P l (i.e., nodes), such that P = ∪P l. The

algorithm then solves a sequence of upper- and lower-bounding problems on each subdomain.

By comparing the obtained bounds across nodes, and by finding infeasible regions, the

algorithm converges to an ϵ-optimal global solution in finitely-many iterations. In this work,

the flexible B&B algorithm of [52], is used.

Valid upper bounds on (2.24) and (2.25) are provided in Definitions 2.2.3 and 2.2.4,

respectively. It is typical to employ a local solver, such as IPOPT, to determine a feasible

local optimal solution. Calculating valid lower bounds is the greatest challenge in solving

(2.24) and (2.25). The corresponding lower-bounding problems are given in Definitions 2.2.5

and 2.2.6, respectively, and rely on the ability to calculate rigorous bounds on the ranges

of all equations and convex outer-approximations of the feasible sets. As the algorithm

proceeds, the best-found bounds are stored for comparison.

If the lower bound on ϕ in a subdomain is greater than the current best upper bound,

then that subdomain cannot contain a global optimal solution, and is fathomed (deleted).

The remaining subdomains are kept on a stack for further processing. The algorithm con-

verges when the upper and lower bounds are within some tolerance ϵ. Since thousands of

subdomains may be required for bounding and fathoming, a fast bounding procedure that is

able to provide tight lower bounds is a significant advantage to accelerate overall convergence

of the algorithm, provided that the procedure itself is not too computationally expensive.

The bounding routines that are used by the B&B algorithm in this work, are defined in the
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following.

Definition 2.2.3 (Continuous-Time System Upper Bound). An upper bound on the optimal

solution value of (2.24) is given by

ϕUBD
l = ϕ(x(tf , p̄), p̄),

where p̄ ∈ P l is any feasible point in the interval P l ⊂ P .

Definition 2.2.4 (Discrete-Time System Upper Bound). An upper bound on the optimal

solution value of (2.25) is given by

ϕUBD
l = ϕ(xK(p̄), p̄),

where p̄ ∈ P l is any feasible point in the interval P l ⊂ P .

Assumption 2. Let X = [xL(tf ),x
U(tf )] or X = [xL

K ,x
U
K ], depending on whether (2.17) or

(2.18), respectively, is applied on P , and define Z = X. There exist continuous functions

Φ : IZ×IP → IR and G : IZ×IP → IRng such that Φ is an interval extension and inclusion

function of ϕ on Z×P and G is an interval extension and inclusion function of g on Z×P .

Remark 7. For ϕ and g continuous on open sets containing Z × P that are composed of

finitely-many arithmetic operations and compositions with transcendental functions, func-

tions Φ and G satisfying 2 can be calculated by taking natural interval extensions [44].

Definition 2.2.5 (Continuous-Time System Lower Bound). Consider an interval P l ⊂ P

and let G(Z l, P l) and Φ(Z l, P l) adhere to Assumption 2 with Z l = X l = [xL
l (tf ),x

U
l (tf )]
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calculated from integrating the auxiliary ODE-IVPs (2.17) on P l with j ∈ {f, b, c}. If

gL(Z l, P l) ≤ 0, then a lower bound on the global optimal solution value of (2.24) is given

by:

ϕLBD
l = ϕL(Z l, P l). (2.26)

A point at which ϕLBD
l is attained can be set as any p ∈ P l. If gL(Z l, P l) > 0, (2.24) is

infeasible on P l and ϕLBD
l := +∞.

Definition 2.2.6 (Discrete-Time System Lower Bound). Consider an interval P l ⊂ P and

let G(Z l, P l) and Φ(Z l, P l) adhere to Assumption 2 with Z l = X l = [xLl,K , x
U
l,K ] calculated

from applying (2.18) on P l with j ∈ {f, b, c}. If gL(Z l, P l) ≤ 0, then a lower bound on the

global optimal solution value of (2.25) is given by

ϕLBD
l = ϕL(Z l, P l).

A point at which ϕLBD
l is attained can be set as any p ∈ P l. If gL(Z l, P l) > 0, (2.25) is

infeasible on P l, and ϕLBD
l := +∞.

The spatial B&B algorithm [52, Alg. 3.1] finitely converges to ϵ-optimality using the

appropriate bounding definitions (Definitions 2.2.3 through 2.2.6).
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Deterministic Global Optimization Algorithm
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IPOPT
Local Solution

Lower-Bounding
Problem

PDE Solution 
Bounding 
Routine

Objective
Function

Constraints
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P4P3

P

(branch on P)

P= P l

Figure 2.3: A block diagram illustrating the architecture of the deterministic global opti-
mization algorithm is presented. The novel contributions of this work lie in the PDE Solution
Bounding Routine. The implementation of this algorithm utilizes the flexible branch-and-
bound framework of the EAGO solver [52]

2.3 Examples

In this section, we demonstrate the performance of our novel bounding algorithm (Sec-

tion 2.2.1) on five relevant examples including: a transient plug-flow reactor (PFR) sys-

tem; generic convection-diffusion, convection-reaction, and diffusion-reaction models; and a

multi-species atmospheric ozone reaction system modeled by coupled multivariate IBVPs.

For comparison, in each example we apply both a pure IA (2.15) and the new mixed IA/AA

(2.17) methods, and employ both continuous-time and discrete-time DI for bounding the

discrete space system of ODE-IVPs. Generally, when the centered FD scheme is considered

for discretization of the first derivatives, we can construct tighter bounds using the mixed

IA/AA method. When forward or backward FD schemes are considered, the DI method

may make the bounds the same tightness between IA and IA/AA methods. These cases are

illustrated and discussed in the PFR example (Ex. 2.3.1). Additionally, a PDE-constrained

optimization problem is formulated for the PFR model example and solved to global opti-

mality to further demonstrate the validity and practicability of the proposed PDE bounding
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methods for use with global dynamic optimization. We implemented the algorithm and all

examples in the Julia programming language version 1.3.1 [53]. For the continuous-time DI

methods, we used the CVODES numerical integrator with default settings from the Sundials

v3.8.0 solver via the Sundials.jl package [54]. Each example was run on a personal worksta-

tion with an Intel Xeon E3-1270v5 4-core/8-thread CPU at 3.60GHz/4.00GHz (base/turbo)

frequency and 32GB ECC RAM running Windows 10 Version 2004. For each example, the

wall clock times for implementations of different algorithm routines were recorded in Table

2.1 and the volume of the corresponding state bounds are calculated and listed in Tables

2.2-2.3.

2.3.1 Transient Plug Flow Reactor

A single-species degradation reaction in an air-sparged PFR is introduced in this section.

It is assumed that the degradation reaction is first-order under isothermal conditions. In

addition, the diffusion of species inside the PFR is negligible. The PFR reaction model can

be expressed as the following dimensionless PDE:

∂x̃

∂t
= −∂x̃

∂y
−Dax̃, t ∈ [0, 1], y ∈ [0, 1], (2.27)

where x̃ is the dimensionless species concentration, Da = kτ is the Damköhler number,

τ = 10h is the mean residence time, and k [h−1] is the first-order reaction rate constant with

uncertainty in the bounds [0.1, 0.4]. We assume the zero initial condition x̃(y, 0) = 0 for the

model and the inlet concentration is fixed to x̃(0, t) = 1. We discretize the system using the
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backward FD approximations which yields the following discrete system of ODEs:

∂x

∂t
= −xb −Dax, (2.28)

where x ∈ RN , N = 20 is the discrete state variables assigned at the discrete spatial grid

points y1, . . . , yN , and x
b
i = (xi−xi−1)/∆y is the backward FD approximation. The proposed

methods are applied to create the state bounds of x for (2.28). The step size of h = 0.005

is used when applying discrete-time DI. The bounding results are plotted in Figure 2.4. As

expected, the trajectories of the species concentration with parametric uncertainty lie within

the bounds over the space and time domains. It is observed that applying IA and AA will

result in the same state bounds (the volumes are calculated and listed in Table 2.2). This

is because the flattening operator β in Definition 2.1.6 effectively eliminates the differences

in the calculated bounds for the discretized system by FD approximations calculated using

IA and AA. As indicated in Figure 2.4, if DI is not applied and IA is directly applied to the

discrete-time explicit Euler form, the resulting state bounds exhibit extreme overestimation.

The state bounds calculated by directly applying the mixed IA/AA method without DI

are much tighter than applying IA alone. However, when the DI algorithm is applied,

pure IA and mixed IA/AA methods will eventually result in the same tight bounds. This

indicates that the DI algorithm greatly reduces conservatism of the resulting state bounds

and effectively reconciles the observed differences between IA and IA/AA approaches. The

time costs for using discrete-time and continuous-time DI using IA and AA constructing

state bounds are summarized in Table 2.1. Since the step size for discrete-time DI can be

chosen manually, it is superior for this problem in terms of speed, without sacrificing accuracy
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(the resulting volumes are very close between continuous-time DI and discrete-time DI). As

expected, the time cost between execution of the PDE bounding algorithm using IA and

IA/AA for spatial discretization are similar.

To explore the performance of the new bounding procedure for global dynamic optimiza-

tion of PDEs, we consider the case of minimizing the compressed air required to meet a

desired effluent quality. This problem is formulated as the following optimization problem:

min
p∈P

p

s.t. zK,exit − λ ≤ 0, (2.29)

where p ∈ P = [0, 1] is a parameter related to the flowrate of air into the system and zK,exit

is the effluent concentration. It is assumed that the reaction is limited by mass transport

and can be manipulated by the compressed air flowrate through the Damköhler number as

Da = kτ = (0.1+ 0.3p)τ . For this study, it is required that the effluent concentration zK,exit

should be below λ = 0.08 as a critical performance or safety requirement.

Just as before, we set N = 20 for spatial discretization using the backward FD approx-

imation with h = 0.005 (K = 200) using explicit Euler. The problem is solved using the

EAGO v0.4.1 solver (EAGO.jl) [52] in the Julia programming language via the JuMP v0.20.1

modeling language (JuMP.jl). We set the absolute and relative convergence tolerances to

be 10−3. The optimization problem is defined in a discrete-time form based on (2.25) and

custom bounding routines are utilized for the B&B algorithm. Specifically, we construct the

bounds of xk(p) by applying IA/AA for spatial FD approximations and discrete-time DI for

integration. The upper-bounding and lower-bounding problems are established by Defini-
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(a) (b)

Figure 2.4: Results for the PFR system (Ex. 2.3.1) are plotted. (a) The spatial profiles of
the species concentration x̃(y, t, p) in the PFR at t = 0.1 are plotted for several values of p
along with the state bounds derived from pure IA and mixed IA/AA. (b) The trajectories of
the species concentration x̃(y, t, p) in the PFR at the position y = 0.5 are plotted for several
values of p along with the state bounds derived from pure IA and mixed IA/AA. x̃(y, t, p)
is approximated by corresponding numerical solutions of discrete-space states calculated by
the explicit Euler method and state bounds are calculated by the discrete-time DI method.

tion 2.2.4 and Definition 2.2.6. It takes 38.7 s to achieve global optimality and the optimal

solution is given by p∗ = 0.4523. This represents a significant advantage over the implicit

approach of [55], who solved this problem in 382 s using a second-order implicit integration

method.

2.3.2 Convection-Diffusion System

Consider a scalar convection-diffusion system as an IBVP with two parameters:

∂x̃

∂t
= p1

∂2x̃

∂y2
− p2

∂x̃

∂y
, t ∈ [0, 1], y ∈ [0, 1], (2.30)

subject to the initial condition x̃(y, 0) = 2, as well as the boundary conditions x̃(0, t) =

0, x̃(1, t) = 1. Parametric uncertainty is specified as: p ∈ P = [0.015, 0.045] × [0.02, 0.06].
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The spatial domain of this PDE is discretized into N = 100 nodes. Specifically, we ap-

plied centered, forward, and backward FD approximations for spatial discretization of the

convective term to fully demonstrate the bounding results under different discretization ap-

proaches. Both pure IA and mixed IA/AA methods are used for calculating state bounds

for comparison. Then, both continuous-time DI and discrete-time DI (with h = 0.001) are

applied to integrate the model and construct bounds on the solutions of this system with

parametric uncertainty. The calculated state bounds are illustrated in Figure 2.5 and the

corresponding volumes are indicated in Table 2.2. It is indicated that the bounds obtained by

the new mixed IA/AA method are much tighter than the pure IA approach when centered

FD approximations are used (see Figure 2.5(b)). Moreover, it is observed that the state

bounds derived from using forward and backward FD approximations with pure IA and

mixed IA/AA are identical. Using DI in the bounding procedure will reduce the differences

between applying IA and IA/AA while using forward and backward FD approximations for

the convection term. Furthermore, it is observed that the backward FD approximations

provide the tightest bounds for this model. As summarized in Table 2.1, the costs for calcu-

lating bounds using IA and IA/AA are similar. Thus, it is recommended to utilize the mixed

IA/AA approach to achieve at least equivalent state bounds, and possibly better bounds,

without increasing time cost.
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Figure 2.5: Results for the convection-diffusion system (Ex. 2.3.2) are plotted. (a,c,e) The
spatial profiles of numerical approximations of x̃(y, t,p) for several values of p are plotted at
t = 0.5, along with their bounds obtained using pure IA and mixed IA/AA methods. (b,d,f)
The trajectories of numerical approximations of x̃(y, t,p) for several values of p are plotted at
y = 0.5, along with their bounds obtained using pure IA and mixed IA/AA methods. (a,b)
Centered FD approximations were used for spatial discretization of the convection term.
(c,d) Forward FD approximations were used for spatial discretization of the convective term.
(e,f) Backward FD approximations were used for spatial discretization of the convective
term.
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2.3.3 Convection-Reaction System

Consider a convection-reaction system with two parameters p = (p1, p2) representing con-

vection and reaction coefficients, respectively:

∂x̃

∂t
= −p1

∂x̃

∂y
− p2x̃, t ∈ [0, 1], y ∈ [0, 1], (2.31)

where the initial condition is x̃(y, 0) = 1, and the boundary conditions are defined as:

x̃(0, t) = 0, dx̃
dy
|y=1 = 0. The uncertain parameters are p ∈ P = [0.1, 0.3] × [0.2, 0.6]. The

proposed methods are implemented to calculate state bounds on the solutions of this system.

Specifically, the space domain of (2.31) is discretized into N = 20 nodes. The convective

term is approximated using centered FD and backward FD approximations for comparison.

The forward FD approximation was not considered as the resulting discretized system is

unstable. The step size was chosen to be h = 0.01 when applying discrete-time DI. The

trajectories of the solutions and the state bounds are plotted over the space domain and

time domain as shown in Figure 2.6. The volumes of state bounds are also reported in Table

2.2. The bounds obtained by the IA/AA approach are tighter than by the pure IA approach

in the case of using centered FD approximations. The time costs for constructing the bounds

using each algorithm are reported in Table 2.1.
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Figure 2.6: Results for the convection-reaction system (Ex. 2.3.3) are plotted: (a,c) The
spatial profiles of numerical approximations of x̃(y, t,p) for several values of p are plotted
at t = 0.5, along with their bounds obtained using pure IA and mixed IA/AA methods.
(b,d) The trajectories of numerical approximations of x̃(y, t,p) for several values of p are
plotted at y = 0.5, along with their bounds obtained using pure IA and mixed IA/AA
methods. (a,b) Centered FD approximations were used for spatial discretization of the
convection term. (c,d) Backward FD approximations were used for spatial discretization
of the convective term. x̃(y, t, p) is approximated by corresponding numerical solutions of
discrete-space states calculated by the explicit Euler method and state bounds are calculated
by the discrete-time DI method.
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Figure 2.7: Results for diffusion-reaction system (Ex. 2.3.4) are plotted: (a) The spatial pro-
files of numerical approximations of x̃(y, t,p) for several values of p are plotted at t = 0.5,
along with their bounds obtained using pure IA and mixed IA/AA methods. (b) The profiles
of numerical approximations of x̃(y, t,p) for several values of p are plotted at y = 0.5, along
with their bounds obtained using pure IA and mixed IA/AA methods. Centered FD ap-
proximations were used for spatial discretization. x̃(y, t, p) is approximated by corresponding
numerical solutions of discrete-space states calculated by the explicit Euler method and state
bounds are calculated by the discrete-time DI method.

2.3.4 Diffusion-Reaction System

Consider a diffusion-reaction system with two parameters p = (p1, p2) representing diffusion

and reaction coefficients, respectively:

∂x̃

∂t
= p1

∂2x̃

∂y2
− p2x, t ∈ [0, 1], y ∈ [0, 1]. (2.32)

The initial condition is x̃(y, 0) = 2, and boundary conditions are given by x̃(0, t) = 0, x̃(1, t) =

1. Uncertain parameters are defined as p ∈ P = [0.01, 0.03] × [0.2, 0.6]. We approximate

the diffusive term in (2.32) using centered FD approximation and integrate over the time

horizon using discrete-time and continuous-time DI approaches. The resulting state bounds

are illustrated in the Figure 2.7 and their volumes are given in Table 2.2.
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2.3.5 Coupled IBVPs

In this section, we study a model for atmospheric ozone reactions introduced by [56]. It

is assumed that the atmosphere of the earth is a closed system at a constant temperature

and volume. Three species: free oxygen O, molecular oxygen O2, and ozone O3 are involved

in the atmosphere system. In addition, we assume that the concentration of these three

species can vary with the altitude y ∈ [0, 1] and the movement of species is caused by

wind. Furthermore, the species diffusion interactions are also considered in the system. The

transport phenomena in this ozone atmosphere system can be represented by the following

coupled convection-diffusion-reaction IBVPs:

∂cO
∂t

+ u1
∂cO
∂y

= D1
∂2cO
∂y2

+ rcO ,

∂cO2

∂t
+ u2

∂cO2

∂y
= D2

∂2cO2

∂y2
+ rcO2

,

∂cO3

∂t
+ u3

∂cO3

∂y
= D3

∂2cO3

∂y2
+ rcO3

, (2.33)

where cO, cO2 , and cO3 denote the corresponding species concentration, u1, u2, and u3 are

the corresponding convection coefficients, D1, D2, and D3 are the corresponding diffusion

coefficients. Moreover, the reaction mechanism of ozone in the atmosphere is simplified as:

O +O2
k1−→ O3

O +O3
k2−→ 2O2

O2
k3(t)−−→ 2O

O3
k4(t)−−→ O +O2. (2.34)
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In this reaction mechanism, k1, k2, k3(t), and k4(t) are the rate constants for each reaction.

Since the last two reactions describe the photodissociation process of O2 and O3 associated

with the effect of sunlight, k3(t) and k4(t) will change periodically with time. Based on the

above reaction mechanism (2.34), we can derive the reaction rates of each species:

rcO = −k1cOcO2 − k2cOcO3 + 2k3(t)cO2 + k4(t)cO3 ,

rcO2
= −k1cOcO2 + 2k2cOcO3 − k3(t)cO2 + k4(t)cO3 ,

rcO3
= k1cOcO2 − k2cOcO3 − k4(t)cO3 .

Here, the rate constants k1 and k2 are constants: k1 = 1.63× 10−16, k2 = 4.66× 10−16. The

other two rate constants k3(t) and k4(t) follow a two-day periodical cycle as:

ki(t) =


exp(−ci/ sin(ωt)) if sin(ωt) ≥ 0

0 if sin(ωt) < 0, i = 3, 4,

where c3 = 22.62, c4 = 7.601, and ω = π/43200 s−1. The rate constants k3 and k4 will

increase quickly at the beginning (t = 0), rise to a peak at noon (t = 6× 3600 s), then drop
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to zero at sunset (t = 12× 3600 s). The initial conditions of this ozone model are given by

cO(y, 0) =


106 if 0.3 ≤ y ≤ 0.6

0 otherwise,

cO2(y, 0) =


3.7× 1016 if 0.3 ≤ y ≤ 0.6

0 otherwise,

cO3(y, 0) =


1012 if 0.3 ≤ y ≤ 0.6

0 otherwise.

At the bottom layer of the atmosphere, the boundary conditions are given by cO(0, t) = 106,

cO2(0, t) = 3.7× 1016, cO3(0, t) = 106.

In this model, we make the assumption that the convection and diffusion coefficients of

the species will remain the same due to the uniformity of the atmosphere: u = u1 = u2 = u3

and D = D1 = D2 = D3. These two coefficients are considered uncertain with bounds

u ∈ [4e-3,6e-3] and D ∈ [4e-3,6e-3]. To solve the model, we first discretize the space domain

into N = 50 nodes y1, ..., yN . The corresponding numerical values of cO(y, t,p), cO2(y, t,p),

and cO3(y, t,p) are assigned at each node yi (i = 1, ..., N) and are represented by x1,i(t,p),

x2,i(t,p), and x3,i(t,p) to be determined. We interlace these discrete variables to obtain

z(t,p) = (x1,1(t,p), x2,1(t,p), x3,1(t,p), . . . , x1,N(t,p), x2,N(t,p), x3,N(t,p)). In other words,

we have x1,i = z3i−2, x2,i = z3i−1 and x3,i = z3i for i = 1, . . . , N . In terms of the global index

l = 3i− (3−m) with m = 1, 2, 3 and i = 1, . . . , N , we have

zl = xm,i, , l = 1, . . . , 3N.
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Next, centered FD approximations are used to approximate the corresponding spatial deriva-

tive terms and the discrete model is rewritten in terms of zl(t,p), that can be represented

by the vector form:

ż(t,p) = f(t, z(t,p), zc(t,p), zc2(t,p),p), z(t0,p) = z0(p), ∀t ∈ I.

The system of auxiliary ODE-IVPs is integrated using discrete-time DI (h = 0.016) and

continuous-time DI over the time domain I = [0, 3.2]. Both pure IA and mixed IA/AA are

applied to calculate state bounds. As shown in the Figure 2.9, all trajectories for species

concentration lie within the bounds, as expected. Furthermore, it is obvious that the state

bounds for each species constructed by using IA/AA are tighter than using IA alone, which

is also confirmed by the volume calculations reported in Table 2.3. In addition, as indicated

by the time costs for each method, listed in Table 2.1, applying IA/AA versus IA results in

nearly identical computational expense.

To further illustrate the performance and practicability of the proposed bounding ap-

proach, a parameter estimation problem is formulated for this model and solved to guaran-

teed global optimality. A dataset of ozone concentration is given at specific spatial positions

in the atmosphere and we seek to determine the optimal values of the uncertain parameters

to achieve the best-possible fit of the model to the data. We use the discrete-time scheme

for integration (K = 200), and the objective function is formulated as the sum of squared

error between the data and model at specific spatial nodes (i = 5j with j = 1, . . . , 10) with
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N = 50, over the entire time horizon:

min
p∈P

10∑
j=1

K∑
k=1

(x3,5j,k(p)− cdataO3,i,k
)2

s.t. z0(p) = x(0,p) (2.35)

zk+1(p) = zk(p) + hf(tk, zk(p), z
c
k(p), z

c2
k (p),p), ∀k = 0, . . . , K

where p = (u,D) ∈ P = [4e-3,6e-3]× [4e-3,6e-3] are the uncertain parameters, and cdataO3,i,k
is

the ozone concentration data measured at spatial node i and time node k. For the purposes

of this study, the data was generated by a random number generator with Gaussian noise.

For the purpose of comparison, both pure IA and mixed IA/AA algorithms are used for

bounding routines. We solve this problem using the EAGO v0.4.1 solver (EAGO.jl) [52] via

the JuMP v0.20.1 modeling language (JuMP.jl). The relative global convergence tolerance is

set as 5×10−2. An optimal solution is found at p∗ = (5.12e-3,4.48e-3). It takes 16.4 h and 30

h to reach global optimality using mixed IA/AA and pure IA, respectively. The performance

of the algorithms is illustrated as a convergence plot in Figure 2.8. As illustrated in Figure

2.8 with the orange profiles of mixed IA/AA always higher than the blue profiles of pure IA,

the tighter bounds constructed by using the mixed IA/AA reduces the total time cost for

achieving convergence of the global optimization algorithm.
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(a) (b)

Figure 2.8: The convergence profiles are plotted for the global optimization algorithm using
pure IA and mixed IA/AA for Ex. 2.3.5. (a) The LBD and UBD are plotted separately
to resolve the improvements in each bound as the algorithm iterates. The UBD values are
relatively constant, meaning that the upper-bounding routine located a very good solution
early on. (b) The ratio of LBD/UBD is plotted to illustrate relative convergence of the
bounds as the algorithm iterates. As can be seen, the mixed IA/AA performs better than
the pure IA bounding method by providing better lower bounds, resulting in much faster
convergence of the B&B algorithm.
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Table 2.1: CPU time for constructing state bounds of the PFR, convection-diffusion,
convection-reaction, diffusion-reaction, and ozone reaction models are reported in this table.
The forward, backward, and centered FD approximations refer to the schemes applied to the
convection term in these models.

PFR Model
Time (ms) Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 59.332 158.823

IA/AA 62.024 162.567

Convection-Diffusion Model
Time (s) Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 17.883 72.112

IA/AA 17.592 80.821

Forward FD approximations
IA 17.870 70.490

IA/AA 18.458 68.100

Backward FD approximations
IA 18.171 82.415

IA/AA 18.476 79.773

Convection-Reaction Model
Time (ms) Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 9.593 58.849

IA/AA 9.252 40.116

Backward FD approximations
IA 9.228 22.920

IA/AA 9.276 23.042

Diffusion-Reaction Model
Time (ms) Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 59.332 158.823

IA/AA 62.024 162.567

Ozone Reaction Model
Time (s) Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 16.324 317.329

IA/AA 15.992 322.567
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Figure 2.9: Concentration profiles for the system of coupled IBVPs (Ex. 2.3.5) are plotted.
(a,c,e) Concentration profiles for several values of (u,D) over the entire altitude of the
modeled atmosphere for species O (a), O2 (c), O3 (e) are plotted at t = 3.2s, along with
their bounds obtained using pure IA and mixed IA/AA. (b,d,f) Concentration profiles for
several values of (u,D) for species O (b), O2 (d), O3 (f) are plotted at y = 0.5 through time
horizon, along with their bounds obtained using pure IA and mixed IA/AA.
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Table 2.2: The volumes of state bounds for the solutions of PFR, convection-diffusion,
convection-reaction and diffusion-reaction models are presented in this table. The forward,
backward and centered FD approximations especially refer to the schemes applied to the
convection term in these models.

PFR Model
Volume Discrete-Time DI Continuous-Time DI

Backward FD approximations
IA 0.1740 0.1726

IA/AA 0.1740 0.1726

Convection-Diffusion Model
Volume Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 4.6177 4.6538

IA/AA 0.2513 0.2542

Forward FD approximations
IA 516.5 541.8

IA/AA 516.5 543.1

Backward FD approximations
IA 0.2319 0.2317

IA/AA 0.2319 0.2347

Convection-Reaction Model
Volume Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 2.1868 2.3318

IA/AA 0.2753 0.2724

Backward FD approximations
IA 0.2090 0.2067

IA/AA 0.2090 0.2067

Diffusion-Reaction Model
Volume Discrete-Time DI Continuous-Time DI

Centered FD approximations
IA 0.3686 0.3840

IA/AA 0.3686 0.3840

Table 2.3: The volumes of state bounds for the solutions of each species in the ozone reaction
model solutions are presented in this table. Centered FD approximations are used for the
convection terms in the model.

Volume Discrete-Time DI Continuous-Time DI

Species O O2 O3 O O2 O3

IA 20692 4.9558E15 1.3394E11 20701 4.9389E15 1.3348E11
IA/AA 18073 3.6062E15 9.7464E10 18067 3.5919E15 9.7079E10
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2.4 Conclusion

We presented a novel algorithm for constructing rigorous bounds enclosing the solutions of

unsteady PDEs was presented. This approach has broad applicability across process systems

engineering applications for uncertainty quantification, robust simulation, and determinis-

tic global dynamic optimization. In this algorithm, a mixed IA/AA set-valued mapping

approach is used to reduce the overestimation introduced by the dependency problem of

standard IA, when applied to FD approximations for spatial discretization. A modified

DI method is employed with numerical integration to propagate bounds through time. In

addition, a discrete-time DI approach was also extended to this class of problems. The

methods were demonstrated on five examples, including variations of common convection-

diffusion-reaction systems and coupled IBVPs with multiple state variables, to demonstrate

the performance of the generated state bounds and practicability for applications in deter-

ministic global optimization with unsteady PDE constraints. The bounds constructed by

this method are less conservative and do not add additional computational cost over con-

ventional IA approaches. Therefore, this approach is expected to enable the solution of a

broader class of global dynamic optimization problems.

In chapter 3 - 5, the methodologies for modeling spatiotemporal systems and implement-

ing optimization-based system designs are elucidated with respect to different real-world

applications. The proposed bounding PDE algorithm in this chapter is utilized in chapter 4

for solving deterministic global optimization problems.
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Chapter 3

Precise Control of Water and

Wastewater Treatment Systems with

Non-Ideal Heterogeneous Mixing

Models and High-Fidelity Sensing

In this chapter, a traditional engineering application for controlling water and wastewater

treatment systems is presented. The transport systems are modeled using a small number

of ODE-IVPs to capture transport phenomena at different spatial positions. Furthermore,

the developed non-ideal heterogeneous mixing models are incorporated within advanced

closed-loop control strategies utilizing high-resolution sensing to maximize the resiliency

and minimize the energy consumption of water treatment processes. The proposed non-

ideal heterogeneous mixing models capture continuity (heat and mass conservation), yet are
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extremely simple with few parameters, so they lend themselves to fast online prediction

(with extrapolation capabilities) and regular recalibration. The models are deployed within

standard model predictive control and two economic model predictive control strategies to

demonstrate model-based decision-making for disturbance rejection and optimal operation of

aeration in a continuous-flow nitrification system utilizing high-resolution sensor data from

several spatial positions.

3.1 Introduction

The urgent demand for enhanced water quality, high resilience, high treatment efficiency, low

costs, and environmentally-friendly operations have promoted the development of model-

based decision-making and control strategies in water and wastewater treatment plants

(WTPs and WWTPs) [57, 58, 59, 60]. The prerequisite to an effective control system is

the ability to measure important water quality information (e.g., conductivity, pH, tem-

perature, etc.) by high-fidelity sensing technologies, that can then be used to build reli-

able predictive models as well as for real-time state measurement. Though classical, purely

physics-based unit operations models (e.g., activated sludge model (ASM) [61, 62, 63, 64],

hydraulic model [65], sedimentation tank model [57, 66]) have been used extensively in the

past, they have their limitations. For example, building models is time-consuming and some

necessary parameters (e.g., cell growth rate, biomass yield) in these models are unmea-

surable in WTP/WWTPs in real time. Such variables are normally determined by offline

analyses in the laboratory, causing serious time delays [57, 67, 68] in operator response. As a

consequence, transients and spatial heterogeneity in process units go undetected, hampering
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efficiency improvement efforts due to an incomplete understanding of the transport processes

of water quality information [69, 70, 71].

In situ data-driven approaches could overcome the existing modeling drawbacks by en-

abling identification of the “black box” systems (e.g., aeration tanks) whose underlying mech-

anisms are otherwise unknown to operators, using data from the practical process under real

operating conditions [72, 73]. However, traditional data-driven methods in WTPs/WWTPs

have two obstacles. First, some data-driven models are developed based on markedly large

datasets collected and processed over long periods of time (e.g., greater than ten years in

WTP/WWTPs). Given that only a small amount of data points have critical influence on

the system, using excess data can dilute important signals, making it unsuitable for identify-

ing transient situations (e.g., fast chemical transport processes) [69]. The second limitation

is that data-driven approaches are based purely on regression without considering physical

principles (e.g., dynamic neural network prediction of flow rate [74]) in WTP/WWTPs, and

are therefore limited to interpolated prediction. These data-driven identification techniques

may perform well for complicated systems since empirical correlations and first-principles

may not accurately capture the behavior of the system due to limited information [74, 75].

As a result, these models are unable to capture important fundamental mechanisms, and

thus are generally less functional for further model-based control applications where extrap-

olative prediction is needed. Fortunately, well-understood phenomena, like heat and mass

transport, can be readily and accurately modeled using first-principles.

This study explores an innovative approach to obtain high-resolution spatiotemporal

data from real-time in-situ water quality sensors, build and validate accurate models for

the measured water quality parameters, and deploy those models for precise model-based
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control of WTP/WWTPs. Simple non-ideal heterogeneous mixing models are developed to

simulate and predict heterogeneous mass transport in WTP/WWTPs. In order to achieve

visualization of the whole system, the transport characteristics of three important attributes

of water quality (conductivity [76], pH [77], and temperature [78]) are elucidated with only

a small volume of data collected within short periods (e.g., 2–10 min). These models are

then utilized within a technology platform for the precise control of WTP/WWTPs using

several different control strategies and architectures, including conventional and economic

modelpredictive control for improving energy and chemical-use efficiency in WTP/WWTPs.

One novel contribution of this study is that deterministic global (dynamic) optimization

[17, 79, 80, 81, 82] is employed for better understanding the heterogeneous mixing phenom-

ena via rigorous parameter estimation. Finding a global optimum is far more difficult than

finding an arbitrary local solution; yet, a mismatch between the model and the data can-

not be declared unless the best-possible fit is verified. Therefore, this approach provides

additional benefits for preventing erroneously invalidating proposed mechanisms in cases

where local algorithms return poor, suboptimal fits. A comparison between local and global

optimal solutions within this context is shown in Figure 3.1, illustrating the conductivity

profile in different positions of a tank. As shown, the suboptimal solution obtained by a

local optimization algorithm [83, 84] differs significantly from a global solution. The ad-

vantages of the developed non-ideal heterogeneous mixing models are demonstrated through

their straightforward, interpretable mathematical expressions able to achieve a better fit as

compared to both pure data-driven symbolic regression machine learning approaches using

Eureqa® (Version 1.24.0 (build 9367), DataRobot) [85] and a pure computational fluid

dynamics (CFD) approach. Furthermore, the predictive capabilities are also validated by
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additional experimental datasets of chemical species (e.g., KCl, MgSO4, NaOH), verifying

that provided models could work for model predictive control (MPC) in a broad spectrum

of operating scenarios.

This chapter is organized as follows. In Section 2, the Materials and Methods used in this

study are presented. Summarily, the experimental methods are discussed as well as the model

development, rigorous parameter estimation, and the control architectures for precise control

of WWTPs. Section 3 contains the Results and Discussion, whereby the performance of the

non-ideal heterogeneous mixing models is demonstrated, as are the control architectures for

precise control of WWTPs. Conclusions follow in Section 4.

Figure 3.1: Comparison of the conductivity profiles using local optimization (black dashed
lines) and global optimization (blue solid lines) are presented in this figure. The conductivity
model is a dynamic system under a pulse response. The three trajectories represent profiles
in three different positions of the tank (high, middle, and low zones).
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3.2 Materials and Methods

Figure 3.2 illustrates at a high level, the methods used in this study. In Figure 3.2(a),

we illustrate the experimental methods for data acquisition as discussed in Section 3.2.1.

Figure 3.2(b) illustrates the overall schematics of calibration (detailed in Section 3.2.3) and

advanced control strategies of WTP/WWTPs developed in this work (detailed in Section

3.2.4). Figure 3.2(c) illustrates a continuous flow nitrification reactor representative of a

commercial WWTP operation (detailed in Section 2.4).

Figure 3.2: (a) The experimental setup is illustrated for profiling tests along the batch
reactor depth under the conductivity shock, pH shock, and temperature shock measured
by the MEA sensors. (b) A schematic of the application of non-ideal heterogeneous mixing
models in an online model predictive control (MPC) system is illustrated. (c) The simulated
continuous stirred tank nitrification reactor is illustrated with inflows and outflows located
at high, middle, and low zones, and a PI controller or MPC for controlling aeration.
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3.2.1 Non-Ideal Mixing Profiling Using Milli-Electrode Array (MEA)

Sensors

All three types of MEA sensors (each size: 2 cm × 0.5 cm) targeting three water quality

parameters (conductivity, pH, and temperature) were precisely printed on Kapton poly-

imide film (FPC, thickness: 127 µm, American Durafilm) by a Dimatix Materials Printer

(ModelDMP-2800, FUJIFILM Dimatix, Inc.) as previously reported [86, 87]. Three assem-

blies of MEA sensors of each were deployed at three locations (high position: 40 mm below

the water surface; middle position: 85 mm below the water surface; low position: 130 mm

below the water surface) of a batch stirred reactor (diameter: 62 mm, height: 180 mm)

(Figure 3.2(a)) to accurately profile the whole reactor.

The sensor readings were recorded by a multi-channel potentiostat (1040C 8-channel

potentiostat, CH Instruments, Inc.) every 2 s. It took 10 min to reach steady-state operation

with continuous stirring with a rotation rate of 50 RPM. Then, different species (chemicals

purchased from Fisher Science, Co.) were individually injected into the reactor to simulate

transient shocks. Specifically, for conductivity shocks, 200 µL (100 g/L) sodium chloride

was injected into the reactor on the three locations (high, middle, and low) respectively. For

pH shock, 200 µL (1 M) potassium hydroxide solution mixed in 2 mg/L sodium chloride

solution (pH = 14) was injected into the reactor (initial pH: 7.22) on the three locations

(high, middle, and low) in turn. For temperature shock, the water solution in the reactor

(initial temperature: 18.5± 0.12 ◦C, room temperature) was placed on a heating plate that

was heated to 200 ◦C within 30 s and then shut off. All shock tests were conducted with

three repeated experiments and the average values were calculated to compensate for the
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uncertainty in experimental procedure. Validation tests were carried out under the same

conditions, except the shock substance was changed to 200 µL KCl solution (100 g/L) and

200 µL MgSO4 solution (100 g/L) for conductivity model validation, and to 200 µL NaOH

solution (1 M) for pH shock validation. These shock substances were only injected into the

high zone of the reactor.

3.2.2 Non-Ideal Mixing Model Development

Non-ideal heterogeneous mixing models were developed to simulate conductivity, pH, and

heat transport processes inside the reactor. Specifically, to capture the spatiotemporal het-

erogeneity of the conductivity and pH profiles, the tank reactor was modeled using multiple

regions with interchange [88]. The models were established based on heat and mass con-

servation that characterize the observed physical phenomena. These models were then used

within a continuous flow nitrification reactor model for precise control.
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Conductivity Mixing Model
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Figure 3.3: Schematics of the NaCl electrolyte conductivity transport model are illustrated
for shocks injected at (a) high zone, (b) middle zone, and (c) low zone, and the hydroxide
ion transport model with shocks injected at (d) high zone, (e) middle zone, and (f) low zone.

In this section, non-ideal mixing models are developed to capture the conductivity hetero-

geneity with respect to sensor measurements at different positions. The tank was partitioned

into different nominal zones based on the positions of three MEA conductivity sensors (Fig-

ure 3.3(a)-(c)). The high, middle, and low zones represent the regions corresponding with

the sensor assigned within that location. The mixing zone represents the region where the

stirrer resides on the bottom of the reactor. The dominant mechanism for mixing is forced

convection, which is significantly greater than the diffusive mixing between each zone [89].

Thus, it was assumed that the stirring power dominates the mass transfer in the reactor
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under fast stirring, while the diffusion between adjacent zones could be neglected. The

Reynolds number for the conductivity experiments is Re = 1198.76, which coincides with

the laminar/turbulent transition region in an agitated cylindrical tank. The ion transport

between the mixing zone and each sensor zone is defined as:

dCi

dt
=

1

4V
ki(C0 + C4 − Ci), i = 1, 2, 3 (3.1)

dC4

dt
=

1

4V
k4(C1 + C2 + C3 − 3C4).

Here, Ci represents the electrolytic conductivity (µS/cm) of the solutions in each zone i =

1, 2, 3, 4, V is the volume of the reactor (0.38 L), ki is a volumetric mass transfer coefficient

(L/s) that represents the rate of forced convective mass transfer between the mixing zone and

zone i. C0 represents the inlet conductivity in the corresponding zone, which is equal to Cv

(shock conductivity, µS/cm) in the zone with the injected shock during the injection period

(i.e., the time duration for which the conductivity in the injection zone rises to a peak) or

zero for other cases. Three series of experiments were performed, where a high-concentration

shock solution was injected into each high, middle, and low zones. The corresponding model

was then developed based on the injection position.

pH Mixing Model

In this section, non-ideal mixing models are established to capture pH heterogeneity within

the high, middle, and low zones of the reactor. As the solute, hydroxide ions exhibit anoma-

lously high apparent mobilities in aqueous solutions [90, 91]. Previous studies found that

this anomalous transport behavior at the molecular level [92] was attributed to continu-
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ous interconversion between a hydration complex of hydroxide ions and water molecules.

Thereby, apart from forced convection and diffusive transport, the hydroxide ions undergo

electrochemical interactions with water molecules, grabbing protons from adjacent water

molecules to generate hydroxide ion clusters at adjacent new sites. The superficial transfer

coefficients are introduced to represent these multifactorial interactions between each zone

(Figure 3.3(d)-(f)). Three independent experiments were conducted with shocks injected

at high, middle, and low injection positions. Different models are developed based on the

corresponding transfer mechanism, as illustrated in Figure 3.3(d)-(f). For the KOH shock

high-zone injection case, the model is established as:

dH1

dt
=

1

v1V
(H0 + κ1H4 − κ1H1), (3.2)

dH2

dt
=

1

v2V
(κ1H1 + κ2H4 − (κ1 + κ2)H2),

dH3

dt
=

1

v3V
((κ1 + κ2)H2 + κ3H4 − (κ1 + κ2 + κ3)H3),

dH4

dt
=

1

(1− v1 − v2 − v3)V
((κ1 + κ2 + κ3)H3 − (κ1 + κ2 + κ3)H4).

In this model, Hi represents the pH corresponding to each zone (i = 1, 2, 3, 4) in the reactor,

vi is the volume fraction of zone i, and κi is the superficial transport coefficient, indicating the

“flow rate” of OH− between adjacent zones that accounts for both reaction and convection

transport (L/s). H0 represents the input in the high zone which is equal to Hv (shock pH)

during the injection period (0–8 s) and is equal to zero for the remaining process. The details

and the development of pH models for middle and low zone injection cases are summarized

in Appendix A.1.1.
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Temperature Profiling Model

Heat transport was assumed to be significantly slower than fluid transport [89], indicating

that the transport process of heat in each sensor zone should be the same (as shown in Fig

A.1). Thus, only a single equation is required to accurately model the bulk fluid temperature

based on the energy balance for the batch system [93]:

dT

dt
= − UAc

V ρCp

(T − Tc). (3.3)

Here, T is the temperature of the water solution (◦C) and Ac is the crosssectional area

of the cylindrical container (m2) across which heat transfer is occurring. ρ and Cp are

respectively the density (kg/m3) and heat capacity (kJ/(kg·◦C)) of the water (ρ = 998.19,

Cp = 4.18). Tc is the temperature of the inner face of the bottom of the reactor and U

is the overall heat transfer coefficient of the system (kW/(m2·◦C)). The full details for the

development of the temperature model are presented in Appendix A.1.2.

3.2.3 Parameter Estimation and Model Validation Using Global

Dynamic Optimization

Rigorous deterministic global optimization was used to determine the uncertain parameters

for validation of optimal mixing models to capture the mixing dynamics for the three targeted

properties (e.g., conductivity, pH, and temperature). The general form of the global dynamic
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optimization problem is defined as:

min
p∈Π⊂Rnp

ϕ(x(p, t1), . . . ,x(p, tNt),p)

s.t. ẋ(p, t) = f(x(p, t),p, t), ∀t ∈ I = [t0, tf ] (3.4)

x(p, t0) = x0(p)

In this formula, ϕ is the objective function formulated as the sum of squared error (SSE)

between the model and the experimental data at specific discrete time points t1, . . . , tNt

corresponding with the experimental data, for each zone in the tank. x is the generic

state variable vector which represents C = (C1, C2, C3, C4) for the conductivity model,

H = (H1, H2, H3, H4) for the pH model, and T for heat transfer model. p is the uncer-

tain parameter vector requiring estimation by optimization, which belongs to the parameter

set Π ⊂ Rnp . x0 is the initial value vector for x at t = t0. The optimization problem is

nonconvex and constrained by a system of ordinary differential equation (ODE) initial value

problems (IVPs). The specific optimization formulations for conductivity and pH mixing

models are summarized in Appendix A.1.3.

There has been active development of novel deterministic methods for solving eq(2) to

guaranteed global optimality [17, 21, 25, 27, 55]. In this study, for conductivity and pH

models, the nonlinearity comes from the bilinear terms of the system of ODEs. To solve

the parameter estimation problems for these models, the models were reformulated into a

system of nonlinear algebraic equations using an explicit Euler discretization and accounted

for as equality constraints. As a result, the bilinear terms become recursively multiplied,

resulting in the feasible set being nonconvex. The ANTIGONE v1.0 solver [94] in GAMS
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v24.7.4 [95] was used to solve these parameter estimation problems to guarantee global

optimality (absolute stopping tolerance is set to 0; relative stopping tolerance is set to 0.1;

absolute feasibility tolerance is set to 1E-6). All global optimization results were obtained

within 1.5 h, which is important for applications in real-time MPC of WTPs/WWTPs with

a much longer residence time. The analytical expression for the temperature model was

derived and applied within the global optimization formulation (Appendix A.1.4). The

global optimization problem for the temperature model was solved using the EAGO v0.2.1

solver (EAGO.jl) [52] in the Julia programming language [53] via the JuMP v0.18 modeling

language (JuMP.jl) [96]. The global results for the temperature model could be obtained

within 2 min, which is appropriate for prompt temperature control in WTPs/WWTPs. The

wall clock times were reported for GAMS and JuMP implementations run on a personal

workstation with an Intel Xeon E3-1270v5 4-core/8-thread processor at 3.60 GHz/4.00 GHz

(base/turbo) frequency running Windows 10 with 32 GB of ECC memory.

3.2.4 Precise Control of A Wastewater Nitrification System

The non-ideal heterogeneous mixing models for conductivity were expanded from a batch

system to an unsteady pilot-scale continuous flow nitrification CSTR (1000L) to demon-

strate their applicability to real WWTPs, with a controller being implemented to showcase

disturbance rejection and energy saving operations (Figure 3.2 (c)). Three inlet streams

continuously flow into the tank corresponding to the high, middle, and low zones. Similarly,

three outlet streams continuously flow out of the tank at the corresponding zones. In ad-

dition, there is an air diffuser at the tank bottom continuously aerating for nitrification to
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oxidize NH4Cl [97]. A conductivity sensor is deployed in each zone to measure the corre-

sponding conductivity at 10 s intervals. An impeller is in the mixing zone to continuously

stir the liquid inside the tank. For traditional proportional-integral (PI) control, feedback

is provided from the high-zone MEA conductivity sensor and a control signal is sent to the

valve on the air stream at the bottom of the vessel. For MPC and its variants, sensors in

each zone are utilized for feedback.

A modified conductivity mixing model that accounts for continuous operations in this

tank is established to simulate the nitrification step:

dCi

dt
=

1

4V
(ki(C4 − C1) + ṁin,iCin,i − ṁout,iCi) +RNH+

4
, , i = 1, 2, 3, (3.5)

dC4

dt
=

1

4V
k4(C1 + C2 + C3 − 3C4) +RNH+

4
,

dcO
dt

= rO + kla(c
∗
O − cO),

where ṁin,i and ṁout,i are continuous inlet and outlet flow rate at zone i (L/s), respectively,

Cin,i represents the conductivity of the inlet stream at zone i (µS/cm), and RNH+
4

is the

reaction rate law for NH+
4 consumption measured as conductivity (µS/cm/s), cO is the oxygen

concentration (mg/L), and rO is the oxygen consumption rate described by a reaction rate

law (mg/L/s). The aeration process is modeled by the rate of mass transfer of oxygen into

the reactor liquid from air bubbles kla(c
∗
O − cO), where kla is the volumetric mass transfer

coefficient (s−1) [98], and c∗O is the saturated dissolved oxygen concentration (9.1 mg/L at 20

◦C) [99]. The standard oxygen transfer rate (SOTR, mg/s) is defined as SOTR = klac
∗
OV ,

and represents the amount of oxygen transferred per second at 20 ◦C. The standard oxygen

transfer efficiency (SOTE, %) refers to the ratio of oxygen in the inlet air stream dissolved in
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the liquid at 20 ◦C, given by SOTE = SOTR/WO, with WO the mass flow of oxygen in the

air stream (mg/s). WO can be calculated by an empirical formula: WO = 0.2967Q, where Q

is the airflow rate adjusted by the controller. The mass transfer coefficients were adjusted to

construct a modified model that can account for all situations with single or multiple shocks

at high, middle, and low zones. The model development process, the detailed kinetics for

the nitrification reaction, and the mechanism for airflow and transfer into the liquid are

introduced in Appendix A.1.3.

A case study of removing excess NH4Cl in a nitrification CSTR of a WWTP is simulated

as shown in Figure 3.2 (c). The input and output variables for the control system are given in

Table 3.1. According to the standard of moderate municipal wastewater, the concentration

of ammonium ions in the effluent should not exceed 30 mg N-NH+
4 /L [100]. Thus, the

operating setpoint (SP) is set at 280 µS/cm corresponding to the standard concentration.

Independent numerical experiments were conducted to assess the behavior of the system

under four different influent shock conditions (i-iv) and six different operating scenarios to

compare the system performance with various control approaches. From t = 2100 s to

t = 2250 s, influent shocks (as step disturbances) in NH4Cl concentration were introduced

in each case as: (i) Cin,1 = 320 µS/cm, (ii) Cin,2 = 320 µS/cm, (iii) Cin,3 = 320 µS/cm, (iv)

Cin,1 = 300µS/cm,Cin,2 = 350 µS/cm and Cin,3 = 270 µS/cm.

Table 3.1: Input and output variables for the nitrification wastewater system with different
control strategies are listed in this table.

Control system PI control MPC,EMPC1,EMPC2
Input variables Q Airflow rate Q Airflow rate

Output variables C1 High zone conductivity
C1 High zone conductivity
C2 Middle zone conductivity
C3 Low zone conductivity
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Proportional-Integral (PI) Control

A traditional closed-loop PI-controller was modeled and tuned for rejecting influent con-

ductivity shocks. The PI controller only makes decisions based on feedback signals from

measurements in the high zone and adjusts the mass flow rate of air entering the system.

The Internal Model Control (IMC) correlations are used to tune the PI parameters at first.

Then, the parameters are further adjusted manually through simulations until the closed-

loop system performs as desired. The details of the PI tuning process are introduced in

Appendix A.1.3 . An experiment is performed on the system with a unit step disturbance to

evaluate the control performance, the integral time-weighted absolute error (ITAE), integral

time-weighed squared error (ITSE), integral absolute error (IAE) and integral squared error

(ISE) are quantified with a settling time set as 1000 s, as listed in Table 2. The economic per-

formance of the PI controller was assessed based on energy consumption and concentration

disturbance rejection under the four influent shock scenarios.

Table 3.2: The control performance indices quantified by a response to a step disturbance
change are presented in this table. The settling time is set as 1000 s.

Performance index ITAE ITSE IAE ISE
Value 2.817E4 1.606E3 5.414E1 3.185

Model Predictive Control (MPC)

MPC is an advanced control technique widely used in the process industries. MPC has been

proposed for applications in WTPs/WWTPs to deal with the complexities from disturbances

in the influent and physical and chemical phenomena [101, 102, 103]. MPC allows for tunable

closed-loop response with its primary advantage being its intuition of process dynamics and

capability to naturally handle multi-input/multi-output systems. In addition, compared
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with conventional proportionalintegral-derivative (PID) control and interval model control

(IMC), MPC can handle more complicated systems (e.g., time delay, nonlinearity, open-loop

instability), and provide a better response with less settling time. Therefore, a multi-input

MPC was designed to improve disturbance (step function) rejection in WTP/WWTPs. The

core concept of MPC is to solve an optimization problem at predetermined time points k

to determine a control action that best drives the system towards the SP. In this study, the

control action step size δ is set as 10 s (i.e., same as for PI control). An objective function

is formulated as the sum of squares of the predicted errors (differences between the SP and

the model predicted outputs) over a prediction horizon of P control action steps [104]:

min
uk,...,uk+M−1

3∑
i=1

P∑
j=1

(SP− Ĉi,k+j)
2. (3.6)

Here, um (m = k, . . . , k+M − 1) is the control variable which is equal to the airflow rate Q

in this study (kg/s), SP is the setpoint (µS/cm), Ĉi is the model predicted output (µS/cm)

in zone i, and the subscripts indicate the sample time (k is the current sample time). P

is the number of control actions in the prediction horizon (P = 20), and M is the number

of control actions in the control horizon (M = 3). M control variables uk, . . . , uk+M−1 are

optimized at control action step k, but only the first control action uk is implemented. Then,

similarly, a new optimization problem is solved with respect to M control variables over a

prediction horizon of P at step k+1. The dynamic matrix control (DMC) method was used

to evaluate model predicted process outputs Ĉi [104]. The performance of the MPC was

assessed based on energy consumption and concentration disturbance rejection under the

four influent shock scenarios.
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Economic Model Predictive Control (EMPC)

Economic MPC (EMPC) is a method for accounting for real-time process operations with

respect to economic performance [105]. As such, EMPC can directly account for process

economics in the determination of appropriate control response, and therefore is ideal for

the development of next-generation WTP/WWTPs, such as real-time energy management

and market-driven production [106, 107]. In this study, we formulate and implement EMPC

with two different objectives: one is targeted at reducing environmental discharge (EMPC1);

and the other is targeted at saving energy (EMPC2). The optimization problem for EMPC1

is defined as

min
uk,...,uk+M−1

3∑
i=1

P∑
j=1

D2
i,k+j + w(

M−1∑
i=0

uk+i(P −M + 1)uk+M−1), (3.7)

where Di is the discharge from zone i (µS/cm), that can be expressed as

Di,k+j =


Ĉi,k+j − SP if (Ĉi,k+j − r) > 0

0 if (Ĉi,k+j − r) ≤ 0

The objective is to minimize the overall discharge above the SP over the prediction horizon

of P . w(
∑M−1

i=0 uk+i(P − M + 1)uk+M−1) in (3.7) is a penalty function with respect to

the control variables that guarantees the lowest oxygen consumption when the discharge

is already below the SP (the penalty coefficient w is set as 0.03) and penalizes oxygen

consumption when making control decisions.
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EMPC2 is formulated as the constrained optimization problem:

min
uk,...,uk+M−1

(
M−1∑
i=0

uk+i(P −M + 1)uk+M−1) (3.8)

s.t. Ĉi,k+j − SP ≤ 0, ∀i = 1, 2, 3, j = 1, . . . ,M, P

We seek to minimize the overall oxygen consumption over the prediction horizon to reflect

energy management during operations. The inequality constraints ensure that the conduc-

tivity profiles over the control horizon, and at the end of the prediction horizon, will be at or

below the SP. The performance of each EMPC was assessed based on energy consumption

and concentration disturbance rejection under the four influent shock scenarios.

3.3 Results and Discussion

3.3.1 Optimal Solutions for Conductivity, pH, and Temperature

Mixing Models from Parameter Estimation

The global optimal solutions for parameters of conductivity and pH models are listed in Table

A.1. The time costs for solving these global optimization problems are reported in Table

A.2. The vast disparity in solution times for solving pH problems is due to the “curse of

dimensionality” of deterministic global optimization [108] as the high zone injection problem

has nearly double the optimization variables of the low- and middle-zone injection problems.
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Figure 3.4: Optimal conductivity profiles from the global optimization results are plotted
against a subset of data for (a) the high-zone injection model, (b) middle-zone injection
model, and (c) low-zone injection model. Optimal pH profiles from the global optimization
results are plotted against a subset of data for (d) the high-zone injection model, (e) middle-
zone injection model, and (d) low-zone injection model.

The optimal conductivity profiles for different injection positions are presented in Figure
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3.4(a)-(c). Overall, the conductivity profiles fit the experimental data well, and are able to

capture the transient peaks caused by shock injections. This detection of transient maximum

conductivity is of great importance in applications such as preventing the damage to bacterial

cells in WWTPs [109], since both nitrogen removal and phosphorus removal processes in

WWTPs exhibit significant changes in the conductivity of wastewater [76]. For the high-

zone injection case (Figure 3.4(a)), it is observed that the optimal profiles in the middle and

low zones do not exhibit small peaks like the data, indicating that the lower zones of the

physical system receive ionic solutes from the upper zones in small amounts, which is not

accounted for in the proposed model. Since the relative mismatch is quite small, no change

was deemed necessary for the model. The low-zone injection profile (Figure 3.4(c)) exhibits

two conductivity peaks in the low zone and middle zone, which may be attributed to the

shock injection position (low zone) being very close to the mixing zone, thus transport to the

middle zone occurs rapidly. In addition, the optimal parameter C∗
v for the low-zone injection

case is much smaller than the high-zone and middle-zone cases (Table A.1), indicating that

the mixing force quickly dilutes the shock in the low zone due to the closest proximity to

the mixing zone.

The optimal pH profiles are shown in Figure 3.4(d)-(f). The models fit well for high-zone

and middle-zone injections, while a small deviation can be observed in the high-zone pH

profile in the low-zone injection model. The pH profiles for the middle-zone injection are

more uniform, due to the equal probability for apparent OH− transport towards the high and

low sensor zones, supporting the hypothesis that the dominant driving force for apparent

OH− transport is the electrochemical reaction instead of forced convection. As compared

with the conductivity transport model, proton (charge) transfers much faster (around 30 s
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to achieve equilibrium).

The optimal parameter values for the temperature model are U∗ = 1.9183 and T ∗
c = 26.40.

It took 65.97 s to solve the parameter estimation problem to global optimality. Since the

entire system was considered as a single stirred batch reactor (conforming to the well-mixed

assumption), the optimal profile exhibits no spatial variations between each sensor zone

and fits the data (Figure A.1) almost exactly. Furthermore, the convective heat transfer

coefficient was also estimated, using fundamental heat transfer principles and the Nusselt

number (Nu), which is the ratio of convective to conductive heat transfer across a boundary.

The Nusselt number is defined as Nu = hlDc/λ [89], where hl is the convection heat transfer

coefficient of the flow equivalent to the overall heat transfer coefficient U for this heat transfer

model, λ is the thermal conductivity of water (W/(m·◦C)) listed in Table A.7, and Dc is

the characteristic length that is equal to the surface area Ac divided by the perimeter Pc of

the bottom inner surface (Dc = Ac/Pc = 0.01375). In general, the Nusselt number can be

calculated as a function of the Reynolds number (Re) and the Prandtl number (Pr). In this

experiment, a cubic stirring bar (d = 38 mm) was used at a rotation speed (ω) of 50 RPM

(5/6 s−1). The Reynolds number is then calculated as Re = ρd2ω/µ = 1198.76 , indicating

that it is within the transitional region for flow in a cylindrical tank (1000 ¡ Re ¡ 10000),

where µ is the viscosity of water (Pa·s) listed in Table A.7. The Nusselt number (Nu) for

this system can then be calculated by Nu = 0.664 Re0.5Pr1/3 = 44.405 [110], where Pr is

the Prandtl number of water listed in Table A.7. Finally, the heat transfer coefficient can

be estimated as hl = λNu/Dc = 1.9289 kW/(m2·◦C), which is very close (0.55% deviation)

to the optimal solution U∗. Additionally, the optimal surface temperature T ∗
c was higher

than the observed solution temperature, which is consistent with the observed heat transfer
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(raising solution temperature) over the entire time horizon. The observed temperature profile

shows a significant reduction in heat transfer rate as the solution temperature approaches

T ∗
c as the rate of temperature increase (i.e., heat transfer) slows down over this period.

3.3.2 Comparison of Non-Ideal Mixing Models with Pure Data-

Driven Models and CFD Models

CFD models account for complex physical phenomena [111] and therefore are extremely

computationally expensive. Typical CFD simulations of the batch reactor took 1.5 h on

computers similar to the one reported previously and required excessive memory storage.

Note that this computational cost does not account for the substantial time investment

needed for the model setup and testing. Furthermore, CFD models once developed can

rarely be adapted to new situations with new parameter values. More details about the CFD

model used in this study are recorded in Section A.1.6 in SI. The simulation of a CFD model

(dashed line) under the high-conductivity high-zone shock fits well with the MEA sensor

profiles (blue points) (Figure 3.5(a)), while there was a large discrepancy between the CFD

simulated result and the MEA sensor data points under the middle and low shock (Figure

3.5(b) and (c)). This might be attributed to the simplification in CFD simulation for ion

transport processes as it only considers ideal conditions and neglects some side effects such

as the difference in surface smoothness and difference in mixing ability in each compartment

(high, middle, and low) of the batch reactor. For instance, the middle zone was assumed to

have the weakest mixing ability leading to the lowest mass transfer effectiveness while the

mass transfer effectiveness should be highest when the shock came from the low position
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closest to the mixing bar. In contrast, using the non-ideal mixing model, the SSE was

reduced by 92.23% and 80.45% (Figure 3.5). It should be noted that a CFD model that

compartmentalizes the reactor in a similar manner to our simple non-ideal mixing model, is

expected to perform much better. However, the development and computational costs for

such a model are considered to be prohibitive for any practical, real-time implementation

and use for precise control systems.

The observed mixing trends could not be represented well by the CFD simulation under

conductivity shocks (Figure 3.5), let alone the fast-transient scenarios of pH with multifac-

torial reactions. As an example, an axisymmetric model of a pH-sensitive electrochemical

field effect sensor comprising 13650 elements was deployed to simulate a geometrical domain

of 0.09 mm2, demonstrating that it is intractable to apply CFD models in the batch reactors

used in this study (volume: 380 mL) as the grid would have to be refined by a factor of 150.

The non-ideal mixing model was also compared with a pure datadriven model from the

Eureqa modeling engine (DataRobot), that generates differential equations trained on the

same data set. All data points were equally weighted for training and were integrated as

black lines in Figure 3.5(d)-(f). The mean SSE (full name) values between the original sensor

data and machine learning results were 144760, 110959, and 63,068 for each shock (high,

middle, and low locations), respectively. In contrast, the SSE value between the original

sensor data and the non-ideal mixing model’s simulation results were markedly lowered by

68–83%, respectively. The poor fit of the Eureqa regression models is attributed to lacking

the conservation principles as a basis, so that the regression models deviate from the main

trends of mass and heat transfer.
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Figure 3.5: Comparisons of the simulation results of the non-ideal heterogeneous mixing
model (dashed line) with the fitting results of (a-c) the CFD model (solid line) and with
the fitting results of (d-f) the machine learning model (solid line), are plotted for each zone
corresponding with the conductivity shock injection locations. (a) and (d): plots of the high
zone under shock injected in the high zone; (b) and (e): plots of the middle zone under shock
injected in the middle zone; (c) and (f): plots of the low zone under shock injected in the
low zone). (Note: NHM = Non-ideal heterogeneous mixing; The sensor data profile (dots)
and CFD model simulation are extracted from the previous study [112])
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3.3.3 Validation and Calibration of Sensors and Non-Ideal Mixing

Models

The non-ideal mixing models can be easily modified to simulate conductivity or pH profiles

of other solute species by calibrating the parameters. In terms of conductivity, the main

transport mechanism of ions without chemical reaction should be the same. However, the

uniqueness of each ion is associated with distinct conductivity values, posing the require-

ment for calibrating the as-developed models to sustain accuracy under varying scenarios.

To further validate the applicability of the developed non-ideal heterogeneous mixing mod-

els, additional experiments were conducted by injecting different soluble compounds (KCl,

MgSO4 and NaOH). The conductivity and pH profiles were simulated versus the experimen-

tal sensor data using the corresponding models with the parameters calibrated based on the

actual experimental conditions.

For validation of the conductivity model, the original optimal parameter values (as listed

in Table A.1) were used to predict the KCl and MgSO4 conductivity profiles. The results

showed that the simulated profiles using the original optimal parameter values qualitatively

follow the same trends as the new data (Figure 3.6(a) and (c)). The reason for the significant

quantitative mismatch is due to the differences in injection periods between the new and the

original experiments. Since all shock injections are manual operations, the injection speeds

cannot be regarded as a controllable experimental condition. The high-zone data reaches

a peak much faster, indicating that the injection speeds for the KCl and MgSO4 experi-

ments are faster than the NaCl experiment. Apart from the injection speeds, the absolute

injection quantity of different ions is another attribute leading to a mismatch. For example,
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though the mass concentrations of KCl and MgSO4 (200 µL, 100 g/L) injected are the same

compared with the original NaCl conductivity experiment, different ions lead to different

conductivities in solution and different shock conductivity Cv. The electrical conductivities

of the ionic solutions based on mass percent are listed in Table A.3. Since aqueous NaCl

and KCl solutions exhibit nearly the same conductivities, the predicted KCl profile using the

original NaCl injection model exhibits nearly the same steady-state conductivity versus the

new experimental data. In contrast, the steady-state conductivity of the predicted MgSO4 is

around three times higher than the new experimental data (Figure 3.6(c)). This difference

is expected since MgSO4 exhibits roughly one third of the electrical conductivity of NaCl

across the mass percentage range (Table A.3). To improve the simulation results (i.e., model

prediction accuracy), a simple calibration procedure (Appendix A.1.5) was conducted with-

out modifying the model structure, so that the underlying physical phenomena captured by

the original model could be preserved. The revised conductivity profiles for KCl and MgSO4

(Figure 3.6(b) and (d)) exhibit substantially improved fits.
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Figure 3.6: The predictive simulation results are plotted for KCl conductivity profiles versus
experimental data using (a) original optimal parameters and (b) modified parameters. The
predictive simulation results are plotted for MgSO4 conductivity profile versus experimental
data using (c) original optimal parameters and (d) modified parameters. The predictive
simulation results are plotted for NaOH pH profiles versus experimental data using (e)
original optimal parameters and (f) modified parameters.
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To validate the pH model for the NaOH experiment, the pH profile was simulated using

the original parameters for the KOH injection case. The simulated pH profile exhibits the

same qualitative behavior as the data (Figure 3.6(e)). Again, the major mismatch is caused

by the observed difference between the injection periods of the NaOH and KOH data. The

time duration for the pH of the NaOH experiment to reach the peak is much shorter. Thus,

the corresponding shock parameter Hv should be calibrated to mitigate this difference. The

calibration process is summarized in Appendix A.1.5. The revised pH profile (Figure 3.6(f))

exhibits a far better fit than the original simulation, where the peak pH from the model also

matches the data. The profile of the high-zone pH in the short time horizon after the peak

does not accurately fit the data. The probable reason is that the quasi dynamics of OH−

transport after the shock is not accurately captured by the model or the experimental errors.

3.3.4 Non-Ideal Mixing Models for Improved Wastewater Treat-

ment with Precise Control

Simulation Results for The Wastewater Nitrification System with Closed-Loop

Controls

The simulation results for each independent study are illustrated in Figure 3.7. For the

high-zone shock case, the PI controller begins to adjust the air valve to accelerate the airflow

rate for excess ammonium removal once the disturbance occurring in the high-zone inlet

flow is detected. The high-zone conductivity quickly drops below the SP, then the valve on

the air stream is closed and the conductivity gradually rises towards the SP. As for middle-

zone and low-zone shocks, the conductivities can still be controlled at the SP despite only
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using feedback readings from the high-zone sensor. The reason is that the conductivity

becomes quickly mixed at around t = 2400 s resulting in the overall conductivity of the tank

approaching the SP under control.

PINo Control MPC
High Zone

Middle Zone
Low Zone

PINo Control MPC
High Zone

Middle Zone
Low Zone

(a) (c)(b)

(d) (e)(f)

Figure 3.7: The conductivity profiles are plotted for the uncontrolled, PI control, and MPC
simulations for independent studies with NH4Cl conductivity shock (320 µS/cm) continu-
ously injected from 2100 s to 2250 s, respectively, in the (a) high, (b) middle, and (c) low
zones of a continuous-flow nitrification system. The PI (blue) and MPC (orange) control
actions for the (d) high-zone shock case, (e) middle-zone shock case, and (f) low-zone shock
case, are presented below their corresponding conductivity profiles.

For comparison, the MPC simulation results are also illustrated in Figure 3.7. For the

high-zone shock simulation, the conductivities can be directed to the steady state at SP

much faster than PI control. As indicated by the control variable, the consumption of

oxygen is reduced significantly by MPC, implying substantial energy savings. Furthermore,

the middle-zone and low-zone shock simulations show that with MPC, much less ammonium

is discharged to the environment than with PI control. This is because multi-input MPC can

account for feedback signals from all sensors, make accurate predictions of process transients
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using the non-ideal heterogeneous mixing models, and take appropriate action versus the PI

controller that only considers feedback signals from the high-zone sensor.

Evaluation of Treatment Performance and Energy Savings

An open-loop controller was also simulated for each study to represent conventional and

conservative operations as a reference for comparisons. Once the shock from the influent is

observed (t = 2100 s), the operator will open the aeration valve by an amount estimated

from the difference between the shock value and SP for full oxidation (u is set as 561.44

mg/s). After the system’s fixed settling time (1000 s), the operator will adjust the valve

again. In contrast, for the uncontrolled simulations, the control variable is always set at the

initial value (u0 = 168 mg/s) which results in the steady-state effluent conductivity meeting

the SP under steady influent conditions.

To evaluate the system’s performance, the excess ammonium discharge was quantified as

the area under the conductivity profiles as they go above the SP over the simulation horizon

(2000 s). In addition, the energy consumption was quantified as the overall amount of air

used for ammonium oxidization over the simulation horizon. The comparisons between un-

controlled, open-loop control, PI control, MPC, EMPC1, and EMPC2 cases are illustrated

in Figure 3.8 with the data values for these plots listed in Table A.5. The discharge quantifi-

cation for each case is calculated as the percentage of the uncontrolled simulation, whereas

the energy quantification is represented by the percentage of the open-loop control simula-

tion. It is apparent from the discharge plot (Figure 3.8(a)), that all the control strategies

can greatly reduce the discharge compared with uncontrolled simulations. MPC and both

EMPC strategies perform much better than PI control as less ammonium is discharged into
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the environment. This is especially clear for the middle and low-zone shock studies, where

MPC and EMPC account for multiple input measurements simultaneously, while PI control

can only account for the high-zone measurement. Specifically, EMPC1 has the best perfor-

mance for reducing discharge, coinciding with its underlying design objective. On the other

hand, energy usage (Figure 3.8(b)) under PI control, MPC, and both EMPC strategies, is

reduced versus open-loop control. As for the high-zone shock injection study, MPC has the

greatest advantage due to the least energy usage among other control strategies while its

discharge is only slightly higher than EMPC1 and EMPC2. As for the middle- and low-zone

shock studies, PI control saves the most energy, but also has the greatest discharge compared

with the other strategies.

Open-loop control

Uncontrolled PI control

MPC

EMPC1

EMPC2

(a) (b)

Figure 3.8: (a) The overall discharge of NH4Cl above the setpoint (SP) over the simulation
horizon, is plotted for each control scenario as a percentage normalized against the uncon-
trolled case (the uncontrolled case is 100%). (b) The total compressed air consumption
(equating to energy usage) over the simulation horizon is plotted for each control scenario
as a percentage normalized against the open-loop control simulation (the open-loop control
case is 100%). The labels “High”, “Middle”, “Low”, and “Multiple” represent high-zone,
middle-zone, low-zone, and multiple-zone shocks, respectively. In both cases, lower percent-
ages equate to better performance.
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It is observed that MPC has lower energy usage compared with EMPC1 and EMPC2.

EMPC1 is formulated to minimize environmental discharge and it is apparent that more

energy is consumed to achieve this objective. EMPC2 is formulated to minimize air con-

sumption with constraints on discharge, but as indicated, it still consumes slightly more

energy than MPC. The reason for this behavior is that EMPC2 seeks a control setting

that has the lowest energy consumption with a prerequisite to strictly satisfy the discharge

constraints while MPC only minimizes the errors without any specifications on discharge.

For the multiple shocks study, barring open-loop control, PI control is apparently the

worst control strategy using the most energy and resulting in the most ammonium discharge.

The energy usage and discharge for MPC, EMPC1, and EMPC2 are relatively similar, and

any lower discharge observed must be paid for with greater energy consumption. It is

suggested that for real-world operation, control strategies should be determined based on

the specific conditions of the WTP/WWTP. This is aligned with the notion of “smart plant

operations,” where process control, plant-wide management, and corporate office systems

communicate in real-time through networks to satisfy targeted economic, environmental, and

safety performance objectives [113]. As a result, the developed conductivity model, modified

for continuous flow is valid for MPC and EMPC, and promising for real-time decision-making

over the network for better management, energy savings, and handling of market/demand

changes in WTPs/WWTPs.
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3.4 Conclusions

WTP/WWTPs have been well-known for their large amounts of data generated with low effi-

ciency of data utilization, operational uncertainty, and fluctuations in water quality/quantity

[74, 75]. These fluctuations require frequent parameter adjustment and model recalibration

during operation for effective MPC, but traditional physics-based mechanistic models are in-

capable of adapting to these changes in a timely manner [114]. The non-ideal heterogeneous

mixing models proposed in this study are simple with few fitting parameters and take much

less time for simulation than traditional CFD models. The collected high resolution sensor

data can be instantly transmitted to the model calibration process, ensuring the calibration

of non-ideal heterogeneous mixing models in a real-time in situ mode during on-going op-

eration. This unique feature mitigates the severe time-delay problems of traditional pure

physics-based models and enables a prompt modification for higher accuracy system identi-

fication based on authentic representations of the system. Exploiting this technology within

closed-loop control, such as MPC, enables a novel precise control system for WTP/WWTPs.

Moreover, the heterogeneity profiling models can be applied for pattern recognition so as

to better understand the internal mechanisms of complex processes (e.g., transport mecha-

nisms of different ions), with or without involving algorithms and redundant equation de-

duction. Such generalized methodology can serve as a platform for simulating state variables

for other chemical species with similar physical principles.

In the next chapter, a medical-relevant application of the spatiotemporal system that

involves in PDEs is demonstrated through a cancer research study. The method proposed

in Chapter 2 is utilized to construct state bounds for solving challenging PDE-constrained
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nonlinear programs to global optimality.
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Chapter 4

Optimal Therapy Design With Tumor

Microenvironment Normalization

In this chapter, an application of formal methods to optimal therapy design in cancer research

is discussed. The vasculature in the tumor microenvironment (TME) are poorly-organized

and leaky. Normalizing the TME can improve therapy efficacy by restoring the vasculature

to increase anticancer nanocarrier delivery. A well-established digital testbed for solid tu-

mors can provide a better understanding of transport mechanisms of TME biophysics to

enable optimal therapy design. Deterministic global dynamic optimization with the novel

bounding routine introduced Chapter 2 is used to validate a mechanistic model against in

vivo data. We find that TME normalization with dexamethasone increases the maximum

transvascular convection rate of nanocarriers by 48-fold, the tumor volume fraction exhibit-

ing convection by 61%, and the total amount of convection by 360%. However, 22% of the

tumor still lacks convection. These findings underscore both the effectiveness and limits of

TME normalization. As a consequence, this digital testbed quantifies transport and can be
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used to perform optimal therapy design.

4.1 Introduction

Solid tumors feature pathophysiological abnormalities that are biophysical barriers to the

transport of anticancer drugs. These barriers impede the effectiveness of such therapies

by limiting their accumulation and spatial distribution [115]. Ameliorating the pathophys-

iology such that tumor microenvironment (TME) components have a more “normalized”

phenotype increases small-molecule and nanocarrier-based therapies’ delivery and efficacy

in cancer patients [116, 117, 118]. However, TME normalization combined with anticancer

therapies has yet to lead to cures throughout a cancer patient population. Thus, a deeper

understanding of how TME normalization affects the transport of therapies within tumors is

necessary to fully bypass these spatially and temporally heterogeneous biophysical barriers.

Mathematical modeling can be used to construct a robust framework for studying how the

normalized TME modulates biophysical barriers to transport phenomena in tumors, thereby

enabling the discovery of deeper insights into effective TME normalization. In turn, such a

framework may serve as the foundation for establishing a technology platform for effective

therapy design to improving therapeutic efficacy.

4.1.1 Cancer Biology

Nano-sized anticancer therapies on the order of dozens of nanometers, including macro-

molecules such as polymeric micelles and antibodies, benefit from: longer systemic circu-

lation owing to slower clearance; selective accumulation in tumors owing to leaky tumor
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blood vessels; and long retention in tumor tissue owing to dense fibrosis and non-functional

lymphatics in the TME [115]. In fact, nano-sized therapies are currently in use today with

cancer patients [117]. Nonetheless, leaky blood vessels, dense fibrosis, and nonfunctional

lymphatics collaborate to construct biophysical barriers that reduce the effectiveness of can-

cer treatments [115, 117, 118, 119]. Nano-sized therapies are affected in a size-dependent

manner [120, 121]. In tumors, plasma from circulation excessively extravasates from leaky

blood vessels to the interstitial (i.e. extravascular) space, yet moves slowly because dense

fibrosis limits fluid movement [122]. Ultimately, fluid cannot be cleared because tumor lym-

phatics are non-functional [123]. Thus, one distinguishing feature of tumors is an elevated

interstitial fluid pressure (IFP), that eliminates transvascular convective transport of drugs

in tumors by reducing the transvascular pressure gradient to zero [115, 122].

Vascular normalization involves fortifying leaky tumor blood vessels by blocking angio-

genesis [6, 116]. ECM normalization involves reversing dense fibrosis by reprogramming

cancer-associated fibroblasts to a quiescent phenotype so that the fibroblasts stop producing

and maintaining excessive levels of extracellular matrix (ECM) [6, 116, 124]. As a result, the

dense fibrosis, which slows intersitial fluid movement and compresses intratumor lymphatic

tumor vessels such that they are nonfunctional [125], is diminished. Already, vascular nor-

malization is used with nanomedicine in patients [126], while ECM normalization recently

succeeded in a clinical trial with small-molecule chemotherapy[127].

We recently discovered that dexamethasone, which is a glucocorticoid steroid often used

to manage chemotherapy-related toxicities, can induce vascular and ECM normalization

simultaneously if used at an appropriate dose and schedule [6]. Yet, how dexamethasone

affects blood vessel leakiness, fibrosis, and lymphatic vessel function towards alleviating
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IFP and restoring a transvascular pressure gradient is multi-factored. Each factor depends

on the dose of dexamethasone differently. Furthermore, how the size of nanocarrier-based

anticancer drugs interacts with these factors is unclear. Therefore, enhancing the delivery of

nanocarriers is a multi-faceted engineering problem, so a model-based systems engineering

approach is required to better understand the underlying physical phenomena and complex

relationships of the biological system. Throughout this work, we will use the term nanocarrier

to include nano-sized therapies, in general.

4.1.2 Modeling and Simulation for Cancer

Transport of nanocarriers from the systemic circulation to cancer cells includes three steps:

flow through blood vessels to different regions of the tumor, transvascular transport, and

transport through the interstitial space of tumor. Specifically, the capillary vasculature is a

highly dynamic region for transvascular transport of medicine, nutrients, and waste materi-

als being exchanged between the blood vessels and the interstitial space. There are two key

transvascular transport mechanisms: diffusion and convection. Generally, smaller nanocar-

riers benefit from diffusion using concentration gradients as an additional driving force for

transvascular transport, whereas larger nanocarriers must rely on convective transport using

pressure gradients due to steric hindrances that make diffusion very slow [115, 128]. Pre-

vious studies have indicated that diffusion is the main mechanism of mass transport across

the vessel wall in tumors, because of the lack of transvascular pressure gradients [115, 123].

However, dexamethasone affects blood vessel leakiness, fibrosis, and lymphatic function, so it

could restore transvascular pressure gradients. How diffusion and convection are affected for
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differently sized nanocarriers is unclear. To investigate, a first-principles-based modeling ap-

proach is required to quantify the important physiological parameters that govern transport

in tumors.

The vascular and interstitial transport phenomena in tumors have been extensively mod-

eled. Baxter and Jain [129, 130, 131, 132] developed a one-dimensional spherical tumor

model that describes fluid and nanocarrier transport. Baish et al. [133] developed a two-

dimensional fluid transport model that considered coupling between the vessels and the

interstitial space of tumors in a unified theoretical framework. Afterwards, Chauhan et al.

[121] applied this coupled transport system to a percolation-based tumor vasculature net-

work and subsequently established the solute transport model on this network. Sweeney

et al. [134] further developed a three-dimensional model to simulate vascular blood flow and

interstitial fluid transport. Their model integrated the complex vascular structure to provide

a visualization of spatial heterogeneity, which can predict the response of fluid dynamics fol-

lowing vascular normalization therapy. Through simulation of vascular normalization, the

authors concluded that therapies should “seek to develop an IFP gradient,” which is consis-

tent with the overall simulation results and conclusions of previous computational studies of

tumor vascular normalization.

In addition to first-principles mechanistic models, artificial intelligence (AI) has been

gradually becoming a popular model-based approach in pharmacokinetics/ pharmacody-

namics (PKPD) studies [135, 136, 137]. An efficient machine learning model simplifies com-

putationally intensive simulations by creating mathematically simple regression models that

capture input-output relationships with high accuracy [138]. Specifically, artificial neural

networks (ANNs) are powerful computational models that are capable of approximating and
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predicting the behavior of such complicated systems with high accuracy and efficiency[139].

In this work, we establish a systematic in silico model-based framework using determinis-

tic global optimization for optimal therapy design within the context of TME-normalization

processes. First, we propose using deterministic global optimization to solve the parameter

estimation problems and provide a rigorous quantitative foundation for in silico model dis-

crimination. Using this foundation, we quantify the relative contributions of convection and

diffusion to solute transport across the vessel walls. Moreover, we develop an optimal TME-

normalizing therapy design approach for dose selection that demonstrates the relationship

between dexamethasone dose and the interstitial concentration of anticancer drugs in the

pharmacokinetic system. Finally, we use this tumor transport model to determine an opti-

mal nanomedicine size for the greatest accumulation in the tumor interstitial space. We also

propose an ANN surrogate modeling approach to reduce the computational cost of solving

challenging deterministic global optimization problems for model validation, dexamethasone

dose selection, and anticancer nanocarrier size selection. The details of establishing and

using such machine learning models within optimization-based decision-making frameworks

are presented in this work.

Our work seeks to enhance the practicability and predictive capabilities of tumor trans-

port models using mechanistic and data-driven model validation approaches and rigorous

methods in global optimization for stronger model-based systems engineering approaches for

optimal therapy design in cancer research. The information obtained through this approach

aides in the development of better models and provides deeper insight into the physical be-

havior of molecular transport during TME normalization to guide drug development and

delivery.
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Figure 4.1: A flowchart is illustrated demonstrating a systematical framework for optimal
therapy design within the context of tumor microenvironment (TME) normalization. Based
on the experimental data, parameter estimation is utilized to validate/invalidate a proposed
mechanistic model or data-driven model of the tumor. Validated models are then applied to
tumor TME normalization therapy design for dose selection and anticancer drug size design.
Note that the TME normalization therapy design and drug size design in the dashed line
box can be implemented separately, sequentially or simultaneously.

4.2 Methods

Figure 4.1 illustrates the overall systematical framework proposed for model-based TME-

normalizing therapy and drug size design. To enhance the predictive capabilities of the

models and provide confidence in their utility for the model-based approach for drug and

therapy development, we propose to use formal methods to estimate and quantify the criti-

cal parameters for model validation. This approach requires solving a nonconvex nonlinear

program (NLP) constrained by the mechanistic tumor transport model as an unsteady par-

tial differential equation (PDE). A simulation-based feasible path approach is proposed and

the PDE-constrained optimization problem is reformulated as a box-constrained NLP. In
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addition, ANN machine learning methods are proposed to construct surrogate models for re-

ducing the time costs of solving global optimization problems. Moreover, the well-established

mechanistic and ANN models are also used in TME-normalizing therapy design for optimal

neoadjuvant dose selection as well as drug size design for anticancer nanocarriers.

4.2.1 Parameter Estimation and Model Validation by Determin-

istic Global Optimization

The glucocorticoid steroid DEX, an agent mainly used for alleviating chemotherapy side

effects, has been identified as a pre-treatment adjunct agent for normalizing metastatic

tumor vessels and ECM for enhanced efficacy of drug delivery [6]. To validate the effects of

DEX on nanocarrier delivery through vascular and ECM normalization processes, we propose

to verify the optimal solutions of the parameter estimation problems introduced in Martin

et al. [6] by deterministic global optimization. This approach is significant because only

global optimal solutions can guarantee the most accurate fit to the obtained experimental

data. The mechanistic tumor transport model used in this work is introduced in Appendix

A.2.

Martin et al. [6] conducted a series of experiments in vivo to investigate the efficacy of

DEX. In these experiments, immunocompetent mice bearing orthotopic 4T1 breast cancer

were treated with 3 and 30 mg/kg DEX daily for 4 days. After which, two types of flu-

orescent dyes (70 kDa rhodamine-bound dextran and 500 kDa FITC-bound dextran) were

injected as tracers [6]. In vivo confocal laser scanning microscopy was employed to char-

acterize the spatiotemporal distribution of dextrans in mouse tumors treated with different
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doses of DEX [120]. Based on the intravital microsopy images, the effective permeability

Peff was quantified as the rate of nanoparticle fluorescent signal passing through the vessel

walls normalized to the vessel surface area and the transvascular concentration difference

[121]. Note that the effective permeability includes both convective and diffusive compo-

nents; however, it significantly overestimates the diffusive part and may not be consistent

with actual transcapillary transport [129]. Then, the spatial average concentration of the

interstitial space was calculated from the conservation equation[121]:

dcdataavg

dt
= Peff

S

V

(
cv − cdataavg

)
,

where cv is the solute concentration in the vessels of a tumor (g/mL) and S
V

is the vascular

surface area per unit volume (cm−1). This serves as an experimental concentration profile

for subsequent parameter estimation problems used for elucidating the physiological effects

of DEX treatment.

In this work, a similar approach is taken whereby the dimensionless spatially-averaged

concentration of solute ĉdataavg (determined from the overall conservation equation) serves as

an experimental concentration profile for each Peff measured experimentally, and used for

parameter estimation of the mechanistic model of interest. Deterministic global optimization

methods are used to validate the mechanistic model and verify the TME-normalization

process. The objective function is formulated as the sum-of-squared errors (SSE) between

the average concentration profile predicted by the model and the measured data (from the

overall conservation expression with the experimentally measured Peff ) at discrete time

points over the entire time horizon of the experiment. Inequality constraints are formulated
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for the IFP profiles based on experimentally determined values. The parameter estimation

problem is formulated as:

min
π∈Π

n∑
i=1

(
ĉavg(ti,π, dm)− ĉdataavg (ti)

)2
(4.1)

s.t. p̂peri(π) ≤ p̂peri,max

p̂peri(π) ≥ p̂peri,min,

where the dimensionless spatially-averaged concentration of solute ĉavg is calculated by av-

eraging the dimensionless concentration ĉ for all spatial nodes (discretization details are

introduced in Section 4.2.7) from the mechanistic solute transport model (details are in-

troduced in Appendix A.2.1) and taken as the parametric model output for the parameter

estimation problem. The decision variables π = (Lp, K) ∈ Π ⊂ Rnπ is the vector of phys-

iological parameters of the model to be estimated, with Lp the hydraulic conductivity of

the microvascular wall (cm/mm Hg-sec) and K the hydraulic conductivity of tumor inter-

stitium (cm2/mm Hg-sec). The parameter dm is the diameter of the nanocarrier (nm) used

in the corresponding experiment. The SSE objective fits the model-predicted profile to the

experimental profile at each time node ti selected within the time horizon (5 min), with

i ∈ {1, . . . , n}. For the inequality constraints, we introduce p̂peri as the dimensionless su-

perficial (peripheral) IFP which is calculated by the dimensionless IFP p̂ in the superficial

region (introduced in Section 4.2.7), and p̂peri,max and p̂peri,min as the physical bounds of p̂peri,

with values taken from Martin et al. [6] and listed in Table 4.1.

119



Table 4.1: The physical bounds on the superficial (peripheral) tumor IFP for the control, 3
mg/kg, and 30 mg/kg DEX treatment case are listed in this table as determined by Martin
et al. [6].

Dose Control 3 mg/kg 30 mg/kg
p̂peri,min (mmHg) 4.87 3.02 1.95
p̂peri,max (mmHg) 5.67 3.62 2.45

4.2.2 Bounding Methods for Tumor Transport Model

Deterministic global optimization can prevent erroneously invalidating mechanistic models

in cases where suboptimal solutions obtained by local optimization algorithms result in poor

fits. Methods for solving global optimization problems in this work rely on the branch-

and-bound (B&B) framework [140] for deterministic search. Specifically, we employ the

flexible and open-source B&B-based solver EAGO [52, 141]. The B&B algorithm iteratively

partitions the search space into successively smaller subdomains and solves a sequence of

lower- and upper-bounding subproblems on each subdomain. The algorithm converges in

finitely-many iterations to an ϵ-optimal global solution or terminates with a certificate of

infeasibility by comparing the obtained bounds across nodes. The upper-bounding problems

typically determine a feasible local solution (if one exists) on each subdomain. The lower-

bounding problems rely on the ability to calculate rigorous global bounds on all variables

and functions involved in the optimization formulation. Calculating valid lower bounds for

a global optimization problem is the most challenging procedure. This is especially true for

PDE systems encountered in this work, as this task amounts to constructing rigorous bounds

on the spatiotemporal state solutions over the entire domain of optimization variables (i.e.,

the reachable set).

In this section, we present a method for constructing global bounds enclosing the reach-
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able sets of the tumor transport model. Several different bounding methods are presented

and analyzed in this work to determine the most effective method for use with the tumor

transport model. The fundamental approach is to use the method of lines with finite dif-

ferences for spatial discretization and then differential inequalities (DI) [39, 40] to construct

state bounds of the discretized large-scale ODE-IVP system. Note that apart from imple-

menting interval arithmetic (IA) for constructing bounds, a mixed interval arithmetic/affine

arithmetic (IA/AA) approach was also implemented [142]. In addition to standard DI, a

modified DI approach with interval refinement operators[42] was also implemented for prob-

lems with prescribed bounding information known a priori.

Significant nonlinearity of the models poses a major challenge to efficiently construct-

ing tight bounds. In the tumor transport model, a problematic term that requires special

consideration is the solute source term that describes the transvascular mass transport of

nanocarriers:

ϕs = Lp
S

V
(pv − p)(1− σ)cv + P

S

V
(cv − c)

Pe

ePe − 1
. (4.2)

Here, pv is the vascular pressure (mm Hg), p is the interstitial fluid pressure (IFP) (mm Hg),

σ is the solute reflection coefficient, P is the vascular permeability of the solute through the

vascular wall (cm/sec), c is the solute concentration in the interstitial space of the tumor

(g/mL), Pe = Lp(pv − p)(1− σ)/P is the Péclet number representing the ratio of the rates

of convection to diffusion across the vascular wall.

The solute source term suffers from the dependency problem of IA (i.e., the overestima-

tion of interval operations due to the same variables being treated independently). The
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nonlinearity caused by the exponential terms significantly magnifies this overestimation. We

overcome the dependency problem using the following strategy. Since Pe appears in both

the numerator and denominator of the Pe
ePe−1

term in (4.2), without special consideration,

the dependency problem will lead to an appreciable overestimation of the bounds that will

be detrimental to the B&B procedure. To avoid this, we consider the function z(x) = x
ex−1

,

where we seek a real interval Z = [zL, zU ] such that z(x) ∈ Z for every x ∈ [PeL, P eU ], for

known values PeL and PeU . It is easy to prove that z is a monotonically decreasing function

of x, and therefore, the exact bounds on the range of z on the domain [PeL, P eU ], can be

derived as:

zL =
PeU

ePeU − 1
,

zU =
PeL

ePeL − 1
.

The definitions of these exact bounds are used throughout this work.

Bounds on the state variables of the tumor transport model were constructed based on

four approaches. The spatial domain was discretized into N = 100 nodes and the discrete-

time DI scheme [51] was used to construct the bounds through the simulation time (5 min)

with 21 time steps. The two physiological parameters are considered as decision variables

and bounded by an interval domain π = (Lp, K) ∈ Π = [7.5 × 10−7, 7.6 × 10−7] × [1.15 ×

10−6, 1.2× 10−6]. The numerical solutions and bounding results are illustrated in Figure 4.2

for the four bounding methods considered: IA and DI, IA and DI with interval refinement,

IA/AA and DI, and IA/AA and DI with interval refinement.

To compare the effectiveness of different bounding procedures, the volumes between the
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upper and lower bounds on the dimensionless concentration over the entire spatial and

time domain are quantified in Table 4.2 with time costs summarized in Table 4.2. It is

observed that the time costs for pure IA and mixed IA/AA methods are almost the same,

but the mixed IA/AA method can provide much tighter bounds. If taking the prescribed

physical bounds ĉ ∈ G = [0, 5] into account with the modified DI method, both pure IA

and mixed IA/AA methods can enhance the bounding results. However, the increased

computational costs are nearly 2 orders-of-magnitude more than standard DI due to the

curse of the dimensionality of the discretized systems. The dramatic burden in time cost

using the modified DI method overshadows any improvement of the bounding results in this

case. As indicated by the volumes in Table 4.2, the bounds constructed by mixed IA/AA and

standard DI methods are already relatively efficient (91.3 % tighter than the IA method, 62.4

% tighter than the IA (DI with G) method, and only 37.6 % larger than the IA/AA (DI with

G) method), and the modified DI will not contribute much to reducing the conservatism.

Therefore, in this study, we propose to use the mixed IA/AA and standard DI method as

the bounding routine for solving all global optimization problems.

Table 4.2: Volume and time cost for different bounding methods are reported in this table

Bounding Methods IA IA/AA IA (DI with G) IA/AA (DI with G)
Volume 0.6438 0.0560 0.1489 0.0407
Time (s) 0.5342 0.5312 47.21 47.67

4.2.3 Machine Learning Model

Machine learning regression is proposed to establish a computationally efficient artificial

neural network (ANN) as a surrogate for the mechanistic tumor transport model. The es-
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(a) (b)

Figure 4.2: Numerical solutions and bounding results for the tumor transport model are
plotted. (a) The spatial profiles of the dimensionless concentration ĉ in the tumor at t = 150s
are plotted for several values of π along with the state bounds derived from pure IA, IA
with modified DI, mixed IA/AA, and mixed IA/AA with modified DI. (b) The trajectories
of the solute concentration ĉ in the tumor at the position r̂ = 0.5 are plotted for several
values of π along with the state bounds derived from pure IA, IA with modified DI, mixed
IA/AA, and mixed IA/AA with modified DI. ĉ is approximated by corresponding numerical
solutions calculated by the explicit Euler method and state bounds are calculated by the
discrete-time DI method.
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tablished ANN models will then be used to solve the model validation parameter estimation

problems as formulated in (4.1). This approach is proposed to analyze the relative perfor-

mance and accuracy of ANN models to assess their applicability within the proposed frame-

work for drug and therapy design, as well as broader contexts of scientific machine learning in

cancer research and therapy. The work in this subsection was implemented in Julia[53] 1.6.1

running on an Intel Xeon W-2195 (18-core/32-thread) 2.3 GHz/4.3 GHz (base/turbo) CPU

with 64GB RAM running Windows 10 Pro. The inputs for the ANNs considered are the two

physiological parameters Lp and K, discussed previously. Since DEX treatment normalizes

the TME and, in turn, affects the transport phenomena in tumors, different ANN surrogate

models were constructed to represent the control and DEX treated tumors for greater accu-

racy. Furthermore, since the experimental data varied slightly across the 70 kDa nanocarrier

and 500 kDa nanocarrier experimental groups, separate ANN surrogate models were also

constructed for greater accuracy within these mouse groups. Thus, four distinct ANN sur-

rogates are considered: 70 kDa nanocarrier control case, 70 kDa nanocarrier 3 mg/kg and

30 mg/kg DEX treatment cases, 500 kDa nanocarrier control case, and 500 kDa nanocarrier

3mg/kg and 30 mg/kg DEX treatment cases. For each case, the tumor transport model was

parameterized by Lp and K. The discretized fluid and solute transport models were solved

using the method of lines via the stiff QNDF solver in DifferentialEquations.jl [143] for data

acquisition. Then, the spatially-averaged concentrations over a discrete time horizon of 5

minutes were taken as outputs.

A Sobol[144] sequence sampling protocol in Surrogates.jl [145] was used to generate a

data set of 106 points within the bounds described in Table A.9. Then, the data was scaled

using min-max normalization and randomly divided into a training set (70%) and test set

125



(30%). The ANN models were trained and constructed using Flux.jl [146, 147]. Architectures

of 2-4 hidden layers, 16-32 nodes per hidden layer, and several different activation functions

(sigmoid, tanh, gelu, and swish) were considered. Through tuning and comparison, a two-

hidden-layer model with 24 neurons each with the swish activation function was chosen for

use in this work. This ANN model is depicted in Figure 4.3.

swish

⋮ ⋮
⋮

Layer 1:
Parameters

Layer 2:
Hidden Layer

Layer 3:
Hidden Layer

Layer 4:
Accumulation

swish swish

swish

swish

swish

swish

swish

Figure 4.3: A fully connected feed-forward multilayer perceptron artificial neural network
surrogate model is illustrated and represents the model architecture used for the simplified
parameter estimation problems considered in this. The two node input layer (Layer 1) takes
as input the physiological parameters Lp and K. These inputs feed to the two hidden layers
using 24 nodes and the swish activation function. The outputs of the second hidden layer
(Layer 3) are then passed to the output layer (Layer 4) consisting of 21 nodes, representing
the temporally discretized accumulation profile.

Due to the relatively small size of the ANNs, the models were trained using a combination

of batch and mini-batch gradient descent with a mini-batch size of 10% of the training data

set. The Adam optimizer was used for training with the standard mean-squared-error (MSE)

loss function. The model was trained for 50 epochs using an early stopping criteria, with a

MSE tolerance of 10−7. The learning rate was kept constant at 10−3. Following training, the

MSE and mean relative percent error were evaluated on the test set. This training protocol
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was found to be effective as indicated by the time and performance metrics listed in Table

A.10.

In previous studies, recurrent neural network model architectures are utilized as a typical

method to simulate dynamical systems by directly approximating the numerical integration

function as opposed to the entire numerical integration procedure [148]. This method was not

employed in this study as it would necessitate an iterative loop in the objective function (due

to the feedback of information of earlier-time states) to create the concentration profile for

each function evaluation. Such a process would introduce additional complexity that would

negatively impact the solution times when included in deterministic global optimization

routines used in this work.

4.2.4 Simplified Parameter Estimation Problem

In this section, a simplified parameter estimation problem is proposed using ANN surrogate

models introduced in Section 4.2.3. Similar to (4.1), we seek to minimize the SSE between

the average concentration predicted by the ANN surrogate model and experimental data

over the entire time horizon, with inequality constraints on superficial IFP:

min
π∈Π

n∑
i=1

(
ĉANN
avg,i (π)− ĉdataavg (ti)

)2
(4.3)

s.t. p̂peri(π) ≤ p̂peri,max

p̂peri(π) ≥ p̂peri,min,
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where ĉANN
avg,i represents the dimensionless spatial average nanocarrier concentration at discrete

time node i calculated from the ANN model. The inequality constraints on the superficial

IFP may be simplified and reformulated as equivalent inequalities that are linear in the opti-

mization variables (model parameters) Lp and K utilizing the closed-form analytical solution

for the IFP profile from Baxter and Jain [129]. This simplifies the problem significantly and,

in turn, reduces the computational complexity of solving (4.3). The details of how this is

done can be found in Appendix A.2.2.

The optimization formulation (4.3) can then be reformulated as:

min
π∈Π

n∑
i=1

(
ĉANN
avg,i (π)− ĉdataavg (ti)

)2
(4.4)

s.t. π2 ≤ ζmaxπ1

π2 ≥ ζminπ1,

where ζmax and ζmin are listed in Table 4.3 and are calculated based on the physical bounds

on the superficial IFP listed in Table 4.1. The calculation procedure is described in Appendix

A.2.2.

Table 4.3: The coefficients for the constraints on the superficial (peripheral) IFP of control,
3 mg/kg, and 30 mg/kg DEX treatment case in formulation (4.3) are tabulated.

Dose Control 3 mg/kg 30 mg/kg
ζmin (cm) 0.2855 0.7355 1.5898
ζmax (cm) 0.3967 1.0577 2.4447
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4.2.5 TME-Normalizing Therapy Design for Dose Selection

In this section, we propose a method for optimal TME-normalizing therapy design for dose

selection with the overall objective of improving transport and accumulation of anticancer

drugs within the tumor interstitium. To do so, we investigate the experimental effects of

different doses of pretreatment DEX, and utilize empirical correlations for optimal decision-

making. Empirical correlations are required to construct a mathematical relationship be-

tween DEX dose and two important physiological parameters: vascular hydraulic conduc-

tivity Lp and interstitial hydraulic conductivity K. The purpose of this study is to propose

a systematical mathematical methodology for TME-normalizing therapy design.

Based on the preclinical data obtained from Martin et al. [6], we utilize nonlinear regres-

sion with a rational model to establish the following relationships:

f r
Lp
(x) =

−7.519× 10−8x2 + 3.355× 10−6x+ 6.944× 10−7

x+ 0.6175
, (4.5)

f r
K(x) =

−2.458× 10−8x2 + 2.524× 10−6x+ 2.916× 10−7

x+ 0.7816
, (4.6)

where x denotes pretreatment DEX dose (mg/kg), and the functions f r
Lp

and f r
K represent

the values of Lp and K, respectively, following treatment with DEX, as predicted by the

rational regression model.

Since the data obtained from Martin et al. [6] are limited to the three pretreatment DEX

doses, we also wish to explore different dose-dependent relationships that could exist with

other data sets. The purpose of this is to demonstrate the applicability of our proposed

method with fictitious experimental data exhibiting complicated dose-dependent treatment
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relationships for pretreatment DEX doses between the actual data of 3 mg/kg and 30 mg/kg

with dosages set at 10 mg/kg, 15 mg/kg, 20 mg/kg and 25 mg/kg.

The original data, fictitious data, and corresponding polynomial regression models are

plotted in Figure 4.4. The regression equations are given by:

fp
Lp
(x) =− 6.23× 10−13x5 − 5.96× 10−11x4 + 5.61× 10−9x3

− 1.272× 10−7x2 + 8.797× 10−7x+ 1.131× 10−6, (4.7)

fp
K(x) =1.139× 10−11x5 − 8.389× 10−10x4 + 2.183× 10−8x3

− 2.421× 10−7x2 + 1.093× 10−6x+ 3.798× 10−7, (4.8)

where x is the DEX dose as before, and fp
Lp

and fp
K represent the values of Lp and K,

respectively, following treatment with DEX, as predicted by the polynomial regression model.

(a) (b)

Figure 4.4: Experimental data and and corresponding regression models for (4.7) and (4.8)
are respectively plotted in (a) Lp versus dose; (b) K versus dose of dexamethasone.
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The TME-normalizing therapy design problem is formulated as the following NLP:

max
x∈X

ĉavg

(
tf ,
(
f j
Lp
(x), f j

K(x)
)
, dm

)
, (4.9)

with j ∈ {r, p}. The objective is to seek an optimal dose that maximizes the spatial average

nanocarrier concentration ĉavg in the tumor interstitium at tf = 5 min. The function ĉavg

is evaluated by the numerical solution of the solute transport model, and the correlations

between hydraulic conductivities and DEX doses are established as (4.5) and (4.6) for the

existing data, and (4.7) and (4.8) for the fictitious data.

4.2.6 Drug Size Design

In this section, the practicability of the tumor transport model for drug size design problems

is addressed. After the optimal dose of pretreatment DEX is determined and a patient’s

response to that treatment is quantified, an anticancer nanocarrier is designed that results

in an optimal delivery to the tumor interstitium. For example, a nanoparticle size can be

tuned for a patient-specific tumor pathophysiology.

There are two physiological parameters directly related to nanocarrier size dm: diffusion

coefficient D and half-life circulation time kd. The previous experimental results for their

correlations are listed in Table A.11. Nonlinear regression models are established (power
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model for D versus dm; Gaussian model for kd versus dm) for these quantities as:

fD(dm) = 1.981× 10−6 · d−1.157
m + 2.221× 10−8,

fkd(dm) = 1081 exp

(
−
(
dm + 16.63

84.82

)2
)

+ 517.4 exp

(
−
(
dm − 65.61

996.6

)2
)
,

where fD and fkd represent the values of D and kd, respectively.

After DEX pretreatment, it is desirable to determine an optimal nanocarrier size that can

maximize the drug concentration in the interstitial space of the tumor. Alteration in pharma-

cokinetics, such as distribution and excretion, can have a substantial influence on achieving

the desired therapeutic concentration of a particular nanocarrier. A very high concentration

may result in side effects or toxicity. A very low concentration will be ineffective. In this

situation, an optimal therapy requires a strict guarantee of some safety/performance specifi-

cations. The drug size design problem is formulated as a PDE-constrained NLP to account

for these potential requirements:

max
dm∈Z

ĉavg(tf ,π, dm) (4.10)

s.t. ĉperi(tf ,π, dm) ≤ λ1

ĉperi(tf ,π, dm) ≥ λ2,

where tf is the final time (tf = 5 min), ĉperi is the dimensionless nanocarrier concentration

in the superficial area of tumor (g/mL). For this work, we use λ1 = 4.5 as the threshold

for the safety constraint, which is double the periphery nanocarrier concentration for the 3

mg/kg DEX treatment case. Further, we use λ2 = 3.6 as the performance constraint, which
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is chosen based on periphery nanocarrier concentration for the control case. Note that these

thresholds are merely chosen for demonstrating the drug size design approach and how to

deal with the situation that a design is implemented under potential performance/safety

requirements.

Furthermore, we propose a therapy design strategy that simultaneously seeks an optimal

dose of DEX and an optimal nanocarrier size that maximizes the nanocarrier concentration

accumulation inside the tumor interstitial space:

max
x∈X,dm∈Z

ĉavg

(
tf ,
(
f j
Lp
(x), f j

K(x)
)
, dm

)
(4.11)

s.t. ĉperi

(
tf ,
(
f j
Lp
(x), f j

K(x)
)
, dm

)
≤ λ1

ĉperi

(
tf ,
(
f j
Lp
(x), f j

K(x)
)
, dm

)
≥ λ2,

with j ∈ {r, p}. This formulation provides an alternative methodology for neoadjuvant ther-

apy that could identify a possible therapy and nanocarrier size combination that leads to

improved transport and accumulation over the individual results determined by the sequen-

tial design approach.

ANN surrogate models are proposed for the simultaneous design problem (4.11) to reduce

the computational burden over the PDE-constrained problem. To accomplish this, two ANNs

are established each with Lp, K, and dm as inputs. The respective ANNs each have a single

output ĉANN
avg and ĉANN

peri . To train the ANNs, a Sobol[144] sequence sampling method was

again used to create a 106 point data set on the domain (Lp,K, dm) ∈ [5× 10−7, 5× 10−6]×

[5 × 10−7, 5 × 10−6] × [10, 60]. Consistent with the parameter estimation of ANN models,

the data set was scaled using a min-max normalization and divided randomly into training
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(70%) and validation (30%) sets. Training was performed using Flux.jl with the Adam

optimizer with a learning rate of 10−4. Each ANN model for ĉANN
avg and ĉANN

peri have two hidden

layers with 12 neurons using the tanh activation function. The models were trained using an

equivalent protocol to that described in Section 4.2.3. The benchmarks for data generation,

training time, and performance are shown in Table A.12.

The formulation with ANN models for the simultaneous design approach can be expressed

as:

max
x∈X,dm∈Z

ĉANN
avg

((
f j
Lp
(x), f j

K(x)
)
, dm

)
(4.12)

s.t. ĉANN
peri

((
f j
Lp
(x), f j

K(x)
)
, dm

)
≤ λ1

ĉANN
peri

((
f j
Lp
(x), f j

K(x)
)
, dm

)
≥ λ2.

4.2.7 Settings for Solving Optimization Problems

The settings used in this study for the numerical methods and software packages are discussed

in this section. For the parameter estimation, TME-normalizing therapy design, and drug

size design problems, the spatial domain for both fluid transport and solute transport models

are discretized into N = 100 nodes. The simulation time horizon contains 21 time nodes (5

min). Based on the superficial region (around 0.07 mm from surface) [149] and the average

tumor diameter (0.6 - 1.1 cm) in the DEX treatment research [6], we choose n = 99 to

account for the superficial region of the tumor. The physiological parameters used in the

tumor transport model are provided in Table A.13. The parameter estimation, drug size

design, and TME-normalizing therapy design problems are all solved to global optimality
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using the EAGO[52] v0.6.1 solver via JuMP v0.21.4 [96] in the Julia programming language

[53]. Custom bounding routines with the mixed IA/AA method and standard DI are utilized

in the B&B algorithm for solving the parameter estimation and drug size design problems.

For the parameter estimation problems, the absolute global convergence tolerance is set as

10−6 and the relative global convergence tolerance is set as 10−1 for each case. For the

drug size design and TME-normalizing therapy design problems, the absolute convergence

tolerance is set as 10−6, and the relative convergence tolerance set as 10−2. Each problem was

run on a personal workstation with an Intel Xeon E3-1270v5 4-core/8-thread CPU operating

at 3.60GHz/4.00GHz (base/turbo) frequency and 32GB ECC RAM running Windows 10

Version 2004.

4.3 Results and Discussion

4.3.1 Global Optimization Results for Model Validation

In this section, the results for model validation using global optimization that verifies TME-

normalization process by parameter estimation problems are discussed. Though, global op-

timization method is far more difficult than finding a local solution, this approach provides

the strongest guarantee for preventing erroneous models that invalidates proposed mecha-

nisms in cases where poor suboptimal fits are obtained by local optimization algorithms.

The global optimal solutions obtained from the parameter estimation problems for different

doses of DEX treatment cases are listed in Table 4.4 for each formulation with the original

mechanistic tumor transport model (4.1) as well as the ANN surrogate model (4.4). Note
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that the dose selection for the experiments was based on previous work, which confirmed 3

mg/kg DEX as the lowest dose to reduce IFP. Additionally, this dose is similar to that used

in the clinical trials of CDDP/m (NCT02043288) [150]. The global solutions found for both

the mechanistic model and ANN model are very close to one another, with the relative error

for each case being within 2.5%. This certifies the accuracy of the ANN surrogate models

and the validity of the inequality constraints simplifications. In Martin et al. [6], we obtained

local optima for the parameter estimation problems. In that work, it was found that the

estimated Lp value for 3 mg/kg DEX treatment case with 500 kDa nanocarrier injection

exhibited a decreasing trend from the control case, whereas in this study we found an in-

creasing trend. This doesn’t represent a contradiction as the parameter estimation problems

differ significantly in that they consider differing simulation time horizons. Additionally, in

the case of Martin et al. [6], no inequality constraints on the IFP were considered.

Table 4.4: Global optima for parameter estimation problems using the mechanistic model
(4.1) and the ANN model (4.4) are tabulated here. It is noted that the solutions obtained for
the ANN surrogate model are very close to those obtained for the mechanistic model. This
is to be expected since a high-degree of accuracy of the ANN was obtained when training.
The units for L∗

p is cm/mm Hg-sec and for K∗ is cm2/mm Hg-sec.

Dextran molecular weight 70 kDa
Dose Control 3 mg/kg 30 mg/kg

Peff (cm/sec) 9.60× 10−7 4.61× 10−6 2.80× 10−6

L∗
p - mechanistic model 8.51× 10−7 2.80× 10−6 1.12× 10−6

L∗
p - ANN model 8.39× 10−7 2.77× 10−6 1.12× 10−6

K∗ - mechanistic model 3.35× 10−7 2.03× 10−6 1.80× 10−6

K∗ - ANN model 3.32× 10−7 2.04× 10−6 1.78× 10−6

Dextran molecular weight 500 kDa
Dose Control 3 mg/kg 30 mg/kg

Peff (cm/sec) 8.18× 10−7 4.30× 10−6 1.62× 10−6

L∗
p - mechanistic model 8.62× 10−7 2.22× 10−6 7.50× 10−7

L∗
p - ANN model 8.43× 10−7 2.22× 10−6 7.50× 10−7

K∗ - mechanistic model 3.34× 10−7 2.34× 10−6 1.21× 10−6

K∗ - ANN model 3.29× 10−7 2.36× 10−6 1.20× 10−6
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The time costs for each model are reported in Table 4.5. For DEX treatment cases, the

parameter estimation problems with the mechanistic model and the proposed customized

bounding routines are extremely computationally expensive. Despite using the most efficient

global bounding method considered, these problems still required hours or even days to solve.

In contrast, the parameter estimation problems for DEX treatment cases using the ANN

surrogate models can be solved within one minute. Even accounting for the time costs of

generating data and training, the ANN surrogate models significantly reduce the burden of

solving the parameter estimation problems to global optimality. Interestingly, it takes about

an order-of-magnitude longer to solve the parameter estimation problems for the control

cases with ANN models versus the mechanistic models. In these cases, it is observed that

the lower-bounding problems solved for the ANN problems furnish weaker bounds than for

the mechanistic modeling case resulting in slower convergence of the B&B algorithm.

Table 4.5: The computational time costs are tabulated for the parameter estimation problems
using the mechanistic model (4.1) and the ANN model (4.4). Barring the control case, solving
the PDE-constrained optimization problem (4.1) requires significantly more time than the
the problem with the ANN (4.4), which does not account for the ANN training time.

Dextran molecular weight 70 kDa 500 kDa
Dose Control 3 mg/kg 30 mg/kg Control 3 mg/kg 30 mg/kg

Mechanistic model (s) 8.5 169558.3 238732.2 8.1 398792.2 50368.1
ANN model (s) 97.9 7.3 25.8 23.2 17.6 18.8

Interstitial Fluid Pressure and Velocity Profiles

Previous studies showed that an important barrier to drug delivery in the TME is the elevated

IFP resulting in reduced pressure gradients across the vessel wall [128]. This is due to the

interstitial hypertension phenomenon [123] caused by leaky blood vessels and the lack of

functional lymphatic vessels, which drain excess fluid from tumor tissue. TME-normalizing

137



therapy can repair the abnormal vasculature and reduce IFP, resulting in a higher pressure

gradient for higher transvascular and interstitial fluid flow. Thus, we quantified the IFP

with different doses of DEX treatment to characterize the TME normalization process. The

dimensionless IFP profiles as functions of dimensionless radial position with respect the

optimal solutions (i.e., from Section 4.3.1) are illustrated in Figure 4.5(a). The IFP profiles

tend to reach a steady-state pressure pss at the tumor center where IFP equals the vascular

pressure pv. However, in the periphery, the IFP rapidly decreases with increasing distance

from the tumor center. This finding is consistent with previous mathematical models [129]

and experimental findings [128]. Thus, the IFP profiles indicate that the extravasation of fluid

from blood vessels is extremely slow near the center, whereas it is highest at the periphery due

to lower IFP leading to an increased transvascular pressure gradient. In addition, the model

confirms that DEX reduces the spatially-averaged IFP and therefore establishes a more

advantageous transvascular pressure gradient that contributes to enhanced transvascular

fluid flow [6], that will further affect the interstitial fluid transport.

The interstitial fluid velocity (IFV) is generated from the interior IFP gradient by Darcy’s

law (introduced in Appendix A.2.1). To investigate the effects of TME normalization on in-

terstitial fluid transport, we quantified the normalized IFV (û = uR/(K(pss − p∞))) profiles

for different doses of DEX. A positive value of IFV indicates that the interstitial fluid flow is

from the center to the periphery of the tumor. As illustrated in Figure 4.5(b), we observed

that the normalized IFV is very low around the center and increases towards the periph-

ery where there is the highest flow rate. The dimensionless parameter α = R
√
LpS/KV

(introduced in Appendix A.2.1), which is a measure of the ratio of interstitial to vascular

resistances of fluid flow, represents the gradient of increase of normalized IFV. Summarily, a
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Figure 4.5: Radial dose-dependent interstitial fluid pressure and velocity profiles. (a)
Mathematical model-generated profiles of dimensionless interstitial fluid pressure (IFP)
p̂ = (p − p∞)/(pss − p∞) versus the dimensionless tumor radial position r̂ from vessel per-
meability data collected using fluorescently-labelled 500 kDa dextran in control tumors and
tumors in mice treated with 3 mg/kg and 30 mg/kg dexamethasone (DEX) daily for four
days are presented. Spatially-averaged IFP is reduced with DEX treatment. The interior bar
graph illustrates the fraction of tumor volume that has a favorable transvascular pressure
gradient (i.e. p̂ ≤ 0.9933). This IFP threshold is determined by the region with r̂ ≥ 0.6 for
the 3 mg/kg DEX treatment case, which is taken as the volume with favorable transvascular
pressure gradient. (b) Normalized interstitial fluid velocities (IFV) û = uR/(K(pss − p∞))
are plotted versus dimensionless tumor radial position r̂. Greater IFVs are achieved deeper
in the tumor interstitium following DEX treatment with a reduction in velocity nearest the
tumor periphery. This results in increased interstitial transport of nanocarriers.

larger value for α indicates a steeper increase in the normalized IFV profile with increasing

distance from tumor center. The model-predicted α values for the control, 3 mg/kg DEX

treatment, and 30 mg/kg DEX treatment cases from the 500 kDa dextran experimental

data are 22.521, 13.756 and 11.219, respectively. Thus, compared to the control, the treated

cases have smaller values of α that indicate a gradual increase in normalized IFV from the

center tumor over a larger fraction of tumor volume. Note that the normalized IFV neglects

the influence of interstitial hydraulic conductivity K. However, K is larger by an order of

magnitude for DEX treated cases than the control case (Table 4.4). Thus, the actual IFV for
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DEX treated cases is always higher than the control case. Although, we reported in Martin

et al. [6] that DEX treatment increases the perfused vascular density, we assumed in the

current study that the tumor radius R and vascular density S/V do not vary significantly

between each case. Thus, a reduction in the ratio of the vascular hydraulic conductivity to

the interstitial hydraulic conductivity (i.e., Lp/K) is the major reason for a reduction in α. A

smaller value of Lp/K indicates a larger proportion of interstitial fluid transport. Therefore,

a less steep normalized IFV profile resulting from a smaller α caused by a reduction of Lp/K

implies enhanced interstitial fluid transport by vascular and ECM normalization.

Solute Concentration Profiles

We next sought to determine the drug distribution within tumors by obtaining solute con-

centration profiles from the IFP and IFV profiles. The IFP gradient induces transvascular

convective transport, the IFV profiles reflect interstitial convective transport, and the so-

lute concentration gradient induces interstitial diffusive transport. Figure 4.6 illustrates the

model-predicted solute concentration profiles with respect to dimensionless tumor radial po-

sition r̂ for the 500 kDa dextran experimental data, with the vascular concentration following

an exponential decay post-administration.

As illustrated in Figure 4.6(a), the interstitial concentration at 1 h post-administration

of the dextran is equal to the normal tissue concentration (equals 0 in dimensionless form) at

the periphery and quickly increases to a peak in the peripheral region where there is a higher

transvascular pressure gradient, which significantly enhances transcapillary convective solute

transfer. The fraction of tumor volume that has a higher transvascular pressure gradient is

graphed for each treatment group in the inset of Figure 4.5(a). Simultaneously, the higher
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Figure 4.6: Radial and temporal dose-dependent solute concentration profiles. Interstitial
concentrations ĉ of 500 kDa dextran are plotted versus dimensionless tumor radial position
r̂ for a vascular concentration with a half-life of around 21 h for the control, 3 mg/kg
DEX treatment, and 30 mg/kg DEX treatment cases at (a) 1 h; (b) 24 h; (c) 72 h post-
administration. (d) Spatially-averaged interstitial concentrations ĉavg are plotted versus
time. After DEX treatment, the overall solute concentration accumulation is increased inside
the tumor. The 3 mg/kg DEX treatment case results in the highest overall concentration
accumulation.

IFV in the peripheral region causes a higher interstitial fluid flux that carries the solute

outwards to the periphery. As a result, the solutes accumulate and reach peak concentration

near the periphery, then decrease to zero at around r̂ = 0.8 for the control case and r̂ = 0.6

for the 3 mg/kg and 30 mg/kg DEX treatment cases. Indeed, the region with favorable

transvascular pressure gradient for DEX treated cases is larger than the control case (Figure

4.5(a)). This pressure gradient leads to a enhanced convective transvascular transport that

carries solutes into the interstitial space of a larger proportion of the tumor. In other words,

141



the region with higher solute accumulation occurs over a longer fraction of tumor radius for

the DEX treatment cases compared to control.

As presented in Figure 4.6(b), the interstitial concentration profiles for all treatment

cases have higher peaks at 24 h than 1 h. The concentration peaks for all cases at 72

h (Figure 4.6(c)) are lower than 24 h but higher than 1 h. This is because the vascular

concentration decays at 72 h compared with 24 h so that there are fewer nanocarriers to

be carried by transvascular flow into the interstitial space. In addition, we found that the

interstitial concentration profiles at 72 h become flatter than 24 h with a higher concentration

retained towards the middle of the tumors, such as at r̂ = 0.5. This is caused by the

slower interstitial diffusion generated from the concentration gradient that gradually transfers

nanocarriers from the concentration peak in the periphery towards the tumor center, where

the concentration of nanocarriers is near zero. The transvascular flow is limited at 72 h due to

the systemic clearance of circulating nanocarriers, but the diffusion caused by concentration

gradient becomes more evident in the flatter concentration profiles.

As illustrated in Figure 4.6(d), the spatially-averaged interstitial concentration rises to a

peak and stays steady after that. Although the vascular concentration of nanocarriers decays

exponentially, the spatially-averaged interstitial concentrations decrease slowly after reaching

the peak. The concentration profiles at the time with respect to the highest spatially-

averaged concentration accumulation are illustrated in Figure A.3. We observed that the

highest spatially-averaged concentration occurs at 38.8 h, 34.2 h and 53.9 h for the control,

3 mg/kg and 30 mg/kg DEX treatment cases, respectively. In general, the nanocarriers

accumulate to a peak concentration in the first dozens of hours and then decrease with a

slow rate.
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The spatially-averaged concentrations at 72 h are 84%, 92% and 99% of their highest

concentrations for the control, 3 mg/kg and 30 mg/kg DEX treatment cases, respectively

(illustrated in Figure A.4). We found that the spatially-averaged concentrations of the

500 kDa dextran in control tumors only decrease by 16% in 33.2 h after reaching highest

concentration, indicating a retention effect. The 3 mg/kg and 30 mg/kg DEX treatments

both enhance this retention effect (92% and 99% are higher than the control case). Though

the 3 mg/kg DEX treatment does not result in the highest percentage of retention at 72

h (92% ¡ 99%), it has the highest spatially-averaged concentration throughout the whole

time horizon. In contrast, the control case has the lowest percentage and also the lowest

spatially-averaged concentration. Thus, these findings demonstrate that DEX treatment not

only increases permeability [6] but also retention towards promoting the EPR effect.

We further investigated the relation between the solute concentration distribution over

time and dose of DEX treatment. The concentration profile for the 30 mg/kg DEX treat-

ment case is closer to the control case at 1 h post-administration, whereas it is closer to

the 3 mg/kg DEX treatment case at 72 h post-administration. At 1 h post-administration,

there are many nanocarriers in perfused vessels and they are carried into the tumor tissue

by transvascular flow. A larger vascular hydraulic conductivity Lp indicates higher transvas-

cular flow rate. However, Lp for 30 mg/kg DEX treatment case is closer to the control case

(Table 4.4). Although the vessels are normalized after 30 mg/kg DEX treatment, there is too

much pericyte coverage that reduces the vessel wall pore size [6] thereby limiting nanocarrier

extravasation at 1 h post-administration. In contrast, the extravasation of nanocarriers is

trivial at 72 h due to the decay of its concentration in the vasculature and the interstitial

concentration profile has already reached a peak and decreased. Thus, the interstitial diffu-
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sive transport becomes more prominent. Since both 3 mg/kg and 30 mg/kg DEX treatment

similarly reduce hyaluronan levels and tissue stiffness [6], resulting in much larger interstitial

hydraulic conductivity K than the control case (Table 4.4), the enhanced interstitial diffu-

sive transport results in the observed profiles. In addition, we found that the 3 mg/kg DEX

treatment case results in a much higher overall nanocarrier concentration accumulation in

the tumor tissue than that of the control and the 30 mg/kg cases at all time nodes (1 h, 24

h, and 72 h), indicating increased delivery of anticancer nanocarriers leading to improved

efficacy as demonstrated in Martin et al. [6]. Given that the 3 mg/kg DEX treatment lead

to the highest nanocarrier accumulation, we next investigated the convective and diffusive

transvascular fluxes separately to understand how DEX increased accumulation.

144



4.3.2 Dexamethasone Increases Convective Transvascular Flux in

Tumors

1.5
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Figure 4.7: Dose-dependant transvascular convective and diffusive flux profiles. The
transvascular flux profiles of 500 kDa dextran over the dimensionless tumor radial position
r̂ one-hour post-administration are plotted for the (a) control; (b) 3 mg/kg dexamethasone
(DEX) treatment; and (c) 30 mg/kg DEX treatment cases. (d) The spatially-averaged con-
vective and diffusive fluxes at one-hour post-administration for different doses of DEX are
presented in this bar plot. General trends show greatest convective flux at the tumor pe-
riphery and greatest diffusive flux deeper at the tumor center. Following DEX treatment,
convection accounts for a greater proportion of the spatially-averaged transvascular fluxes,
demonstrating how TME normalization induces a larger transvascular pressure gradient that
is advantageous for improving nanocarrier delivery in tumors. The 3 mg/kg DEX treatment
induces highest convective flux, indicating that a moderate dose of DEX is more advanta-
geous for enhancing convective transport.

After finding the interstitial concentration profiles that dictate enhanced nanocarrier dis-

tribution and accumulation with DEX treatment, we hypothesized that the difference in

concentrations between the control and DEX treatment cases depends on the relative con-
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tributions of convective and diffusive transvascular flux. Previous studies indicated that

the main mechanism of transvascular transport is diffusion becaues elevated IFP in the

TME abrogated the tranvascular pressure gradient [115]. We reasoned that because DEX

reduces IFP it could enhance convective flux, which leads to more rapid transport than

diffusive flux. However, the relative contributions from convection and diffusion through-

out the entire space of a tumor have never been studied before, because recently developed

global optimization techniques have not been applied to the parameter estimation problem

to determine the hydraulic conductivity values. We first quantified the model-predicted

transvascular convective and diffusive fluxes. As described in (4.2), the convective flux is

calculated by Lp
S
V
(pv − p)(1− σ)cv, and the diffusive flux is calculated by P S

V
(cv − c) Pe

ePe−1
.

The relative contributions from convective and diffusive flux to the spatially-averaged con-

centration profile with time are illustrated in Figure S4, we found that the convective flux

contribution for the DEX treatment case takes a larger proportion throughout the time hori-

zon compared with the control case. This indicates that the normalized TME after DEX

treatment is more advantageous for convective transport. To better understand the effects of

TME normalization on transvascular transport, we sought to determine the spatial depen-

dence of model-predicted diffusive and convective fluxes in tumors. In Martin et al. [6], we

performed continuous intravital microscopy on mice for one hour post-administration and

investigated nanocarrier microdistribution. Here, we quantified the spatial convective and

diffusive fluxes at one hour post-administration to study their distribution in tumors. As

shown in Figure 4.7(a), in the region with r̂ < 0.8, the convective flux is near zero while

the diffusion is the main mode of transport. This is because IFP is close to the microvascu-

lar pressure (Figure 4.5(a)), indicating no driving force for convection. Diffusion, although
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dominant, is small, so there is not much transvascular flux in the tumor center. In contrast,

in the region with r̂ > 0.8, there is more convective than diffusive flux, with the latter being

near-zero. This convective flux at the periphery is 22-fold greater than the diffusive flux

at the center. The reason for this is that the IFP in the convection-dominated region is

low (Figure 4.5(a)), inducing a high transvascular convective flux driven by a large pressure

gradient. Accordingly, the convective transport increases interstitial concentration thereby

lessening the concentration gradient and reducing the driving force for diffusion. In addition,

the Pe, which represents the ratio of rates of transvascular convection to diffusion, is very

large in the periphery, reflecting the extremely small diffusive flux. Thus, as observed in

Figure 4.7(a), the diffusive flux in the periphery is near zero. As a result, we found that

there is a convection-dominated region and a diffusion-dominated region and the maximum

rate of convective flux is order of magnitude greater than the maximum diffusive flux.

We next investigated the effect of TME normalization on the spatial distribution of these

fluxes. As illustrated in Figure 4.7(b), the maximum convective flux at the periphery for 3

mg/kg DEX is 48-fold greater than the maximum diffusive flux, which occurs in the tumor

center. Since the the maximum diffusive flux is close to the control case, this indicates that

convection is greatly enhanced and responsible for a larger proportion of total transvascular

transport in the normalized TME after treatment with 3 mg/kg DEX. In contrast, in Figure

4.7(c), the maximum convective flux for 30 mg/kg DEX is 22-fold greater than the maximum

diffusive flux, which is the comparable to that of the control case. In fact, by comparing the

values of maximum convective flux at the periphery, we found that the flux for 30 mg/kg DEX

is 14.3% less than the control case. The reason is that the vascular hydraulic conductivity

Lp for with 30 mg/kg DEX treatment is 13% less than the control case (Table 4.4). This
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is because DEX normalizes the vessels, increases vessel maturity, and thereby reduces vessel

leakiness. As a result, the vascular hydraulic conductivity reduces, leading to the lower

maximum convective flux at the tumor periphery. However, these findings do not indicate

that the convective flux for 30 mg/kg DEX reduces throughout the entire tumor compared

to control. This is because we also found that the volume of convection-dominated region is

much larger for DEX treatment cases. As illustrated in Figure 4.7(b) and Figure 4.7(c), the

convective flux for both 3 and 30 mg/kg DEX treatment cases begins to increase at around

r̂ = 0.6 versus r̂ = 0.8 for the control case, indicating a larger convection-dominated region.

These findings are illustrated in Figure 4.8, which shows a schematic of cross sections of the

tumors for the control case and 3 mg/kg DEX treatment case. We found that the tumor

volume fraction of convection-dominated region for the control case is only 49%, whereas

this jumps to 78% for a tumor treated with DEX. This represents a 61% increase in the

volume fraction of the tumor that is dominated by convective transport as a result of TME

normalization with DEX treatment. Note that the transvascular fluxes in Figure 4.8 are

scaled based on the 70 kDa dextran, and the corresponding convective and diffusive flux

profiles are presented in the Figure S5. The findings using the 70 kDa dextran to determine

the convection- and diffusion-dominated regions are consistent with those using the 500 kDa

dextran, as shown in Figure 4.7. Both doses almost equally increase volume of convection-

dominated region, but the 3 mg/kg DEX is superior because it also significantly increases

the maximum convective flux.

To quantify the contributions of convection and diffusion throughout the tumor, we

assessed the spatially-averaged transvascular convective and diffusive fluxes and presented

them in a bar plot as illustrated in Figure 4.7(d). We observed a 360% increase in convective
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flux with 3 mg/kg DEX and a 80% increase with 30 mg/kg DEX compared to the control

case. This indicates that DEX dose has a significant impact on convective transport. It turns

out that a moderate dose of DEX greatly enhances convection. Excess DEX still enhances

convective transport, but much less effectively. The reason is that the vascular hydraulic

conductivity Lp for 30 mg/kg DEX is much less than 3 mg/kg DEX (Table 4.4). In addition,

we found that higher dose of DEX treatment leads to lower spatially-averaged diffusive flux

(20% decrease with 3 mg/kg DEX and 65% decrease with 30 mg/kg DEX compared to con-

trol). One reason is that the elevated convective flux with DEX treatment results in a much

higher interstitial concentration. Thus, the driving force from transvascular concentration

gradient decreases, leading to a lower diffusive flux. In addition, we reported in Martin et al.

[6] [6] that the vessel wall pore size is smaller with 30 mg/kg DEX treatment because vascular

normalization reduces vessel leakiness by shrinking vessel wall pores. Accordingly, the diffu-

sive hindrance (introduced in Appendix A.2.1) is also smaller. Note that a smaller diffusive

hindrance represents higher impairment to diffusion[121]. Thus, 30 mg/kg DEX treatment

results in a lower diffusive flux. In conclusion, these results demonstrate that DEX increases

the accumulation of nanocarriers in tumors by increasing the convective transvascular flux,

but the dose of TME normalization treatment should be titrated to avoid reducing vessel

wall pore sizes that limit the benefit to enhanced convection.
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Convective transvascular flux Diffusive transvascular flux

Convective interstitial flux Diffusive interstitial flux
Perfuse vessel

Control 3 mg/kg DEX treatment

Figure 4.8: Cross sections of the spherical tumor are illustrated in this schematic for the
control (left) and 3 mg/kg DEX treatment (right) cases. Perfuse vessels are more abundant
and have a larger average diameter following DEX treatment versus the control case; a re-
sult of normalizing the tumor microenvironment. The outer orange shaded sections represent
the convection-dominated region with significant pressure gradients resulting in predominant
convective transvascular flux (yellow arrows). The inner blue shaded sections represent the
diffusion-dominated region with almost no pressure gradient (highest interstitial fluid pres-
sure (IFP)) resulting in predominant diffusive transvascular flux (light blue arrows). The
blue region is much larger for the control case with the demarcation (orange dashed curves)
between regions occurring at r̂ = 0.8, whereas the demarcation between regions for the DEX
treatment case is at r̂ = 0.6. Convective transvascular flux is significantly enhanced after
DEX treatment. The orange arrows pointing radially outward and blue arrows pointing
radially inward represent, respectively, the nanocarrier convective and diffusive flux in the
tumor interstitium. The direction of interstitial convective transport of nanocarriers is out-
ward towards the periphery, caused by the IFP gradient, while the direction of interstitial
diffusive transport of nanocarriers is inward towards the center, caused by the concentration
gradient. The overall interstitial fluxes are significantly greater following DEX treatment.
The interstitial fluxes and transvascular fluxes are illustrated based on the global optimiza-
tion results for 13 nm nanocarrier experiments. Note that the interstitial and transvascular
flux arrow lengths are each normalized to their own relevant bases for ease of illustration and
should not be compared to one another. Also note that since interstitial fluxes are spatially
dependent, the arrows represent spatially-averaged fluxes.
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4.3.3 Global Optimization Reveals Dose of Dexamethasone Max-

imizing Nanocarrier Accumulation

Given that a moderate dose of DEX is superior to no DEX and a high dose of DEX for

enhancing transvascular transport, we hypothesized that there is an optimal dose of DEX

that can maximize nanocarrier or antibody concentration accumulation. As indicated by

the previous preclinical study [6], DEX as a drug for TME normalization is both (1) an

antiangiogenic agent that can normalize tumor vessels and (2) a cancer-associated fibroblast

reprogramming agent that reduces ECM levels leading to decompressed tumor vessels. The

functions of (1) and (2) are associated with vascular hydraulic conductivity Lp and intersti-

tial hydraulic conductivity K, respectively. Both Lp and K become more favorable for drug

delivery with a moderate dose of DEX treatment, but the relative contributions of (1) and

(2) cannot be directly controlled with a drug like DEX that affects both. In addition, as

indicated by Table 4.4, an excess dose of DEX decreases Lp thereby limiting transvascular

flux for drug delivery. Thus, it is not clear what dose of DEX should be used to maximize

the therapeutic effect of a subsequently administered nanocarrier or antibody. The global

optimization method and TME-normalizing therapy design formulation (introduced in Sec-

tion 4.2.5) enable the capability to seek the optimal dose of DEX maximizing the nanocarrier

accumulation.

As described in Section 4.2.5, we considered two cases of TME-normalizing therapy design

problems: (Case 1) the relationships between DEX dose and Lp and K are established based

on the original data from Martin et al. [6], expressed as (4.5) and (4.6); and (Case 2) the

relationships between DEX dose and Lp and K are established based on the original data
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combined with auxiliary data points, expressed as (4.7) and (4.8). Both TME-normalizing

therapy design problems were solved to global optimality. It took 2.5 h to solve Case 1

and 3.6 h to solve Case 2. The more complicated relationship between DEX dose and

hydraulic conductivities in Case 2 resulted in higher complexity and a longer solution time

to reach global optimality. Nevertheless, the proposed methodology with a mixed IA/AA

approach for the bounding routine was able to locate an optimal solution in hours. Thus, this

short computation time demonstrates that the proposed TME-normalizing therapy design

methodology is practical for real-world clinical studies. An optimal solution for Case 1 is

found at x∗ = 5.30 mg/kg, and for Case 2 is found at x∗ = 4.41 mg/kg. The optimal

dose found in Case 1 results in 3% higher concentration accumulation than 3 mg/kg DEX

treatment and 74% higher than 30 mg/kg DEX treatment. As a result, the TME-normalizing

therapy design methods in this work demonstrate that global optimization can be used in

a reasonable time window to determine the optimal dose of DEX, which is predicted to

perform 3% better than the best dose determined by the experiments.
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4.3.4 Dexamethasone Dose Affects the Transvascular Convective

Transport Size-Dependently

Spatially-Averaged Transvascular Flux

(a) (b)

(d)(c)

Figure 4.9: Interstitial concentrations ĉ of different sizes nanocarriers (500 kDa nanocarrier
- 32 nm; 70 kDa nanocarrier - 13nm; Case 1 - 16.40 nm) one-hour post-administration
are plotted versus dimensionless tumor radial position r̂ for (a) control; (b) 3 mg/kg DEX
treatment; and (c) 30 mg/kg DEX treatment cases. (d) The spatially-average transvascular
convective and diffusive fluxes are plotted for 32 nm and 13 nm dextrans one-hour post-
administration. The interstitial concentration with 30 mg/kg DEX treatment for 32 nm
dextran is lower than 13 nm dextran mainly due to its lower convective flux.

After finding that the optimal dose of DEX treatment maximizing concentration accumu-

lation, we hypothesized that size of nanocarriers also affects interstitial concentration. We

compared vascular permeability experimental data of two nanocarriers with different hy-

drodynamic diameters, because previous studies demonstrated that vascular permeability

depends on the nanocarrier size [120, 121, 151]. The smaller nanocarrier is 13 nm, which

is similar to the size of nanoparticle albumin-bound paclitaxel in circulation [121], and the
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larger is similar to the size of NC-6004, which is a clinical-stage polymeric micelle containing

cisplatin [6]. Using this experimental data and our mathematical model, we investigated

the model-predicted interstitial concentration with respect to tumor radial position for these

nanocarriers. As illustrated in Figure 4.9(a), the interstitial concentrations for the control

case are almost the same for 32 nm and 13 nm dextrans. And for 3mg/kg DEX treat-

ment case illustrated in Figure 4.9(b), the peak for 13 nm dextran is slightly higher, but

the overall concentration distribution is still very close for these dextrans. However, for 30

mg/kg DEX treatment case illustrated in Figure 4.9(c), the concentration profile for 13 nm

dextran is higher than 32 nm. A possible reason is that the vessel wall pore size decreases

with 30 mg/kg DEX treatment [6]. Thus, the steric hindrance is larger, especially for larger

nanocarriers. Consequently, there are fewer larger nanocarriers transporting into the tumor

tissue, leading to a lower concentration profile. To better understand this phenomena, we

needed to investigate the effects of convective and diffusive transport.

We quantified the spatially-averaged convective and diffusive fluxes for 13 nm and 32

nm dextrans to demonstrate their impact on accumulation. As illustrated in Figure 4.9(d),

3 mg/kg DEX treatment enhances convection to a similar extent for each dextran (360%

increase for both 13 and 32 nm dextran compared with the control case). However, 30 mg/kg

DEX treatment leads to a 80% increase of convection for 32 nm dextran and a 180% increase

for 13 nm dextran. Therefore, the relatively lower convective flux with 30 mg/kg DEX for

32 nm dextran results in less accumulation into the tumor tissue. In addition, we found

that DEX reduces diffusion for both nanocarriers. As explained in Section 4.3.2, the higher

interstitial concentration and smaller pore size with 30 mg/kg DEX lead to lower diffusive

fluxes. Since diffusion is inversely related to hydrodyanmic diameter of nanocarriers, reduced
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diffusion after DEX is more important for smaller nanocarriers, which rely on diffusion. In

conclusion, we found 3 mg/kg DEX enhanced transvascular transport size-independently,

which conforms to the findings using the ECM normalizing agent tranilast in Papageorgis

et al. [152] [152]. However, given the antiangiogenic properties of DEX, an excess dose of

DEX is less effective for enhancing convection especially for larger nanocarriers.

4.3.5 Global Optimization Determines the Dexamethasone Dose

and Nanocarrier Size Maximizing Accumulation

We found that DEX enhances convection yet reduces diffusion, so we sought to determine the

optimal hydrodynamic diameter of nanocarrier that exploits the balance of these two effects

to realize a maximum accumulation with safety/performance specifications. We considered

three cases of drug size design problems. These corresponded to 3 mg/kg DEX treatment,

the optimal dose of DEX for Case 1 (5.30 mg/kg), and the optimal dose of DEX for Case

2 (4.41 mg/kg), respectively. The 3 mg/kg dose induced the highest transvascular flux

in experiments [6], whereas Case 1 and Case 2 were determined from the corresponding

TME-normalizing therapy design problems. These drug size design problems formulated

as (4.10) were solved to global optimality. The optimal solutions found and time costs

for each case are summarized in Table 4.6. Note that the optimal nanocarrier sizes in

these designs strictly satisfy the safety/performance requirements to avoid potential side

effects and guarantee the effectiveness, which constrain the nanocarrier concentrations in the

periphery of tumor normal tissue, as demonstrated in (4.10). Though smaller nanocarriers

diffuse and accumulate inside the tumor interstitial space more quickly, it might violate the
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safety specifications in these designs. Thus, these optimal solutions account for the drug

size design results with requirements. In addition, these problems can be solved in minutes,

demonstrating the practicability for real-world applications.

Table 4.6: Optimal solutions and time costs of drug size design problems are listed in this
table for the case studies of 3 mg/kg DEX treatment; and Case 1, and Case 2 of the therapy
design problem.

Case study 3 mg/kg Case 1 Case 2
Optimal solution (d∗m, nm) 19.65 16.55 12.51
Time (s) 355 384 120

The simultaneous therapy design approach with ANN models formulated as (4.12) was

also performed with Case 1 and Case 2 studies. An optimal solution for Case 1 was found at

(x∗, d∗m) = (5.32, 16.40) and for Case 2 at (x∗, d∗m) = (4.38, 12.41). The time costs are 42 s for

Case 1 and 350 s for Case 2. However, global optimal solution of (4.11) with the mechanistic

model could not be obtained within a reasonable time limit. We expect that continued

research on global bounding methods may be able to accelerate convergence and address this

issue in the future. Alternatively, we implemented a multi-start local optimization procedure

for problems formulated as (4.11) and selected the results with the lowest objective function

values: ((x∗, d∗m) = (5.33, 16.54) for Case 1 and (x∗, d∗m) = (4.36, 12.58) for Case 2). We found

that the optimal solutions obtained with the ANN models are very close to the best-found

local optimal results obtained via the multi-start procedure. Since the ANN models were

very accurate surrogates of the mechanistic model, this provides supporting evidence that

the local results obtained are close estimates of the global optima. Therefore, these results

provide support for the practicability of the ANN models for use in optimal decision-making

in cancer therapeutics.
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The therapy design methods in this work provide capability to identify optimal dose

and drug size for maximizing the improvement in nanocarrier delivery induced by TME-

normalizing therapies. One area of future work is to investigate the effects of half-life

circulation time on drug delivery. Smaller nanocarriers, which diffuse faster than larger

nanocarriers, benefit from having a higher intravascular concentration resulting from longer

circulation time. Thus, testing the impacts of different circulation time on concentration

accumulation of different size nanocarriers can be a useful future study. In addition, Martin

et al. [6] reported that TME normalization increases the perfused vascular density, which

is not incorporated in this work. Higher vascular density indicates additional functional

perfused vessels, which is beneficial for drug delivery and accumulation in tumor tissue.

Thus, we predicted that results for TME-normalizing therapy will be better if accounting for

changing vascular density. Additionally, based on simulations of the model, the variation of

vascular density (S/V from 50 to 300) evidently does not affect the nanocarrier concentra-

tion profiles. Nevertheless, the impacts of the vascular density require further investigation

and integrating this attribute could elucidate more details of the underlying transport mech-

anisms. While the current work demonstrates the influence of transvascular transport on

nanocarrier delivery, investigating how dexamethasone affects interstitial transport could

establish a more comprehensive foundation for further enhancing therapy design methods.

4.4 Conclusions

Rigorous methods of model validations and optimal TME-normalizing dose and nanocarrier

size therapy designs were developed. This work was motivated by the need for more rigorous
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methods for in silico model-based decision-making in cancer research. We established and

demonstrated the use of a comprehensive theoretical framework for model-based applica-

tions in preclinical PKPD research and development . The dynamic optimization problems

for this study were formulated as PDE-constrained NLPs and solved to global optimality,

providing rigorous solutions for cancer drug delivery studies. An efficient bounding routine

using IA/AA and DI approaches and a special bounding rule for the Péclet number in the

solute source term were proposed for improving the performance of the global optimization

algorithm. In addition, machine learning approaches were utilized to establish a data-driven

model via ANNs as surrogate models for the original PDE system. The ANNs were uti-

lized in place of the mechanistic model for solving the parameter estimation problems with

a simplified formulation. In particular, based on the global solution values obtained for

the hydraulic conductivities, transvascular transport was quantified with respect to convec-

tive and diffusive fluxes to elucidate their contributions to the accumulation of anticancer

nanocarriers in tumors following TME-normalizing DEX treatment. Moreover, a method-

ology for optimal TME-normalizing therapy design was proposed to optimize the dose of

DEX for enhanced accumulation of anticancer nanocarriers in tumors. The nanocarrier size

design method was also proposed to determine an optimal size for patient-specific TMEs

with safety/performance specifications. Finally, a simultaneous design formulation was con-

sidered to determine an optimal dose of DEX and an optimal nanocarrier size that would

lead to maximized accumulation in the tumor interstitium. This work can be extended to

robust design problems that account for the impacts of uncertainty that may arise from noisy

data or incomplete characterization of a patient’s TME.

In the next chapter, the concept of semi-infinite optimization is introduced to demonstrate
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worst-case design problems with respect to safety-critical systems. The ANN method utilized

in this chapter is also employed to construct hybrid models to represent complicated systems.

The approach to incorporate hybrid model into semi-infinite optimization is formalized.
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Chapter 5

Semi-Infinite Optimization with

Hybrid Models

In this chapter, the solution strategies for solving semi-infinite programs (SIPs) are dis-

cussed. Particularly, hybrid first-principles data-driven models are utilized in this study

because they provide the potential to dramatically improve model prediction accuracy, step-

ping closer to the digital twin concept. Within this context, worst-case engineering design

feasibility and reliability problems give rise to a class of SIP formulations with hybrid models

as coupling equality constraints. Reduced-space deterministic global optimization methods

are exploited to solve this class of SIPs to ϵ-global optimality in finitely many iterations.

As a consequence, the SIP formulations with hybrid models are formalized and the solution

methods are demonstrated through representative cases studies.
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5.1 Introduction

Many engineering systems are deemed safety-critical and, as such, require strict guarantees of

performance and safety. Uncertainties, such as those introduced by inaccurate data, should

be accounted for at the design stage of such systems. Therefore, it is necessary to identify

the worst-case performance of these systems to mitigate the impacts of uncertainty on the

final design. For example, in many energy-related applications, the costs associated with

operational failures are extremely high; often including loss of life, substantial environmental

damage, severe economic damage, and major sociopolitical fallout. From a model-based

perspective, approaching design problems of this nature amounts to identifying realizations of

uncertainty that result in a simulated worst-case violation of performance/safety constraints

as governed by a system model. As such, deterministic global optimization methods are

required to guarantee worst-case realizations of uncertainty may be identified in the general

case.

Worst-case design problems have historically been treated as bilevel or more general

multilevel programs. These programs have feasible sets that are characterized by other

optimization problems. As such, these programs are extremely challenging or even impossible

to solve directly using existing methods. Thus, early studies focused on the simplest cases

of worst-case design problems with linearity and convexity conditions [153, 154]. Over the

years, relevant studies were extended to more complicated worst-case design problems with

nonlinearity [155, 156, 157].

Gümüş and Floudas [158] developed a global optimization algorithm based on relaxations

of the feasible region for solving worst-case design problems whose bilevel formulations in-
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volve twice-differentiable nonlinear functions. A transformation was proposed to replace

the inner problem with its KKT optimality conditions, transforming the inner program into

nonlinear algebraic constraints under the linear independence constraint qualification. This

approach requires convexity for the KKT conditions to be necessary and sufficient, how-

ever general nonconvex functions were considered by exploiting αBB relaxations within a

branch-and-bound framework for the solution of the KKT-reformulated NLP. Feasibility and

flexibility index problems were considered within this context in a follow-up work[159]. How-

ever, this approach cannot provide valid convergent upper bounds for bilevel programs with

nonconvex inner programs, in general[160]. Mitsos et al. [160] proposed a bounding algo-

rithm to resolve this problem that can solve nonlinear bilevel programs to global optimality

without any convexity assumptions. However, the approach is limited to only considering

inequality constraints (see Mitsos et al. [160, Assumption 3]).

As an alternative strategy to solving bilevel programs, multiparametric programming was

developed by recasting them into single-level deterministic optimization problems [161, 162].

This strategy is unique in that the parametric solution of the inner program is characterized

explicitly and therefore can be utilized in real-time optimization applications. However, the

developed methods require the inner programs to be linear or quadratic programs[162]. For

general nonconvex objectives and general nonlinear and nonconvex inner programs, multi-

parametric programming is not applicable. In this work, we investigate the most general

worst-case design problems that may involve nonlinear coupling equality constraints, and

in doing so we consider the methods that reformulate bilevel programs as equivalent semi-

infinite programs (SIPs).

The solution of general nonconvex SIPs has been an active area of research in recent
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years, yielding approaches that perform well for solving classes of worst-case design problem

formulations. Many of the recent advancements have been based on the discretization-

based cutting-plane algorithm developed by Blankenship and Falk [163] [163]. Mitsos [164]

developed an algorithm with a new procedure for feasible point generation by setting a

restriction condition of right-hand side of the semi-infinite constraints. Stuber and Barton

[165] developed a modified version of the SIP algorithm proposed by Mitsos [164] and finally

extended the method to the most general nonconvex case accounting for semi-infinite equality

constraints without assuming that they admit closed-form parametric solutions.

Djelassi and Mitsos [166] developed a hybrid discretization-based algorithm for the global

solution of SIPs without semi-infinite equality constraints. The algorithm proposed by Mitsos

[164] is employed for upper-bounding and lower-bounding problems, and an oracle problem

adapted from the algorithm proposed by Tsoukalas and Rustem [167] is employed to generate

cheap lower bounds and adaptive updates to the restriction of this algorithm. The hybrid

algorithm can avoid a dense population of the discretization, and has superior computational

performance as a result.

Solution methods for higher-complexity SIP formulations have also been studied. The

algorithm of Mitsos [164] was extended to generalized semi-infinite programs (GSIPs) by

Mitsos and Tsoukalas [168]. Djelassi et al. [169] then extended this GSIP algorithm [168]

and considered the mixed-integer bilevel program to allow the presence of coupling equality

constraints. In their method, a subset of the lower-level variables are treated as dependent

variables to cope with convergence issues introduced by coupling equality constraints. This

algorithm requires an increase in the dimensionality of continuous variables for some sub-

problems, but the performance penalty was not observed in their numerical experiments.
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Djelassi and Mitsos [170] most recently proposed an algorithm for the global solution of

existence-constrained SIPs (ESIPs) that are a generalization of standard SIPs with three

levels. This is the first algorithm that can solve ESIPs to global optimality without any

convexity assumptions. Some other recent developments in nonconvex SIP applications and

algorithms have been reviewed by Djelassi et al. [171].

A key concern pertinent to many applications of SIPs within engineering design, is the

need for high-accuracy and low computational complexity models of safety-critical systems

(whose performance must satisfy strict requirements) [172]. In many cases, strict perfor-

mance/safety requirements must be satisfied over a range of potential input disturbances or

process noise. While it is possible that such disturbances and noise may be well character-

ized for some cases, this is not often typical for nascent designs. In addition, many process

systems models involve implicit functions as their nonlinearity prohibits explicit closed-form

solutions. Even though a method for solving SIPs with implicit functions has been developed

by Stuber and Barton [165], the algorithm is computationally expensive and high-complexity

models compound the computational cost. Hybrid modeling approaches are attractive here

because they can accurately represent complicated process systems that are not fully un-

derstood, and may also reduce the mathematical complexities caused by implicit functions,

nonlinearity, complicated dynamics, and multivariate uncertainty. Thus, the central goal of

our work is to utilize hybrid models within SIP formulations for the optimal design, simu-

lation, and robustness verification of process systems (i.e., process systems that satisfy all

predetermined performance/safety requirements [13]) in the face of worst-case uncertainty.

Hybrid models consist of structured combinations of rigorous first-principles models

(FPMs) that account for necessary/known system mechanisms and empirical or data-driven
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models (DDMs) that describe phenomena that cannot be readily described using FPMs due

to a lack of adequate knowledge [173]. Over the past few decades, the use of hybrid modeling

approaches, particularly those that exploit machine learning approaches, have found a wide

variety of applications in the process systems engineering community. These methods have

enhanced process output [172], improved controller performance [174, 175], and enabled inte-

grated system-level designs of highly complex processes [176, 177]. In this paper, we explore

applications of hybrid models to worst-case design problems to investigate and verify their

applicability in SIPs.

SIPs governed by hybrid models are of particular importance in process systems engi-

neering [177, 178, 179], yet their usage within general (nonconvex) SIP contexts remains

absent. This is likely a consequence of the coupling equality constraints introduced by the

FPMs that significantly complicate the problem. In this paper, we propose addressing these

gaps with the following main novel contributions:

1. We formalize the approach to use hybrid models with SIPs. One application of this

approach is to resolve complications due to coupling equality constraints via a reduced-

space formulation.

2. We illustrate how this SIP formulation that incorporates hybrid models is sufficiently

general such that it may be readily applied to exemplary robust design problems in-

corporating process dynamics.

3. We present a hybrid modeling approach that resolves numerical issues relating to do-

main violations, ubiquitous in process systems engineering modeling and simulation,

through use of a novel nonsmooth SIP formulation that incorporates validity con-
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straints.

In this paper, we present new developments on the formulation and solution of SIPs

with embedded hybrid models. Particular attention is paid to the models that use artificial

neural networks (ANNs) with activation functions that are of interest for deep learning

as the DDM. In the following sections, we detail: the mathematical conventions used in

the paper (Mathematical Background), formalize optimization problems with hybrid models

(Optimization of Hybrid Models); formalize SIPs with hybrid models embedded and present

a solution algorithm (Semi-Infinite Optimization with Hybrid Models); present case studies

that demonstrate a variety of optimization under uncertainty problems formulated as SIPs

with hybrid models embedded (Case Studies); and extend the proposed approach to SIPs

with implicit functions embedded (Extension to Implicit Forms). Finally, we suggest future

directions for subsequent research.

5.2 Mathematical Background

In this section, the necessary mathematical preliminaries for the framework of SIPs with

hybrid models are introduced.

5.2.1 Multilayer Perceptrons

Several DDM methods have been developed and applied to a broad range of process systems,

such as support vector machines [180], random forests [181], and ANNs [182, 183]. In this

work, ANNs are utilized as a representative DDM approach to demonstrate the formulation

of SIPs with hybrid models, and the corresponding notation is formalized in this section
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accordingly. The multilayer perceptron (MLP) is one of the most common classes of ANN

structures. As illustrated in Figure 5.1, the MLP is composed of a directed acyclic graph

(DAG) containing n layers enumerated k = 1, . . . , n. The first layer with k = 1 represents

the inputs of the MLP, whereas the last layer with k = n corresponds to the output layer.

The k = 2, . . . , n−1 layers are the hidden layers. Let m(k) be the number of neurons in layer

k, a(k) ∈ Rm(k)
be the outputs of layer k. As defined, a(1) is the input vector and a(n) is the

output vector of the MLP. The vector a(k) for hidden layers k ∈ {2, . . . , n} is defined as

a(k) = f (k)
(
W(k−1)a(k−1) + b(k−1)

)
, (5.1)

where f (k) : R → R is an activation function, W(k−1) ∈ Rm(k)×m(k−1)
is a weight matrix, and

b(k−1) ∈ Rm(k)
is a bias vector. For ease of introduction, we define o : Rm(1) → Rm(n)

as the

representative input-output function for a generic DDM. Thus, as for a MLP, a(n) = o(a(1)).

When training MLPs, the weight matrices and bias vectors are regarded as optimization

variables whereas the input values of a(1) are taken as parameters. When using fully-trained

MLPs in a hybrid model for simulation or optimization, the weight matrices and bias vectors

are fixed to the trained constant parameters. The notation of MLPs in this section is used

for a typical class of DDMs that will be used for hybrid model formulations.

5.2.2 Hybrid Model Architecture

In this section, we formalize the notation for first-principles and data-driven sub-models as

illustrated in Figure 5.2. A vector of independent input variables is defined as y ∈ Y ⊂ Rny

, a vector ẑFPM ∈ ZFPM ⊂ Rnzf represents state variables governed by the FPMs, hFPM :
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Input Layer

Hidden Layer n-2
Output Layer

Hidden Layer 1

Figure 5.1: A multilayer perceptron with n layers is illustrated as a directed acyclic graph.
The input layer corresponds to k = 1, the hidden layers correspond to k = 2, . . . , n − 1,
and the output layer corresponds to k = n. The multilayer perceptron has a fully-connected
feed-forward network where all neurons in last layer, k − 1, are related to all neurons in the
subsequent layer, k.

ZFPM × ZDDM × Y → Rnzf represent FPM equations, ẑDDM ∈ ZDDM ⊂ Rnzd is a vector

of output variables of the DDMs. Note that in the scope of this work, we consider MLPs as

explicit input-output DDMs that can be represented by a(n) = o(a(1)) as previously defined.

In general, the architecture of hybrid models is classified according to the parallel and/or

serial arrangement of sub-models (see von Stosch et al. [184] for a thorough review and

discussion of hybrid model architectures). The mathematical structure of a parallel hybrid

model is illustrated in Figure 5.2(a). In this formulation, the FPM hFPM(ẑFPM , · ,y) = 0

does not have explicit dependence on ẑDDM and µ represents the final outputs of the parallel

hybrid model that can be expressed as µ = ψ(ẑFPM , ẑDDM), where ψ : Rnzf × Rnzd →

Rnµ represents some functional relationship involving the states of the FPMs and outputs

of the DDMs. In cases employing a parallel model architecture, the FPMs may not be
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(a)

(b)

(c)

Figure 5.2: Flow diagrams of typical hybrid model architectures are presented in this figure
(white blocks represent first-principles sub-models and shaded blocks represent data-driven
sub-models). (a) A parallel hybrid model architecture maps inputs to outputs of each model
type in parallel. (b) A DDM/FPM serial hybrid model architecture maps inputs of the DDM
to outputs that are subsequently used as inputs in the FPM. (c) A FPM/DDM serial model
architecture maps inputs to outputs of the FPM that are subsequently used as inputs to the
DDM.

able to accurately capture some of the phenomena observed in real systems, resulting in a

discrepancy. In this situation, a DDM can be utilized to rectify the mismatch between the

prediction of FPM and the observed process data [178].

In the serial architecture, the output of the first sub-model is taken as an intermediate

variable that is input to the second sub-model. The DDM/FPM serial architecture is the

most common hybrid model architecture [184], illustrated in Figure 5.2(b). In chemical engi-

neering systems, FPMs typically involve conservation laws that may have extremely compli-

cated mathematical expressions and/or source terms that may fail to accurately capture some

observed system behavior due to an incomplete understanding of underlying mechanisms. In

these situations, DDMs can be used as a surrogate model to represent intractable parameters
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and/or subexpressions. Alternatively, the FPM/DDM serial architecture is shown in Figure

5.2(c). This architecture can be used to model a system whose intermediate variables are

governed by the first-principles model hFPM(ẑFPM , · ,y) = 0 (with no explicit dependence

on ẑDDM) and the final outputs are some process parameters that are related to the inter-

mediate state variables [185]. In the next section, the notation pertaining to hybrid model

architectures in embedded optimization formulations is established.

5.3 Optimization of Hybrid Models

In this section, optimization problems with hybrid ANN models embedded are formalized.

We use a general formulation to maintain applicability to a wide variety of surrogate modeling

approaches being actively explored by machine learning researchers (e.g., [186, 187, 188, 189])

including neural ordinary differential equations [190] inspired by the success of ResNet [191].

In general, a conventional formulation of an optimization problem involving hybrid models

accounts for the modeling equations as explicit equality constraints. Thus, let the opti-

mization formulation with hybrid models be represented by the following nonlinear program
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(NLP):

min
y,ẑFPM ,ẑDDM

ϕ(ẑFPM , ẑDDM ,y) (5.2)

s.t. hFPM(ẑFPM , ẑDDM ,y) = 0

hDDM(ẑFPM , ẑDDM ,y) = 0

g(ẑFPM , ẑDDM ,y) ≤ 0

y ∈ Y ∈ IRny

ẑFPM ∈ ZFPM ⊂ Rnzf

ẑDDM ∈ ZDDM ⊂ Rnzd ,

where IRn is the set of all n-dimensional real intervals, the decision variables consist of

the independent input variables y (e.g., design variables), the output variables of an ANN

ẑDDM as previously defined, and the system state variables ẑFPM that are determined by

the FPMs. It is assumed that the objective function ϕ : ZFPM × ZDDM × Y → R and the

inequality constraints g : ZFPM×ZDDM×Y → Rng are continuous. The equality constraints

hDDM : ZFPM ×ZDDM × Y → Rnzd are expressed in standard form and represent the DDM

equations (i.e., the ANN equations hDDM(ẑFPM , ẑDDM ,y) = ẑDDM−a(n) = 0). The equality

constraints hFPM : ZFPM ×ZDDM ×Y → Rnzf and hDDM : ZFPM ×ZDDM ×Y → Rnzd are

also assumed to be continuous. In general, bounds on y, ẑDDM , and ẑFPM must be supplied

to ensure that the problem is well-posed, although some variables may not require bounds

known a priori.

The general optimization formulation (5.2) can be reformulated compactly as follows.
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Define ẑ = (ẑFPM , ẑDDM), Z = ZFPM×ZDDM , and let h : Z×Y → Rnz be the concatenation

of hFPM and hDDM such that h(ẑ,y) =
(
hFPM(ẑFPM , ẑDDM ,y),hDDM(ẑFPM , ẑDDM ,y)

)
.

Then, (5.2) can be reformulated as the following NLP:

min
y∈Y,ẑ∈Z

ϕ(ẑ,y) (5.3)

s.t. h(ẑ,y) = 0

g(ẑ,y) ≤ 0.

In many cases that arise naturally from process flowsheet simulation, model inputs and

parameters (e.g., process design specifications, controllable inputs) define unique state con-

ditions by continuity equations (i.e., conservation laws) as equality constraints that can be

solved explicitly. Thus, in this paper, we assume that there exists a unique explicit closed-

form function z : Y → Z such that h(z(y),y) = 0 for every y ∈ Y . Under this assumption,

the equality constraints can be eliminated and (5.3) can be simplified as:

min
y∈Y

ϕ(z(y),y) (5.4)

s.t. g(z(y),y) ≤ 0.

Since the equality constraints of (5.3) are entirely eliminated in this formulation, there is

a (significant) reduction in problem dimensionality. Although we assumed the existence of

explicit functions for the proposed approach, this does not restrict the method. The section

Extension to Implicit Forms discusses how this assumption may be relaxed allowing for

the proposed approach to be applied to more general hybrid models with implicit forms.
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Remark 8. Note that the uniqueness assumption is required for the elimination of the cou-

pling equality constraints from the original problem formulation (5.2). This assumption and

approach have been commonly made in practice for addressing design under uncertainty

problems (e.g., [165, 192, 193, 194, 195, 196], among others), and is not presented as a new

approach here. However, in case of nonunique parametric solutions (e.g., multiple steady

states), without special consideration this approach would effectively restrict the feasible set.

For example, consider the model h(ẑ, y) = ẑ2 − y = 0. This problem has explicit closed-form

solutions z1(y) =
√
y and z2(y) = −√

y with y = 0 a bifurcation point. To ensure that

a global solution of the original problem is obtained, both parametric solution branches z1

and z2 must be considered or else feasible solutions may be ignored. Within the context of

hybrid models, nonuniqueness may be less of a concern since DDMs are trained as explicit

input-output mappings representing a system or phenomena of interest and, when coupled to

FPMs, are likely to force adherence to a single solution branch. For problems where this is

not the case, each solution branch of the FPM would need to be considered separately, as in

the simple example above. For parametric dynamical systems, relatively mild assumptions

ensure the existence and uniqueness of parametric solution trajectories[55].

Reduced-space approaches to deterministic global optimization originated from Epperly

and Pistikopoulos [197], who detailed a convergent branch-and-bound (B&B) algorithm that

branched only on a subset of the decision variables. This reduced-space formulation approach

was subsequently generalized for many different problem and model types (e.g., [198, Sec.

4.1], wilhelm2019global[199, 200, 201]). This approach avoids the introduction and explicit

handling of auxiliary variables and equality constraints through intermediate calculations by
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treating the independent input variables y as the only decision variables of the optimization

problem. Since ny << nz in most process systems engineering problems, (5.4) represents

a significantly lower-dimensionality problem than (5.3). Due to the curse of dimensionality

in deterministic global optimization, this reduction in dimensionality often translates to a

significant reduction in the solution time.

In general, formulations (5.2)-(5.4) are nonconvex optimization problems that are solved

to guaranteed global optimality via a variation of the spatial B&B algorithm [202, 203, 204].

This consists of a presolve step, followed by the successive solution of lower- and upper-

bounding problems with intermediate domain reduction. An upper bound is typically deter-

mined by solving the original nonconvex problem to either feasibility or local optimality. This

is distinct from the subproblems encountered in domain reduction and the lower bounding

routines that construct and solve relaxations of the nonconvex problem through the compu-

tation of convex relaxations of the nonconvex objective and constraint functions [205].

Within this reduced-space context, researchers have addressed the construction of convex

and concave relaxations of factorable functions[199, 206, 207, 208] (i.e., a function defined by

a finite recursive composition of sums, products, and univariate transcendental functions)

as well as specific classes of functions that break the factorability assumption. Methods

for computing relaxations of parametric solutions of differential equations [42, 55, 209] as

well as implicit functions evaluated by fixed-point methods, have both been detailed [210].

Provided that relaxations of intermediate terms may be computed, these relaxations may

be readily composed in a generalized framework [208]. For instance, relaxations of the

solutions of parametric differential equations may be computed provided that convex/concave

relaxations of the right-hand side function are known, and then composed with an algebraic
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objective or constraint term. As such, this modeling framework is generally applicable to

the preponderance of hybrid model architectures.

There are several existing deterministic global optimization solvers capable of addressing

general problems formulated as (5.3). These include commercially licensed offerings such as

BARON [203] and ANTIGONE [94], as well as open-source offerings such as EAGO [52] and

MAiNGO [211]. Due to limitations in how problems are represented and how relaxations of

nonconvex functions are constructed, BARON [203] and ANTIGONE [94] cannot address

formulation (5.4). Alternatively, EAGO [52] and MAiNGO [211] were developed with this

class of problems in mind with more flexible modeling requirements and advanced methods

for constructing relaxations of nonconvex functions. Due to the high dimensionality of formu-

lation (5.3) and the curse of dimensionality in deterministic global optimization, excessively

long run times are expected for solving (5.3). It has been demonstrated through several

examples [183, 197, 201, 206, 207, 210, 212] that an equivalent reduced-space problem (5.4)

can dramatically reduce the run time of a compatible algorithm by dramatically reducing

the number of variables branched on. Moreover, the elimination of equality constraints from

(5.3) plays a particularly important role in ensuring that SIPs of interest in the subsequent

section, are formulated in a readily solvable manner.

5.4 Semi-Infinite Optimization with Hybrid Models

In this section, the foundations for incorporating hybrid models into SIP formulations are

formalized. First, consider the input variables of a hybrid model partitioned as y = (x,p)

with the corresponding domain Y = X × P with x ∈ X ∈ IRnx and p ∈ P ∈ IRnp . Then,
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the general form of an SIP governed by a hybrid model can be expressed as:

ϕ∗ = min
x∈X

ϕ(x) (5.5)

s.t. g(ẑ,x,p) ≤ 0, ∀p ∈ P

h(ẑ,x,p) = 0, ∀p ∈ P.

In this formulation, x represents a vector of decision variables, ẑ represents a vector of

internal state variables governed by the hybrid model equations (as introduced previously),

and p represents a vector of parameters. The objective function ϕ : X → R depends solely

on the variables x ∈ X and the constraints g : Z×X×P → R and h : Z×X×P → Rnz are

parameterized by p ∈ P . Note that the hybrid model h is defined as in the previous section.

It is assumed that the objective function ϕ, semi-infinite inequality constraint function g,

and equality constraint function h are factorable and continuous on their domains. Note that

we have made no assumptions about the smoothness of g. Therefore, multiple performance

constraints g1, . . . , gn, may be handled trivially by reformulation into a single constraint

g = maxi gi.

As in formulation (5.3), the state variables ẑ in (5.5) are governed by continuous hybrid

model functions h(ẑ,x,p) = 0 for each (x,p) ∈ X × P . Similar to formulation (5.4), we

assert that the hybrid model functions h(ẑ,x,p) = 0 can be solved explicitly. Thus, the

state variables can be expressed as an explicit input-output mapping z : X × P → Rnz such

that h(z(x,p),x,p) = 0 for every (x,p) ∈ X × P . Under these assumptions, (5.5) can be
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reformulated as:

ϕ∗ = min
x∈X

ϕ(x) (5.6)

s.t. g(z(x,p),x,p) ≤ 0, ∀p ∈ P.

The SIP formulation covers classes of robust design and optimization under uncertainty

problems of specific interest in this work.

Remark 9. Note that the assumption of uniqueness of z(· ) ∈ Z for every y ∈ Y (i.e.,

∀(x,p) ∈ X×P ) was discussed in the previous section as a requirement for the elimination of

the coupling equality constraints. Within the SIP context for robustness verification, caution

must be exercised to ensure that uniqueness can be verified. For systems with multiple solution

branches present, an SIP must be solved with respect to each physically meaningful solution

branch. However, as remarked in the previous section, nonuniqueness is expected to be rare

for systems of interest with hybrid modeling approaches and not an issue for dynamical

systems under relatively mild assumptions.

Three problem types that fall under the general formulation (5.6) will be considered in this

work for their relevance in the design of safety-critical systems. The first problem is the design

under uncertainty feasibility problem. The goal with this problem is to confirm whether there

exists a design that is robust to a worst-case realization of parametric uncertainty:

η∗ = min
d∈D,η∈H

η (5.7)

s.t. η ≥ g(z(d,π),d,π), ∀π ∈ Π.
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Here, d ∈ D ∈ IRnd represents a vector of design variables, π ∈ Π represents uncertain

parameters in the hybrid model, and η ∈ H ∈ IR represents a measure of robust feasibility.

With respect to the SIP formulation (5.6), we have x = (d, η), X = D × H,p = π, and

P = Π. If the optimal solution value of the feasibility problem satisfies η∗ ≤ 0, then a design

exists that is robust to worst-case realizations of uncertainty.

The second problem of consideration is the robust optimal design problem. The objective

function is directly defined as a cost function based on a technical or economic objective (e.g.,

total capital cost or process efficiency):

ϕ∗ = min
d∈D

ϕ(d) (5.8)

s.t. g(z(d,π),d,π) ≤ 0, ∀π ∈ Π.

Here, with respect to formulation (5.6), we have x = d,p = π, X = D, and P = Π. A

global optimal solution of this problem will be an optimal system design that is robust to

worst-case realizations of uncertainty (if such a design exists).

The last problem of consideration is the operation under uncertainty feasibility problem.

This formulation is used to determine whether there exist control settings or recourse such

that the system of interest will always satisfy the performance and/or safety specifications.

The problem is formulated as:

η∗ = max
π∈Π,η∈R

η (5.9)

s.t. η ≤ g(z(π,u),π,u), ∀u ∈ U.
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Here, we introduce control variables u that can be manipulated in response to uncertainty

realizations π. With respect to the general SIP formulation (5.6), we have x = π,p =

u, X = Π, and P = U . This formulation addresses the question of operational feasibility

and verifies the (non)existence of feasible control actions to mitigate the effects of worst-

case uncertainty. If η∗ ≤ 0, then a feasible recourse control action exists that mitigates

the worst-case impacts of uncertainty on the process with respect to the performance/safety

specifications.

A state-of-the-art method for solving SIPs to global optimality is discussed in the follow-

ing section.

5.5 Global Solution of SIPs

In this section, the SIPres algorithm introduced by Mitsos [164] is presented with respect to

the formulation (5.6) for hybrid model systems for completeness. The algorithm flowchart

is illustrated in Figure 5.3 and relies on solving three nonconvex subproblems (formulated

below) to global optimality at each iteration. The algorithm is guaranteed to converge to

ϵ-optimality in finitely many iterations under the assumptions of continuity of ϕ and g and

the existence of an SIP Slater point arbitrarily close to a minimizer.

Definition 5.5.1 (Lower-Bounding Problem [165]). Given a finite number of constraints

with respect to p ∈ PLBD with PLBD ⊂ P a finite set, the lower-bounding problem is formu-
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lated as:

ϕLBD = min
x∈X

ϕ(x)

s.t. g(z(x,p),x,p) ≤ 0, ∀p ∈ PLBD.

Definition 5.5.2 (Inner Program [165]). Given a point x̄ ∈ X, the inner program is formu-

lated as:

ḡ(x̄) = max
p∈P

g(z(x̄,p), x̄,p).

The inner program verifies feasibility of the point x̄ with respect to the original SIP. If

ḡ(x̄) ≤ 0, x̄ is feasible in (5.6).

Definition 5.5.3 (Upper-Bounding Problem [165]). Given a finite number of constraints

with respect to p ∈ PUBD with PUBD ⊂ P a finite set, the upper-bounding problem is

formulated as:

ϕUBD = min
x∈X

ϕ(x)

s.t. g(z(x,p),x,p) ≤ −ϵg, ∀p ∈ PUBD,

where ϵg > 0 is the restriction parameter [164], representing a parameter for perturbing the

right-hand side of the semi-infinite constraint away from zero, thereby restricting the feasible

set of the upper-bounding problem. Note that according to Mitsos [164], the upper-bounding

problem should be solved to global optimality to obtain a global solution of the original SIP

(5.6), but a valid upper bound ϕUBD ≥ ϕ∗ can be obtained by a local solution x̄ of the upper-
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bounding problem if its feasibility in the original SIP (5.6) is verified. That is, any SIP

feasible point is a valid upper bound.
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Figure 5.3: The SIPres algorithm is illustrated as a flowchart as adapted from that presented
by Stuber and Barton [165].
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5.6 Case Studies

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-

1270 v5 3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to a virtual

machine running the Ubuntu 18.04LTS operating system and Julia v1.6.1 [53]. Absolute

and relative convergence tolerances for the B&B algorithm of 10−4 were specified for all

example problems, unless otherwise noted and a maximum CPU time limit of the SIPres

algorithm was set to 3600 seconds. The EAGO.jl package (v0.6.1) [52] was used to solve each

optimization problem. Validated interval arithmetic was computed using the package Inter-

valArithmetic.jl [213]. The Intel MKL package (2019 Update 2) [214] was used to perform

all LAPACK [215, 216] and BLAS [217] routines. The data used with and generated from

the following numerical examples are openly available in the Git repository established at

https://github.com/PSORLab/RobustHybridModels along with the corresponding prob-

lem formulations.

5.6.1 Case Study 1: Robust Feasibility of a Nitrification CSTR

In this case study, we consider the rigorous verification of robust feasibility of a continuous

stirred-tank reactor (CSTR) undergoing nitrification reactions for wastewater treatment.

The aim here is to verify the existence of a simple robust control policy that maintains

the desired water quality specifications. The system involves a single continuously-flowing

feed stream and a single continuously-flowing outlet stream, as shown in Figure 5.4. An air

diffuser exists at the bottom of the tank to provide oxygen for oxidizing ammonium. The

controller receives feedback signals from the conductivity sensor in the reactor and sends
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a control signal to the valve on the air stream to increase or decrease the flow of air (i.e.,

aeration) into the CSTR that, in turn, controls the nitrification reactions. In practice, this

aerobic nitrification step often precedes an anaerobic nitrification step.

 

 

 

Controller

Figure 5.4: The dynamic nitrification CSTR system considered in the robust feasibility case
study (Case Study 1), is shown. Under normal operation, oxygen is injected to control the
nitrification reactions using a feedback controller utilizing measurements of the ammonium
and dissolved oxygen concentrations in the outlet stream.

Hybrid Model Formulation

The reaction mechanism for this nitrification process has two steps:

2NH+
4 + 3O2 → 2NO−

2 + 4H+ + 2H2O

2NO−
2 +O2 → 2NO−

3
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In the first step, the ammonium ions are oxidized to nitrite ions. In the second step, the

nitrite ions are further oxidized to nitrate ions. Based on the molecular biological study,

the ammonia oxidizing bacteria (AOB) predominates the first step and the nitrite oxidizing

bacteria (NOB) carries out the second step [218, 219]. The dynamic species mass balances

in the CSTR are given by the ODEs [220]:

dCNH

dt
=

1

V
(ṁinCin − ṁoutCNH)− rAO ·XAO (5.10)

dCNI

dt
= rAO ·XAO − rNO ·XNO

dCNA

dt
= rNO ·XNO

dCO

dt
= −rAO ·ΨAO ·XAO − rNO ·ΨNO ·XNO + kla · (C∗

O − CO),

where CNH , CNI , and CNA are the concentrations (mg N/(L · s)) for NH+
4 , NO

−
2 , and NO−

3 ,

respectively, CO is the oxygen concentration (mg O2/(L · s)), ṁin and ṁout are continuous

inlet and outlet flow rates (L/s), Cin is the NH+
4 concentration in the inlet stream, and V is

the reactor volume (1000 L). The ammonium oxidation rate (mg N-NH+
4 / (g VSSAO ·min))

is given by rAO, XAO is the concentration of AOB (mg VSS/L), rNO is the nitrite oxidation

rate (mg N-NO−
2 / (g VSSNO ·min)), XNO is the concentration of NOB (mg VSS/L), ΨAO

is the stoichiometric ratio between oxygen and ammonia (mg O2/ mg N-NH+
4 ), ΨNO is the

stoichiometric ratio between oxygen and nitrite (mg O2/ mg N-NO−
2 ), kla is the volumetric

mass transfer coefficient (s−1), and C∗
O is the dissolved oxygen saturation concentration (9.1

mg/L at 20 ◦C, [221]). The rate equation for nitrite oxidation rNO can be expressed further
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as:

rNO = rNO,max
CNI

KSNO + CNI +
C2

NI

KINO

· CO

KONO + CO

,

where rNO,max is the maximum nitrite consumption rate (mg N-NO−
2 / (g VSSNO ·min)),

KSNO is the Monod constant of nitrite for NOB (mg N-NO−
2 /L), KINO is the inhibition

constant of nitrite for NOB (mg N-NO−
2 /L), and KONO is the Monod constant of oxygen for

NOB (mg/L).

The aeration process is governed by the mass transfer of oxygen into the solution as the

term kla(C
∗
O −CO) in (5.10), that is derived from the standard oxygen transfer rate (SOTR,

mg/s) defined as: SOTR = klaC
∗
OV [222]. Assuming that the air flow rate from the air

diffuser is represented by Q (mg/s), the mass flow rate of oxygen WO in the air stream can

be computed from an empirical formula: WO = 0.2967Q [223]. Then, the standard oxygen

transfer rate can be calculated as SOTR = SOTE·WO, where SOTE is the standard oxygen

transfer efficiency (%). Therefore, the aeration mass transfer coefficient can be rewritten as:

kla =
0.2967Q · SOTE

C∗
O · V

.

The parameter values used in the model are listed in Table 5.1.

Since this is a complicated biological reaction system in a physicochemical environment,

it is very hard to obtain accurate kinetic parameters under constantly varying conditions for

FPMs. There are situations such that the biological parameters cannot be easily obtained

and verified by experiments. Thus, we propose to use an ANN model to estimate the

rate constant rAO and account for the hybrid modeling approach in this study. The rate
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Symbol Definition Value Reference

V Liquid volume (L) 1000 This study
ṁin Inlet volumetric flow rate (L/s) 4.167 This study
ṁout Outlet volumetric flow rate (L/s) 4.167 This study
C∗

O Saturated oxygen concentration (mg O2/L 9.1 [221]
XAO Concentration of AOB (mg VSS/L) 505 [220]
XNO Concentration of NOB (mg VSS/L) 151 [220]
rNO,max Max. nitrite consumption rate (mg N-NO−

2 / (g VSSNO ·min)) 1.07 [220]
ΨAO Stoich. ratio of oxygen to ammonia (mg O2/ mg N-NH+

4 ) 2.5 [224]
ΨNO Stoich. ratio of oxygen to nitrite (mg O2/ mg N-NO−

2 ) 0.32 [224]
KSNO Monod constant of nitrite for NOB (mg N-NO−

2 /L) 1.6 [224]
KINO Inhibition constant of nitrite for NOB (mg N-NO−

2 /L) 13000 [224]
KONO Monod constant of oxygen for NOB (mg/L) 1.5 [224]
SOTE Standard oxygen transfer efficiency (%) 10 [222]

Table 5.1: The model parameters used for the nitrification CSTR case study are listed in
this table.

constant rAO is related to both ammonium concentration cNH and oxygen concentration cO.

Consequently, rAO is calculated as an intermediate variable from the ANN and substituted

into the dynamic hybrid model, as illustrated in Figure 5.5 to form a dynamic serial hybrid

model.

…

First-Principles 
Model

Input Output

Other state variables YES

NO

Figure 5.5: The hybrid model architecture used for the nitrification CSTR case study (Case
Study 1), is illustrated. This model represents a DDM/FPM serial architecture with a
reaction rate term modeled by an ANN.
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Data-Driven Model Construction

A training data set was generated by evaluating a proposed empirical model for rAO pro-

vided by Sánchez et al. [220], that relates rA0 to CNH and CO. The ANN model is developed

to demonstrate a hybrid modeling approach in more complicated reacting systems. A pre-

liminary investigation established physically plausible ranges for CNH and CO of [0, 40] and

[0, 9.1], respectively, while values within [0, 4] and [0, 1], respectively, were typically observed

from exploratory simulations of the system. For (CNH , CO) ∈ [0, 4] × [0, 1], rAO varies sig-

nificantly with respect to CNH and CO, while it is relatively flat outside this region. The

empirical model was evaluated over two distinct Latin hypercube sampling (LHC) designs

with 105 points each: one design on the domain [0, 40]× [0, 9.1], and the other on the domain

[0, 4]× [0, 1], to ensure adequate sampling of the sensitive region. As with the previous ex-

amples, the data set was scaled using a min-max normalization and divided randomly into

training (70%), validation (15%), and test (15%) sets. Training was performed using the

Keras [225] module in the nightly version of Tensorflow [226] with the Adam optimizer. An

early stopping protocol was performed using default parameters to prevent overfitting [227].

An ANN consisting of two hidden layers, each containing eight neurons, with the hyperbolic

tangent activation function and a sigmoid output layer was used. This network was trained

using a learning rate schedule that began with a value of 0.1 and was decreased by a fac-

tor of 0.5 every 100 epochs. This training protocol lead to loss values of 1.837 × 10−6 and

1.9708× 10−6 for the training and validation sets, respectively.
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SIP Formulation and Results

According to the standard of moderate municipal wastewater [100], the concentration of

ammonium ions in the effluent is required to be below 30 mg N-NH+
4 /L. Moreover, the

dissolved oxygen concentration must be lower than 2 mg O2/L to ensure that a viable

operating window exists for a secondary anaerobic denitrification step [228]. Thus, the

upper specification limits for ammonium ions (USLNH) and dissolved oxygen (USLO) are set

to 30 mg N-NH+
4 /L and 2 mg O2/L, respectively. The CSTR is initially operating at steady

state with a constant concentration (31 mg N-NH+
4 /L) in the inlet stream. At some moment

(t = t0), a concentration shock is observed in the inlet stream within a short operating

window (20 s) of the treatment process. It is our desire to operate the process in an open-

loop manner, and so the objective here is to determine whether there exists a feasible design

for the valve setting for air flow rate that is robust to worst-case realizations of uncertainty

at the end of the simulation horizon (t = tf = 100 s). The design variable is taken to be

the air flow rate d = Q ∈ D = [440, 2000], which can be interpreted as the valve setting.

The uncertainty comes from the disturbance in the inlet stream π = Cin ∈ Π = [31.0, 40.0].

Thus, the design under uncertainty feasibility problem accounts for the following semi-infinite

constraints:

CNH(tf , d, π)− USLNH ≤ 0, ∀π ∈ Π, (5.11)

CO(tf , d, π)− USLO ≤ 0, ∀π ∈ Π.
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The two semi-infinite constraints present in (5.11) are then reformulated as a single nons-

mooth semi-infinite constraint, and an epigraph rearrangement of the problem is made to

yield the following SIP:

η∗ = min
d∈D,η∈H

η (5.12)

s.t. max{CNH(tf , d, π)− USLNH, CO(tf , d, π)− USLO} ≤ η, ∀π ∈ Π.

This formulation corresponds with the design under uncertainty feasibility problem (5.7).

Again, the term η represents a measure of robust feasibility. If the optimal solution value

of the feasibility problem (5.12) satisfies η∗ ≤ 0, then a design exists that is robust to

worst-case realization of uncertainty. For this problem, a relative convergence tolerance of

10−3 for the SIP-feasibility problem (5.12) was used. An explicit Euler method was used

to integrate (5.10) with a stepsize of h = 10 s. To avoid domain violations and associated

difficulties that arise from overestimation of CO2 , a positive value of CO2 was enforced by

setting CO2 = max(CO2 , ϵ) with ϵ = 10−10 at each time step. The SIPres algorithm [164]

(see Figure 5.3) was used to solve the SIP given in (5.12). The SIPres algorithm solves

(5.12) after a single iteration in 21.86 CPU seconds with an optimal solution η∗ = 0.288,

illustrating that a robust design does not exist for this system with respect to the given

performance/safety specifications.

This motivates a search for alternative approaches to verify robustness. Namely, we seek

to determine if a robust operation is feasible. We consider the same uncertainty source

π ∈ Π and the control variable is taken as u = Q ∈ U = [440, 2000]. We aim to establish a

robust operation problem to verify if a control recourse exists that mitigates the impacts of

189



uncertainty. The semi-infinite constraints in this problem are:

CNH(tf , π, u)− USLNH ≤ 0, ∀u ∈ U, (5.13)

CO(tf , π, u)− USLO ≤ 0, ∀u ∈ U.

Accordingly, the operation under uncertainty feasibility problem can be expressed as the

following SIP:

η∗ = max
π∈Π

η (5.14)

s.t. η ≤ max{CNH(tf , π, u)− USLNH, CO(tf , π, u)− USLO}, ∀u ∈ U.

Again, the SIPres algorithm [164] with convex/concave envelopes of activation functions[229]

was used to solve the SIP (5.14). The SIPres algorithm terminates with η∗ = 0.288 after

a single iteration in 21.14 CPU seconds. As a consequence, we see that a control setting

recourse is not feasible given the provided specifications. Moreover, the presented formula-

tions with dynamic hybrid models demonstrate the applicability of robustness verification

approaches to relatively complicated processes with dynamic governing equations.

5.6.2 Case Study 2: Worst-Case Design of Subsea Production Fa-

cilities - Mitigation of Domain Violations

In Stuber et al. [14], the worst-case design of a subsea oil production facility (illustrated in

Figure 5.6) was formulated as an operation under uncertainty feasibility problem and solved

using several novel methodologies. Namely, the problem was reformulated as an SIP with

190



implicit functions embedded. The subsea separator model uses transcendental functions

with definitions on narrow domains that result in numerical difficulties when simulating and

optimizing the system. For the purposes of this paper, the interest is not in the application

itself, but in the model as representative of a broader class of industrially-relevant examples

plagued by numerical simulation and convergence issues caused by domain violations. Within

this context, it is of interest to explore how hybrid modeling approaches might be used to

improve the robustness of an FPM and solvers (i.e., improve the reliable convergence to

accurate solutions).

Domain violations are ubiquitous across process systems engineering applications and

pose major challenges to researchers and practitioners of simulation and optimization [230,

231, 232]. Within the broader context of numerical simulation, domain violations are en-

countered when a solver attempts to evaluate an expression at a point outside of its defined

domain (e.g., divide by zero or square-root a negative number). Hybrid models may pose

additional challenges as they may also suffer from violations of their domains of validity.

That is, a solver may attempt to evaluate a DDM at a point outside of the domain of inputs

for which the DDM is considered to be “valid” (i.e., accurately represents reality). When

considering the optimization of hybrid models, domain violations may be frequently encoun-

tered when such domains may not be explicitly known and accounted for with appropriate

constraints, without prior analysis.

In Stuber et al. [14], a method of forward-backward interval constraint propagation on

the DAG [198, 233], interval contractor methods [43], a novel convex/concave relaxation

algorithm [210], and a novel algorithm for solving SIPs [165] were all necessary to solve

this problem. While these methods adequately address the problem in question, the broad
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and robust applicability of this approach to more general SIPs is wanting. We should note,

however,that this approach reduces the problem in question from a GSIP to that of a standard

SIP. This, combined with a desire to generalize the prior results to allow for the incorporation

of more complex physical phenomena, further motivates our interest in this example.

 

 

V-1

V-2

Gas-Liquid Sep Liquid-Liquid Sep

S1 S2

S3

S4 S6

S5

S7

S9

S8

Controller

Figure 5.6: The process flow diagram for the subsea separator (adapted from Stuber et al.
[14]), is presented in this figure. This system is considered in the subsea separator case study
for the use of hybrid models to overcome numerical domain violation issues. A mixture of
gas, oil, and water is fed to the system in S1. Gas is separated from the oil-water mixture
in the gas-liquid separator and oil is separated from water in the liquid-liquid separator.

Hybrid Model Formulation

In this study, the focus is on a modification of the gas-liquid/liquid-liquid separation train

problem presented in Case 3 of Stuber et al. [14]. To model the performance of gas separation

in each separator, simple exponential decay models based on mean gas bubble sizes were

assumed [14]. The relationship between inlet and outlet gas quantities may be expected to

change in meaningful ways when a population-based model of bubble sizes is incorporated

along with information about the equipment’s geometry. Moreover, for bubbly mixtures,

overflow can occur in volumes less than those considered by solely taking into account liquid

levels, provided a large gas concentration is present in the inlet. In practice, this type of

problem is typically characterized using a mixture of computational fluid dynamics software
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and empirical investigation.

We propose simplifying the published model by using an ANN surrogate model to relate

the input variables to the gas-liquid separator and the control variable for the second valve

(V-2) to the system outputs. This serves to eliminate the domain violation issue inherent

in the model, as the activation functions considered lack domain restrictions, and allow the

system-level model to be readily generalized to incorporate information from computational

experiments generated by CFD models, or elsewhere. The inputs, outputs, and expected

ranges of each variable in each ANN are summarized in Table 5.2. As the development of

CFD models is often time consuming, equipment specific, and not the central focus of this

work, we will forgo this and instead illustrate how this approach works at the system level.

We use the prior mass balances and process specifications for the gas-liquid separator (GLS)

and the liquid-liquid separator (LLS). The governing equations for the first valve (V-1), and

the gas mixer will be left unaltered. The equations governing V-1 lead to the following

simplified relationships:

ξW,1 = 1− ξG,1 − ξO,1, (5.15)

SG−1
mix =

ξG,1

SGG

+
ξW,1

SGW

+
ξO,1

SGO

,

ṁ2 = u1Cv1

√
SG−1

mix(Pwell − PGLS) + ϵd

ξ2 = ξ1.

These equations specify that the mass fractions in the input stream (ξW,1, ξG,1, ξO,1) sum to

one, provide a formula relating specific gravity of the mixture SGmix to the specific gravity
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of individual components (SGG, SGW , SGO), and relate the mass flow rate through the

valve ṁ2 to valve position (u1), valve coefficient (Cv1) and a specified pressure difference

(Pwell − PGLS) between the GLS and the wellhead. A small number ϵd = 10−6 is added to

the argument of the
√
· function to avoid the introduction of numerically ill-posed gradients

that present computational issues for local NLP subproblems encountered during global

optimization.

Simple algebraic substitutions of the equations governing V-2 and the LLS behavior lead

to the following algebraic expression:

ξG,7 = ξG,4 exp

(
−ṁ4kLLS

VLLS
ρ4 + ϵd

)
. (5.16)

While additional expressions are required to fully determine all stream characteristics in

the flowsheet, the LLS performance specification (5.16) is sufficient to construct the SIP

constraint. This specification relates the inlet gas mass fraction ξG,4, density ρ4, and mass

flow rate ṁ4 to the oil product stream gas mass fraction ξG,7 by means of a performance

constant kLLS. Due to downstream equipment specifications, the oil product stream gas

mass fraction may not exceed the value Gmax = 0.05. The full model can be found in Stuber

et al. [14] with the analysis of the DAG in Stuber [198, Sec. 8.1].
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Variable Lower Upper Unit Layer

ṁ2 8.228 19.517 kg/s Input
u2 0.35 0.8 - Input
ξG,2 0.35 0.5 - Input
ξW,2 0.1 0.25 - Input
ṁ4 541.364 845.881 kg/s Output
HGLS 0.462165 0.7992 m Output
ξG,4 9.463053× 10−3 0.36 - Output
P4 4.00264× 106 4.01079× 106 Pa Output
ρ4 584.6 1376.6 kg/m3 Output

Table 5.2: The state variables for the subsea separator case study are listed in this table
along with their corresponding bounds, units, and identification of whether they are classified
as inputs or outputs for the hybrid model. Bounds directly specified by Stuber et al. [14]
were used if available. Otherwise, natural interval extensions of known quantities were used
to compute necessary values. The parameters Cv1, SGG, SGW , SGO, ga, Pwell PLLS, PGLS,
kGLS, LGLS, and RGLS take the values previously specified in Stuber et al. [14].

Data-Driven Model Construction

Training data was generated by repeatedly solving a feasibility problem equivalent to the

nonlinear system:

(ξG,2 − 1)ṁ2 − (ξG,4 − 1)ṁ4 = 0

(5.17)

u22C
2
v2ρ

o
W (P4 − PLLS)− ρ4ṁ

2
4 = 0

(P4 − PGLS)− ρ4gaHGLS = 0

ξG,2 exp

(
−kGLSρ4

(ξG,4 − 1)VGLS(HGLS)

(ξG,2 − 1)ṁ2

)
− ξG,4 = 0

ρ4
ξG,4

SGG

+ ρ4
ξG,2(ξG,4 − 1)

SGW (ξG,2 − 1)
+ ρ4

ξG,2(ξG,4 − 1)(1 + ξW,2 − ξG,2)

SGO(ξG,2 − 1)
− ρoW = 0

VGLS − LGLS

(
(HGLS −RGLS)

√
(2RGLSHGLS −H2

GLS) +R2
GLS cos

−1

[
1− HGLS

RGLS

])
= 0
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that is parameterized by w = (ṁ2, u2, ξG,2, ξW,2) ∈ W . Ipopt [234] was used to solve (5.17)

with a multistart approach using 16 initial guesses chosen via an LHC sampling procedure

for each set of parameters considered. An LHC sampling procedure was then performed over

a range of valid values given in Table 5.2 to generate 105 data points used to train the DDM.

As noted in Stuber et al. [14], the implicit function characterized by (5.17) may not exist for

some realization of uncertainty and control variables. Values that yielded a locally-infeasible

result were labelled accordingly, while the solutions of the feasible problems were saved. Of

the 105 points generated, 6,742 infeasible points were evaluated.

The approach to training the ANNs for this problem, parallel the previous examples.

The data set was scaled using a min-max normalization and divided randomly into training

(70%), validation (15%), and test (15%) sets. Training was performed using the Keras [225]

module in the nightly version of Tensorflow [226] with the Adam optimizer. The surrogate

ANN consisted of four inputs, two dense layers, twelve neurons per layer, and utilized the

SiLU activation function. A sigmoid output layer was used to ensure that the output results

remained within the range of the training data. The surrogate model had min-max-scaled

mean-squared-error (MSE) values of 7.74 × 10−5 and 2.2506 × 10−4 on the training and

test sets, respectively. The validity constraint consists of an ANN with four inputs, two

hidden layers, two neurons per layer, and utilizes the SiLU activation functions with a single

hyperbolic tangent output layer that is trained using a binary cross-entropy loss function.

This achieved a binary accuracy greater than 99.0% on both the test and training sets.

Weights and offsets for both the surrogate model and the validity constraint can be found in

the Git repository. Both the surrogate and classifier ANNs used a learning rate schedule that

began with a value of 0.1 and was decreased by a factor of 0.5 every 100 epochs. We note
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here that, due to the nature of the application, no classifier can be expected to be exactly

accurate as the valid and invalid regions adjoin one another.

SIP Formulation and Results

Any ANN can only be expected to provide valid results when interpolating and special

consideration must be given to exclude invalid operating parameters. In general, two distinct

outcomes must be considered: either a domain violation arises from a purely numerical

consideration (e.g., instability) or one that corresponds to a nonphysical operating condition

(e.g., negative density). In the former case, the accuracy of the hybrid model should be

verified to guarantee the results for the corresponding robust operation problem. In the

latter case, restricting the model to a domain of validity is sufficient to ensure a guarantee

of robustness.

Ensuring validity regions for surrogate models remains an active area of research within

the optimization community. Some approaches include restricting the function evaluations to

be within the convex hull of a finite number of sampled points [173, 235] or categorizing the

data using a support vector machine [180, 236]. In either case, this restriction can be framed

as a potentially nonconvex constraint gc : Z × Π × U → {−1, 1} where gc(ẑ,π,u) = −1

indicates a valid model for (ẑ,π,u) ∈ Z ×Π×U . We note that the forms addressed pertain

to standard optimization formulations and the extension of these approaches to multilevel

programs has yet to be developed. In keeping with surrogate modeling frameworks adopted

in this paper, we choose to make use of a second ANN, fANN
c : Z ×Π×U → R, in addition

to the surrogate model, to perform a binary classification task via logistic regression.

The binary classification task is performed as follows. Provided that fANN
c (ẑ,π,u) ≤ 0,
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the input features is classified as gc(ẑ,π,u) = −1 (valid classification). In a corresponding

manner, the classification ANN predicts that the the input features will be classified as

gc(ẑ,π,u) = +1 (invalid classification) due to a domain violation fANN
c (ẑ,π,u) > 0. With

this validity constraint, the robust feasibility constraint takes the logical form:

∀π ∈ Π,∃u ∈ U : g(ẑ,π,u) ≤ 0 ∧ gc(ẑ,π,u) ≤ 0 ∧ h(ẑ,π,u) = 0. (5.18)

For this problem, the state variables ẑ can be calculated as an explicit function z :

Π× U → Z such that h(z(π,u),π,u) = 0 for every (π,u) ∈ Π× U . The robust operation

problem can then be formulated as an SIP with a nonsmooth semi-infinite constraint:

η∗ = max
π∈Π,η∈H

η (5.19)

s.t. η ≤ max {g(z(π,u),π,u), gc(z(π,u),π,u)},∀u ∈ U.

Alternatively, (5.19) may be reformulated as an SIP with a disjunctive constraint or as

a mixed-integer SIP. Note that this form is identical to the structure encountered when

relaxing a GSIP and the reader is directed to Mitsos and Tsoukalas [168] for a discussion of

the numerical eccentricities associated with solving that problem class. The robust design
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problem for the subsea separator may then be formally stated as:

η∗ = max
π∈Π,η∈H

η (5.20)

s.t. η ≤ max {ξG,7(π,u)−Gmax, gc(z(π,u),π,u)}, ∀u ∈ U

U = [0.35, 0.8]2

Π = [0.35, 0.5].

We note that the valid region of the developed binary classifier is bounded by a 0-sublevel

set, which is potentially a disconnected and nonconvex set, and therefore the following equiv-

alence can be established:

{(π,u) ∈ Π× U : gc(z(π,u),π,u) = −1} ⇔ {(π,u) ∈ Π× U : gt(z(π,u),π,u) ≤ 0},

with gt(· , · , · ) ≡ fANN
c (· , · , · ). By construction, gt is continuous on its domain, and so this

reformulation ensures that the semi-infinite constraint is continuous, and in turn, ensures

that the convex/concave relaxations used in the subproblem of the SIPres algorithm [164]

exhibit desirable convergence properties [237]. Under this equivalence, the SIP (5.20) is
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reformulated as:

η∗ = max
π∈Π,η∈H

η (5.21)

s.t. η −max {ξG,7(π,u)−Gmax, gt(z(π,u),π,u)} ≤ 0, ∀u ∈ U

U = [0.35, 0.8]2

Π = [0.35, 0.5].

We first solved this hybrid model using the SIPres [164] routine provided in EAGO v0.6.1

[52, 141] and using the convex/concave envelope of SiLU described in a forthcoming work

[229]. The SIP was solved to an absolute tolerance of 10−3. The algorithm terminated in

3 iterations, taking 2.9 CPU seconds when using the envelope of SiLU when computing

relaxations. The SIPres algorithm terminated after an optimal value was found in the lower-

bounding problem and the maximal value of the corresponding lower-level problem was found

to be nonpositive with a value of η∗ = −6.6×10−4. In contrast, the original method in Stuber

et al. [14] provided a solution value of −5.77× 10−3 for this case study. However, it is worth

noting that the method proposed by Stuber et al. [14] has an early-termination criterion

whereby the algorithm terminates with a feasible suboptimal solution as soon as robustness

is verified. Thus, the solution value obtained by Stuber et al. [14] is an upper bound on the

global solution. Despite this, we notice that η∗ > −5.77×10−3, seemingly in violation of the

upper bound for the full mechanistic model [14]. Since the hybrid model utilizes an ANN to

approximate the original equations exhibiting numerical issues (i.e., domain violations), such

discrepancies are anticipated. The level of confidence in the solution lies in the accuracy of
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the trained model versus the constraint satisfaction and algorithm convergence tolerances.

In practice, it may be possible verify SIP feasibility of an optimal solution with respect to the

full mechanistic model. However, this depends entirely on the existence and complexity of

such a model. For this case, the results verify that both models ensure the robust feasibility

of this operation. A performance normalization was used based on CPU single-core IPC

using the Cinebench R15 (Maxon, Newbury Park, CA) single-core benchmark to enable

a fair comparison of the performance of the approach in this work versus Stuber et al.

[14]. The normalized results indicate a 70-fold performance improvement over the original

solution time of 549.3 CPU seconds reported by Stuber et al. [14]. In this particular case, we

expect this improvement to be genuine as prior comparisons of Julia/EAGO to C++/MC++

implementations differed only by at most a factor of three [238]. However, the degree of

computational performance improvement for the surrogate modeling approach relative to the

original work of Stuber et al. [14] will undoubtedly be model-specific. As such, we make no

broad claim of superior performance for this method. However, this example does illustrate

that the use of surrogate modeling represents a viable approach to eliminate the need to

apply specialized parametric interval analysis [43, 198], constraint propagation techniques

[14], and implicit relaxation [210] methods when addressing bilevel optimization problems

with coupling equality constraints, by replacing these models with a formulation that can

be readily addressed with standard global optimization solvers.
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5.7 Extension to Implicit Forms

In the Optimization of Hybrid Models section, the assumption was made that a unique

explicit closed-form function z : Y → Z exists such that h(z(y),y) = 0 for every y ∈ Y .

This assumption was also made within the context of SIPs in the section Semi-Infinite Op-

timization with Hybrid Models. As mentioned in those sections, the explicit closed-form

solution assumptions do not necessarily restrict the applicability of the approach. Stuber

et al. [210] originally developed a theory for considering implicit functions within deter-

ministic global optimization formulations. This was explored further within the context of

SIPs by Stuber and Barton [165]. Summarily, Stuber and Barton [165] extended the SIP

approach for solving (5.5) to the more general case that the equality constraints do not ad-

mit an explicit closed-form solution. In this section, we discuss the conditions under which

these assumptions may be relaxed and extend the applicability to a broader class of hybrid

models that may involve implicit functions, including implicit ANNs and general nonlinear

mechanistic models.

The conditions for considering implicit functions are established as follows. In the pre-

vious sections, the only requirements of the equality constraints h(ẑ,x,p) = 0 of (5.5)

representing a hybrid model, were that they are factorable and continuous. Here, we have

the additional requirement that h : Z × X × P → Rnz is continuously differentiable on its

domain. Then, it must be assumed that there exists an implicit function z : X × P → Z

such that h(z(x,p),x,p) = 0 for every (x,p) ∈ X × P . For the appropriate theories and

methods[165, 210] to hold, and therefore to be applicable to hybrid models, it must again be

assumed that such a function z is unique in the set Z. In other words, such a Z must exist
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within which z is unique on X × P .

Conditions for guaranteeing uniqueness of z in Z on X × P may be inferred from the

structure of the feed-forward ANN (as an explicit input-output mapping) and under the

conditions stipulated by the semilocal implicit function theorem (Neumaier [43, Thm. 5.1.3]).

Furthermore, existence and uniqueness tests associated with parametric interval methods

(e.g., interval Newton [43], Krawcyzk [239], Hansen-Sengupta [43]) may be used to verify

this condition. Note that this does not require that h has a unique solution, and in the

event that multiple solution branches of h exist in Z×X×P , bisection-based methods may

be sufficient to identify a partition such that the existence and uniqueness of an implicit

function can be guaranteed for each element of the partition (see Stuber et al. [210, App.

1] and Stuber [198, Sec. 3.5] for discussions on this). Formal treatment of cases in which

Z × X × P encloses bifurcation points and/or multiple solution branches of h remains an

active area of research.

5.8 Conclusion

In this work, we formalized the foundations for SIPs with hybrid first-principles and data-

driven models. Particular attention was paid to surrogate modeling via ANNs as the data-

driven sub-models. A reduced-space SIP formulations with implicit functions embedded was

proposed. The formulations of SIPs with hybrid models were demonstrated through three

common types of robust design and optimization under uncertainty problems. The SIPres

algorithm for SIPs with implicit functions [165] was used for solving two case studies to

demonstrate practicability and superiority of our approaches.
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In our first case study, we illustrated how an SIP containing a hybrid model may be used to

solve robust feasibility problems pertinent to a continuous nitrification CSTR for wastewater

treatment. The use of hybrid models in this application allowed a data-driven approach to

describe kinetic rate parameters in biological systems. A reformulation to combine two semi-

infinite constraints on ammonium and dissolved oxygen concentrations in the effluent was

implemented. The SIP framework presented herein was shown to be sufficiently general such

that it may readily address dynamic robust feasibility problems within the context of hybrid

models.

The robust simulation of a horizontal gas-liquid and liquid-liquid separator train was

revisited in the second case study. This problem is especially challenging as the modeling

equations are plagued by numerical issues caused by domain violations. The domain violation

problem was addressed with a novel approach that incorporates validity constraints and

replaces the problematic models encountering domain violations with an ANN. This problem

demonstrates how the application of hybrid models may overcome numerical difficulties

often encountered when simulating complicated process systems models. Moreover, the

incorporation of validity constraints naturally leads to a nonsmooth SIP formulation that

may readily be reformulated as a mixed-integer problem, a disjunctive formulation, or a

GSIP.

One interesting application of this work is the solution of problems that require repre-

sentation by multiple distinct models. These may arise when modeling dynamical systems

stemming from transport phenomena whose underlying physics change markedly for different

realizations of decision and uncertainty values. In this case, we can generalize the approach

detailed here to associate each model with a region of validity and a nonsmooth SIP formula-
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tion of the optimization problem. The use of specialized forms of validity constraints should

be considered, such as mixed-integer linear formulations, as an alternative to the general

nonlinear formulation used herein. This may allow for the use of specialized algorithms that

address GSIP formulations for larger and more complex applications.

205



Chapter 6

Conclusions

Modeling spatiotemporal systems is paramount to engineered systems due to its capability

to provide accurate simulation, precise process control, and efficient system designs. Opti-

mization provides immense opportunities for model validation, optimal control, and optimal

design with respect to spatiotemporal systems. The work in this thesis investigated several

studies using optimization to solve challenging engineering problems involving spatiotem-

poral systems in different engineering fields, to address their practicability in real-world

applications. Chapter 1 summarized this high-level vision.

Chapter 2 investigated a challenging topic in global optimization theory with respect to

spatiotemporal systems: solving PDE-constrained global optimization problems. An algo-

rithm for bounding numerical solutions of transient parametric PDEs was presented. This

algorithm combines a mixed IA/ AA approach and the differential inequalities method to

overcome the dependency problem and reduce conservatism of the calculated state bounds.

This method still requires a formal proof to certify its rigorousness. However, several ex-

amples were implemented to demonstrate the performance and empirical validity of this
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method and to demonstrate its application in deterministic global optimization with PDE

constraints. However, even with the most efficient bounding PDE method developed, the

observed computational cost is still very high and proved to be relatively ineffective for solv-

ing some global optimization problems embedded with stiff PDE systems. Future studies

of this work should continue to focus on effective algorithms to reduce conservatism of the

global bounds, while reducing computational complexity as much as possible. Extending

the relaxation method using DI [24] to PDE systems can be a promising direction since this

method can provide significantly tighter relaxations and has been proven to be rigorous for

ODE systems.

In Chapter 3, an application of spatiotemporal systems was addressed for a traditional

chemical engineering application: water/wastewater treatment systems. Non-ideal mixing

models were developed to accurately simulate solution properties and mixture heterogene-

ity. These models have advantages because their formulations are simple with only a few

parameters. Thus, they are very fast to simulate compared to traditional CFD models.

Moreover, deterministic global optimization ensured that the best-fit parameter values were

obtained to validate the model. In addition, these models were established based on physical

principles which provide a better understanding on mechanisms and can serve as a platform

for simulating solution properties for other chemical species with similar physical principles.

Furthermore, it is demonstrated that these simple models can be used to enable advanced

closed-loop control strategies for better operation of wastewater treatment plants, which is

another major contribution of this study. In particular, advanced MPC and EMPC strategies

were studied for a nitrification step of a biological nutrient removal operation to demonstrate

their performance and capability for disturbance rejection and optimal operation utilizing
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high-resolution sensor data. The established model-based technology platform, consisting of

different control strategies and architectures, addressed the practicability for precise control

of water and wastewater treatment processes.

Chapter 4 explored the application of quantitative and formal methods to a spatiotem-

poral system in cancer research. This work established a systematic theoretical framework

for modeling transport phenomena in a tumor that is validated using global optimization.

In particular, in addition to the rigorous bounding approaches developed in Chapter 2,

machine learning methods were used to establish surrogate models for solving challenging

global optimization problems. Utilizing the validated model, the relative contributions of

convective and diffusive transvascular transport were quantified. The novel findings of this

analysis elucidated the influence of TME-normalizing therapy on the governing drug and nu-

trient transport mechanisms. Furthermore, systematic in silicomodel-based approaches were

proposed for determining optimal dose selection for TME-normalizing therapy design and

anticancer macromolecule size design. The information obtained through these approaches

will aid in the development of more comprehensive models (e.g., incorporating the influence

of vascular density) and provided deeper insight into the mechanistic transport phenomena

in tumors to guide drug development and delivery. Since quantifying the impacts of un-

certainty is critical for decision-making in cancer therapeutics, investigating robust design

approaches in this field would be interesting future work.

Chapter 5 addressed worst-case design problems using hybrid modeling methods for

safety-critical system under uncertainty. SIP formulations were proposed in this work for

solving these problems. A major contribution of this study is that we formalized SIP formu-

lations with hybrid first-principles and data-driven models of various architectures. Hybrid
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models may be advantageous because they not only have the ability to capture unknown

phenomena using data-driven approaches to provide practical solutions for modeling par-

tially unknown systems, but also to reduce computational complexity for more efficient

simulations. The formulations and solution strategies for different types of worst-case design

problems with embedded hybrid models were demonstrated. Particular attention was paid

to the hybrid models that use ANNs with novel activation functions that are of interest for

deep learning. In the first case study of this work, we addressed how an SIP containing a

hybrid model can be used to solve robust feasibility problems pertinent to a nitrification

CSTR wastewater treatment process (which is related to the nitrification system in Chapter

3). The SIP framework presented in this case study addressed the methods for solving ro-

bust feasibility problems within the context of spatiotemporal systems governed by dynamic

hybrid models. Another case study addressed the worst-case design of subsea production

facilities. The most challenging part of this problem is that the system governing equations

are plagued by domain violation issues. An approach incorporating validity constraints with

an ANN model has the potential to overcome this numerical difficulty, and this approach

demonstrated how hybrid modeling methods can help solve domain violation problems in

complicated process system applications.
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Appendix A

Supplementary Information

A.1 Supplementary Information for Chapter 3

A.1.1 Development of pH Mixing Models

The development of pH mixing models for three independent studies with shock injection in

the high, middle, and low zone are introduced in this section. The high zone injection model

is introduced in Section 3.2.2 in the Chapter 3, established as:

dH1

dt
=

1

v1V
(H0 + κ1H4 − κ1H1), (A.1)

dH2

dt
=

1

v2V
(κ1H1 + κ2H4 − (κ1 + κ2)H2),

dH3

dt
=

1

v3V
((κ1 + κ2)H2 + κ3H4 − (κ1 + κ2 + κ3)H3),

dH4

dt
=

1

(1− v1 − v2 − v3)V
((κ1 + κ2 + κ3)H3 − (κ1 + κ2 + κ3)H4).
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In this model, Hi represents the pH corresponding to each zone (i = 1, 2, 3, 4) in the reactor,

v is the volume fraction of different zones, and κ is the superficial transport coefficient

indicating the “flow rate” of between adjacent zones that accounts for both reaction and

convection transport (L/s). As illustrated in Figure 3.3(d) of the main manuscript, the flow

rates were set as: f4,1 = κ1, f4,2 = κ2, f4,3 = κ3, f1,2 = κ1, f2,3 = κ1 + κ2, f3,4 = κ1 + κ2 + κ3

based on the principle of mass conservation (assuming constant density). H0 represents the

shock input of KOH, which is equal to Hv during the injection period (0-8s) defined as:

H0 =


Hv, 0 < t < 8

0, 8 < t < 200

(A.2)

In this model, the parameters κ1, κ2, κ3 and Hv in addition to the volume fractions v1,

v2 and v3 are considered to be uncertain parameters requiring estimation by deterministic

global optimization.

As for the case of KOH shock injection in the middle zone (Figure 3.3(e) of the main

manuscript), the model was established as:

dH1

dt
=

1

v1V
(κ1H2 − κ1H1), (A.3)

dH2

dt
=

1

v2V
(H0 + (κ1 + κ2)H4 − (κ1 + κ2)H2),

dH3

dt
=

1

v3V
(κ2H2 + κ3H4 − (κ2 + κ3)H3),

dH4

dt
=

1

(1− v1 − v2 − v3)V
(κ1H1 + (κ2 + κ3)H3 − (κ1 + κ2 + κ3)H4).

In this model, the corresponding flow rates were defined as: f2,1 = κ1, f2,3 = κ2, f4,3 = κ3,
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f1,4 = κ1, f4,2 = κ1 + κ2, and f3,4 = κ1 + κ2 + κ3. The initial injection shock of KOH also

followed the previous principle (A.2). The volumes of the pH sensor zones were assumed to

remain the same fraction values based on the injection position, which can be confirmed from

the global optimization results of the high-zone injection case. Thus, the volume fractions

were not estimated in this model. The superficial transport coefficients κ1, κ2, κ3 and the

input Hv were considered as uncertain parameters in the system required to be determined

by global optimization.

The model corresponding to the KOH shock injection in the low zone (Figure 3.3(f) of

the main manuscript) was established as:

dH1

dt
=

1

v1V
((κ1 + κ2)H2 − (κ1 + κ2)H1), (A.4)

dH2

dt
=

1

v2V
(κ1H3 + κ2H4 − (κ1 + κ2)H2),

dH3

dt
=

1

v3V
(H0 + (κ1 + κ3)H4 − (κ1 + κ3)H3),

dH4

dt
=

1

(1− v1 − v2 − v3)V
((κ1 + κ2)H1 + κ3H3 − (κ1 + κ2 + κ3)H4).

Here, based on the conservation law, the flow rates are set as: f3,2 = κ1, f4,2 = κ2, f3,4 = κ3,

f2,1 = κ1+κ2, f1,4 = κ1+κ2, and f4,3 = κ1+κ3. Similarly, we can obtain the volume fractions

of the sensor zones by high zone injection optimization results. Furthermore, we solve the

established global optimization problem to verify the superficial transport coefficient κ1, κ2,

κ3 and the shock Hv.
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A.1.2 Global Optimization Formulation and Validation for Tem-

perature Mixing Model

Based on the energy balance for the batch system, a single equation is used to model the

bulk fluid temperature:

dT

dt
= − UAc

V ρCp

(T − Tc). (A.5)

Here, T is the temperature of the water solution (◦C) and Ac is the cross-sectional area of

the cylindrical container (m2) across which heat transfer occurs. The height of the container

can be derived as: L = V/Ac = 0.16m. ρ and Cp are respectively the density (kg/m3) and

heat capacity (kJ/(kg·◦C)) of the water (ρ = 998.19, Cp = 4.18). Tc is the temperature of

the inner face of the bottom of the reactor and U is the overall heat transfer coefficient of

the system (kW/(m2·◦C)). In this model, the inner wall on the bottom of the reactor is

considered as the heated surface for convective heat transfer. Thus, U is simplified to the

convective heat transfer coefficient for the liquid in the tank hl. The initial condition of this

system was set as T (t = 0) = T0 = 18.5◦C.

The temperature mixing model (A.5) can be solved analytically to obtain the explicit

closed-form solution as:

T = Tc + (T0 − Tc) exp

[
− Ut

LρCp

]
. (A.6)

Therefore, the global optimization problem for the heat transfer model can be easily solved
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by directly using the analytical solution (A.6):

min
Ti∈T ⊂R,p∈Π⊂Rnp

N∑
i=1

3∑
j=1

(Ti − T data
i,j ) (A.7)

s.t. Ti = Tc + (T0 − Tc) exp(−
Uti
hρCp

), i = 1, ..., N

The objective function was defined as the SSE between the temperature calculated from the

model and the data in different sensor zones. The unknown parameters are the heat transfer

coefficient U ∈ [0.5, 5.0] and the temperature of the heated surface Tc ∈ [20, 200].

A.1.3 Development of A Continuous Flow Conductivity Trans-

port Model for Nitrification CSTR

In this section, details on the case study of wastewater treatment simulations in a continuous

flow nitrification reactor (Figure 3.2(c)) are introduced. The CSTR volume is set as 1000

L. Based on the standard of moderate municipal wastewater [100], the operating setpoint is

set at 280 µS/cm corresponding to the standard concentration. To meet this specification,

biological nitrification processes are applied to oxidize ammonia in wastewater [219]. In this

tank reactor, a continuous atmospheric air stream is supplied at the bottom for removing

excess ammonia through the following two-step nitrification process:

2NH+
4 + 3O2 → 2NO−

2 + 4H+ + 2H2O (A.8)

2NO−
2 +O2 → 2NO−

3
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First, ammonium ions are oxidized to nitrite ions in the nitration step, and then the nitrite

ions are further oxidized to nitrate ions in the nitratation step. In practice, the first step is

carried out by ammonia oxidizing bacteria (AOB) and the second step is carried out by nitrite

oxidizing bacteria (NOB) [219]. In general, 4.5 mg of oxygen is required to fully nitrify 1 mg

of N-NH+
4 . Molecular biology studies indicate that AOB predominates in the nitrification

process [220]. Thus, a simplified kinetic model for oxygen consumption is considered in this

chapter. It is assumed that there are volatile suspended solids (VSS) in the system that are

necessary for nitrification and the initial biomass concentration was in the range of 1.4 to 1.6

g-VSS/L. The ammonium consumption rate rNH+
4
counted as nitrogen (mg N-NH+

4 /(L·min))

in the reaction is given by:

rNH+
4
= −rAOBXAOB (A.9)

where XAOB is the concentration of AOB (mg VSS/L), and rAOB is the ammonium oxidation

rate (mg N-NH+
4 /(g VSS·min)) that is given by:

rAOB = rAOB,max

cNH+
4

KSAOB + cNH+
4
+

c2
NH+

4

KIAOB

cO
KOAOB + cO

(A.10)

In this formula, rAOB,max is the maximum nitritation rate (mg N-NH+
4 /(g VSS·min)), KSAOB

is the Monod constant of ammonia for AOB (mg N-NH+
4 /L),KIAOB is the inhibition constant

of ammonia for AOB ((mg N-NH+
4 /L), cO is the dissolved oxygen concentration (mg/L), and

KOAOB is the Monod constant of oxygen for AOB (mg/L). In this project, it is assumed that

oxygen is growth limiting since ammonium is always in excess (around 30 mg N-NH+
4 /L)

and the corresponding attributing coefficient is around 1. Thus, the ammonium oxidation
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rate can be simplified to rAOB = rAOB,maxcO/(KOAOB + cO), which is only related to oxygen

concentration.

The oxygen balance for the nitrification reaction is given by:

dcO
dt

= −rAOBψAOBXAOB + kla · (c∗O − cO) (A.11)

where ψAOB is the stoichiometric ratio between oxygen and ammonia (mg O2/mg N-NH+
4 ),

the term kla(c
∗
O − cO) represents the rate of mass transfer of oxygen into the liquid from air

bubbles, kla is the volumetric mass transfer coefficient (s−1) [98], and c∗O is the saturated

dissolved oxygen concentration (9.1 mg/L at 20 ◦C) [99]. The standard oxygen transfer

rate (SOTR, mg/s) is defined as SOTR = klac
∗
OV that represents the amount of oxygen

transferred per second at 20 ◦C. The standard oxygen transfer efficiency (SOTE, %) refers

to the ratio of oxygen in inlet air stream dissolved in liquid at 20 ◦C that is given by

SOTE = SOTR/WO, with WO the mass flow of oxygen in the air stream (mg/s). WO can

be calculated by an empirical formula: WO = 0.2967Q, where Q is the airflow rate at 20 ◦C.

Therefore, the oxygen transfer rate can be rewritten as:

dcO
dt

= −rAOBψAOBXAOB +
0.2967Q · SOTE

V
(1− cO

c∗O
) (A.12)

All the relevant parameter values are summarized in Table A.5.

216



The modified conductivity mixing model is introduced in Section 3.2.4:

dCi

dt
=

1

4V
(ki(C4 − C1) + ṁin,iCin,i − ṁout,iCi) +RNH+

4
, , i = 1, 2, 3, (A.13)

dC4

dt
=

1

4V
k4(C1 + C2 + C3 − 3C4) +RNH+

4
,

where ṁin,i and ṁout,i are continuous inlet and outlet flow rate at zone i (L/s), respectively,

Cin,i represents the conductivity of the inlet stream at zone i (µS/cm), and RNH+
4
is the reac-

tion rate law for NH+
4 consumption counted as conductivity (µS/cm/s). When substituting

the reaction rate rNH+
4
(A.9) to the modified model (A.13), the ammonium concentration

should be converted to conductivity for consistency. The converting relationship is linear and

can be directly derived as CNH4Cl = 10.78 + 1.323E5cNH4Cl by linear regression of the data

from CRC handbook listed in Table A.3 [220, 240]. Ideally, the mass transfer coefficients k1,

k2, k3 and k4 should be able to account for all situations with inlet conductivity shocks at

high, middle, or low zones since in a real system we would not have a priori knowledge of the

heterogeneity before measurement. However, as we can see from the previous optimization

results, the shock experiments resulted in slightly differing values for these coefficients as

indicated in Table A.1(a). Thus, the mass transfer coefficients were taken as the average

of the optimal mass transfer coefficients from the original conductivity transport models for

high injection and middle injection cases. The low-zone injection case was excluded here

as its corresponding optimal value for k2 differed dramatically from the optimal values for

the other cases; most likely due to the very close proximity to the adjacent mixing zone.

Then the mass transfer coefficients were scaled based on the nitrification CSTR volume. We

conduct simulations by substituting the average mass transfer coefficients and verify that
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as a whole, the simulated profiles conformed to the original experimental data (even for the

low zone injection case, the simulated profile can be adjusted to coincide with the experi-

mental profile by using the average Cv from high zone and middle zone injection cases to

replace Cv from low zone injection case). The mass transfer coefficients of this continuous

flow conductivity model are listed in Table A.5. The modified continuous flow conductivity

model (A.13) combined with the oxygen transfer model (A.12) can be deemed as a new sys-

tem of ODEs for simulating a segment of a continuous biological nutrient removal step with

heterogeneous mixing. The explicit Euler method is employed for integrating the combined

system of ODEs to simulate the conductivity profiles in each zone.

A proportional-integral (PI) controller was designed to control the aeration for high-zone

influent conductivity shock rejection. The overall control law is defined as:

u(t) = Kpe(t)−Ki

∫ t

0

e(t′)dt′ (A.14)

where u(t) is the control variable that is equal to the aeration airflow rate Q (mg/s) in this

study. e(t) = SP − C1(t) is the error value as the difference between the desired setpoint

(SP) and a measured process variable, which is the high-zone conductivity in this study

C1(t). Kp and Ki are the coefficients for the proportional and integral terms, respectively.

These two coefficients are obtained by fitting dynamic input and output data to a first-

order plus dead-time model and then tuned. First, the Internal Model Control (IMC) rules

are used for tuning. Then the parameters are further adjusted manly until the closed-loop

systems perform as desired. The final values of the PI parameters used in this study are

Kp = −74.941 and Ki = −0.07419.
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A.1.4 Global Optimization Formulation for Conductivity and pH

Mixing Model

For the conductivity and pH models, analytical solutions of the corresponding systems of

ordinary differential equations (ODEs) do not exist. Thus, numerical methods must be

applied to compute the numerical solutions of the systems of ODEs. The time domain I was

discretized into N = (tf − t0)/∆t time steps and then the explicit Euler algorithm was used

for discretizing the ODEs to obtain a discrete-time system. Consequently, the discrete-time

dynamic optimization problem was obtained by:

min
xi∈X⊂Rnx ,p∈Π⊂Rnp

Nτ∑
τ=1

3∑
j=1

(xτ,j − xdataτ,j )2 (A.15)

s.t. x0 = z0

xi+1 = xi + hf(xi,p), i = 0, 1, . . . , N − 1

where the sum-of-squared errors (SSE) as the objective function was sought to minimize

between the state variable xτ,j calculated from the model and the experimental data xdataτ,j

at τ time node for all of three sensor zones. Here, the initial condition was taken as a

constant value z0, and a representative subset of the raw data was taken to construct the

objective function for simplification of the mathematical structure and acceleration of global

optimization calculation. Specifically, the index of the data point with the highest measured

value was chosen in the dataset at the injection sensor zone (imax). The time period before

imax was considered as the “injection period” and the time period after imax is considered

as the “dilution period”. Five equidistant points (imax not included) in the injection period,
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15 equidistant points (imax not included) in the dilution period and imax were selected to

compose the selected subset which had Nτ = 21 nodes. The distance between each node was

rounded to an integer for ease of obtaining the index set. The equality constraints of these

discrete-time dynamic optimization problems are the numerical expressions of the discretized

ODE system using explicit Euler over the entire time horizon, which had npN equations

in total. As for the conductivity models, the uncertain parameter vector was defined as

p = (k1, k2, k3, k4, Cv) for high, middle, and low injection zones. The lower bounds and

upper bounds of the parameters are listed in Table A.6 (a).

To validate the pH model with the experimental data, the global optimization problem

was first solved for the high zone pH shock injection. The unknown parameters for this

problem were defined as p = (v1, v2, v3, κ1, κ2, κ3, Hv). The uncertainty intervals for these

parameters are listed in Table A.6 (b). After solving the problem for high zone injection

case to global optimality, the optimal volume fractions were taken and fixed as the volume

fractions for the middle and low zone injection as listed in Table A.1. Therefore, for the

middle zone and low zone parameter estimation problems, we only estimated four parameters

p = (κ1, κ2, κ3, Hv) with uncertainty listed in Table A.6 (b).

A.1.5 Calibration Process for Revised Conductivity and pH Mix-

ing Models for Additional Experiments

The calibration process for revised conductivity mixing models for KCl and MgSO4 experi-

ments is summarized in this section. The critical parameter Cv in the model was adjusted

to mitigate mismatch with the experimental data. Since the shock conductivity dilutes im-
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mediately after injection, Cv represents the conductivity inside the reactor tank instantly

after injection in inverse proportion to injection time. Therefore, Cv was adjusted for the

KCl and MgSO4 experiments to be 4.5 times (36s/8s) and 18 times (36s/2s) that of the

original NaCl experiments on the basis of the time to peak for conductivity. Furthermore,

an additional modification was required to reconcile the difference between ionic species.

Based on the dependence of electrical conductivity on concentration as mass percent (%), as

listed in Table A.3, the units of shock concentrations for NaCl, KCl, and MgSO4 (100g/L)

were first converted to mass percentage and the corresponding conductivities were calculated

by interpolation. Finally, Cv for the KCl and MgSO4 experiments was further modified by

the ratio of conductivity for KCl and MgSO4 solution to NaCl solution (136.29/120.29 and

40.90/120.29), respectively.

As for calibration for pH mixing model for NaOH experiment, the Hv parameter is

inversely proportional to the apparent injection time (8s for original KOH experiment; 1.9s

for NaOH experiment). We adjusted the Hv based on the ratio of the apparent injection

times for the KOH experiment to the NaOH experiments (8s/1.9s) and re-simulated using

the modified Hv.

A.1.6 Development of Computational Fluid Dynamics (CFD)Mod-

els

Numerical finite element models were developed in COMSOL Multiphysics (COMSOL, Inc,

Burlington, MA, USA). Flow in the reactor was modeled by the Navier-Stokes equations
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using the Arbitrary Lagrangian-Eulerian (ALE) techniques [240]:

∂ρ

∂t
− ∂x

∂t
· ∇ρ+∇ · (ρu) = 0

ρ

(
∂u

∂t
− ∂x

∂t
· ∇u

)
+ ρ(u · ∇)u = ∇ · [−pl + τ ] + F

Here, r is density, u = v + ∂r/∂t, where v is the velocity vector in the rotating coordinate

system, and r is the position vector, t is the mesh reference time, x is a function of angular

velocity and time, p is pressure, τ is shear stress, and F is the external force vector. To

simulate the flow in the reactor, a fixed domain and a rotating domain were defined and

coupled using a continuity boundary condition on the common interior walls [112].

Table A.1: The global optimal parameter values obtained from (a) the conductivity pa-
rameter estimation problems, and (b) the optimal parameter values obtained from the pH
parameter estimation problems.

Conductivity (a) k∗1 k∗2 k∗3 k∗4 C∗
v

High zone injection 2.376E-03 1.411E-03 1.504E-03 0.9477 428.46
Middle zone injection 1.385E-03 2.914E-03 2.577E-03 1.8990 412.37
Low zone injection 2.283E-03 2.9234 7.761E-03 0.5995 182.53

pH (b) v∗ κ∗1 κ∗2 κ∗3 H∗
v

High zone
injection

v∗1 3.937E-01
1.155E-02 3.464E-03 4.214E-03 0.1413v∗2 1.990E-03

v∗3 5.412E-03

Middle zone
injection

v1 1.990E-03
3.012E-02 1.107E-02 2.174E-03 0.1458v2 3.937E-01

v3 5.412E-03

Low zone
injection

v1 1.990E-03
2.142E-02 8.912E-03 6.346E-03 0.1469v2 5.412E-03

v3 3.937E-01
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Table A.2: Time cost for solving conductivity and pH global optimization problems for
independent high-zone, middle-zone and low-zone injection experiments, are reported in this
table.

Time(s) Conductivity model pH model

High-zone injection 214.55 483.96
Middle-zone injection 4038.74 9.559
Low-zone injection 372.34 8.922

Table A.3: Electrical conductivity (mS/cm) for NaCl, KCl, and MgSO4 at different mass
percentages [241].

Mass percent 0.5% 1% 2% 5% 10% 15% 20% 25%

NaCl 8.2 16.0 30.2 70.1 126 171 204 222
KCl 8.2 15.7 29.5 71.9 143 208

MgSO4 4.1 7.6 13.3 27.4 42.7 54.2 51.1 44.1

Table A.4: This table contains the data (in percentages) for environmental discharge and
energy usage from the no control, open-loop control, PI control, MPC, EMPC1, and EMPC2
simulations.

Percentage No Control Open Loop PI MPC EMPC1 EMPC2

High Zone Shock
Discharge 100 22.342 44.055 30.676 26.094 28.097
Energy 45.818 100 61.137 57.849 63.438 60.317

Middle Zone Shock
Discharge 100 20.482 45.292 29.791 24.486 26.721
Energy 45.818 100 52.552 56.624 62.476 59.086

Low Zone Shock
Discharge 100 21.254 45.498 30.148 25.165 27.294
Energy 45.818 100 52.951 57.129 62.469 59.674

Multiple Shocks
Discharge 100 49.673 66.71 52.869 50.525 51.514
Energy 45.818 100 80.271 70.185 75.507 72.578
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Table A.5: The parameters for continuous flow conductivity mixing model are summarized
in this table.

Name Symbol Value Reference
High zone mass transfer coefficient [L/s] k1 4.9478 This study
Middle zone mass transfer coefficient [L/s] k2 5.6907 This study
Low zone mass transfer coefficient [L/s] k3 5.3694 This study
Mixing zone mass transfer coefficient [L/s] k4 3745.6 This study
CSTR volume [L] V 1000 This study
Continuous inlet flow rate [L/s] ṁin 1.042 This study
Continuous outlet flow rate [L/s] ṁout 1.042 [220]
Concentration of AOB [mg VSS/L] XAOB 505 [224]
Monod constant of ammonia for AOB [mg N-NH4

+/L] KSAOB 0.24 [224]
Inhibition constant of ammonia for AOB [mg N-NH4

+/L] KIAOB 6200 [224]
Monod constant of oxygen for AOB [mg/L] KOAOB 0.3 [224]
Stoichiometric ratio between oxygen and ammonia

ψOAOB 2.5 [224]
[mg O2/mg N-NH4

+]
Saturated dissolved oxygen concentration [mg/L] c∗O 9.1 [99]
Standard oxygen transfer efficiency [%] SOTE 10 [222]

Table A.6: The lower and upper bounds for uncertain parameters in nonideal heterogeneous
mixing models (a: conductivity, b: pH)

Parameters (a)
High injection Middle injection Low injection
Lower Upper Lower Upper Lower Upper
bounds bounds bounds bounds bounds bounds

k1 2.0E-3 2.5E-3 1E-3 5E-3 2.0E-3 2.5E-3
k2 1.2E-3 1.7E-3 1E-3 5E-3 1.5 3.0
k3 1.2E-3 1.7E-3 1E-3 5E-3 7.5E-3 8.0E-3
k4 0.85 0.95 1.0 2.0 0.5 1.0
Cv 420 430 400 450 150 200

Parameters (b)
High injection Middle injection Low injection
Lower Upper Lower Upper Lower Upper
bounds bounds bounds bounds bounds bounds

κ1 5E-3 1.5E-2 1E-3 1E-1 5E-4 5E-2
κ2 1E-3 1E-2 1E-3 1E-1 1E-4 1E-2
κ3 1E-3 1E-2 1E-3 1E-1 1E-4 1E-2
Hv 1E-1 2E-1 1E-1 2E-1 1E-1 2E-1
v1 0.25 0.55
v1 1E-3 1E-2
v2 1E-3 1E-2
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Table A.7: The physical properties of water at 20◦C are presented below.

Physical property Symbol Value
Density [kg/m3] ρ 998.19
Viscosity [Pa·s] µ 1.002E-3

Heat capacity [kJ/(kg·◦C)] Cp 4.18
Thermal conductivity [W/(m·◦C)] λ 0.5973

Prandtl number Pr 7.2059
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Figure A.1: The optimal temperature profile (black solid line) from the global optimization
results is plotted versus the measured temperature sensor data in high zone (blue circle),
middle zone (red square), and low zone (green triangle).
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A.2 Supplementary Information for Chapter 4

A.2.1 Tumor Transport Model

The 1-dimensional (1D) tumor transport model proposed by Baxter and Jain[129, 130, 131,

132] is used in this study as a mechanistic foundation for studying transvascular exchange

and extravascular transport in tumors. The real vasculature of the tumor is intricate and

the cells between regions have large differences [242]. There is a necrotic region at the

center of the tumor (i.e., most/all cells are dead). In contrast, the outer region of the tumor

contains rapidly dividing cells requiring a large blood supply by abundant active blood

vessels. Thus, actual solid tumors are spatially heterogeneous and it may be that some

physiological parameters in this model are spatially dependent. In our work, we simplify

the tumor microenvironment (TME) to be spatially homogeneous without lymphatics or

extravascular bindings, which is helpful for certifying and evaluating the overall role of the

interstitial fluid pressure (IFP) on fluid transport and penetration of nanocarriers in a tumor.

The blood vessels, cells, extracellular matrix (ECM), and other microscopic structures, as

illustrated in Figure A.2, are also not considered explicitly in the model because this level

of granularity is not important at the length scales we are concerned with in this study.

In addition, a main focus of our research is on studying the overall macromolecular solute

concentrations in a tumor over a prescribed time horizon. Therefore, we utilize spatial

averaging in the data and simulation results, which essentially homogenizes the macroscopic

structures. In addition, it is also assumed that the vasculature is distributed continuously

over the spatial domain rather than at discrete or localized positions.
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Figure A.2: A diagram of the tumor microenvironment illustrating fluid and solute transport
from the blood vessels to the interstitium with high transvascular permeability [6].

Fluid Transport

The fluid transport in the interstitium of a tumor follows Darcy’s law:

u = −K∇p. (A.16)

Here, u is the interstitial fluid velocity (IFV) (cm/s), K is the hydraulic conductivity of

tumor interstitium (cm2/mm Hg-sec), and p is the IFP (mm Hg). We assume axisymmetric

flow in the spherical coordinate, and (A.16) can be simplified to

u = −Kdp

dr
,

where r is the radial position (cm).

The continuity equation for steady-state incompressible fluid flow in spherical coordinates
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is given by:

1

r2
d(r2u)

dr
= Lp

S

V
(pv − p). (A.17)

Here, Lp is the hydraulic conductivity of the microvascular wall (cm/mm Hg-sec), S/V is

the vascular surface area per unit volume (cm−1), and pv is the vascular pressure (mm Hg).

Substituting (A.16) into the continuity equation (A.17), the steady-state fluid transport

model is given by

1

r2
d

dr

(
r2
dp

dr

)
=
α2

R2
(p− pss), (A.18)

where

α = R

√
S

V

Lp

K

is a dimensionless parameter representing the ratio of resistances of the fluid flow in the

interstitium to across the vasculature, R is the radius of the spherical tumor (cm), and pss is

the steady-state interstitial pressure where the efflux from the vessels equals the influx (mm

Hg), and is equal to pv in this study.

The boundary conditions consist of a no-flux symmetry condition at the center of the

spherical tumor and a Dirichlet condition at the periphery, respectively, as:

dp

dr

∣∣∣∣
r=0

= 0,

p|r=R = p∞,

where p∞ denotes the surrounding tissue pressure (mm Hg).
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Solute Transport

To describe and characterize the transport mechanism of nanocarriers in tumors, the macro-

molecular solute transport model is governed by the convection-diffusion equation:

∂c

∂t
+

1

r2
∂(r2uc)

∂r
= D

1

r2
∂

∂r

(
r2
∂c

∂r

)
+ ϕs, (A.19)

where c is the concentration of the solute in the interstitium of the tumor (g/mL), D is the

diffusion coefficient (cm2/sec), and ϕs is the distributed source term based on a vessel pore

model for transcapillary exchange [243], given by

ϕs = Lp
S

V
(pv − p)(1− σ)cv + P

S

V
(cv − c)

Pe

ePe − 1
(A.20)

Here, Pe = Lp(pv − p)(1 − σ)/P is the Péclet number representing the ratio of the rates

of convection to diffusion across the vascular wall, σ is the solute reflection coefficient, P

is the vascular permeability of the solute through the vascular wall (cm/sec), and cv is the

solute concentration in tissue vessels (g/mL). Since the bolus injection model is applied, the

vascular solute concentration decays exponentially with time as cv = coe
−t/kd , where co is

the initial macromolecular solute concentration in the blood (g/mL), and kd is the half-life

circulation time of the nanocarriers (sec).

It is assumed that no macromolecular solutes exist in the tumor before injection, and
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therefore the initial condition is c(0, r) = 0. The boundary conditions are defined as:

−D ∂c

∂r

∣∣∣∣
r=0

+ uc|r=0 = 0

c|r=R = c∞,

where the interstitial concentration satisfies the no-flux condition at the center, is continuous

across the tumor periphery, and equals c∞, representing the concentration (g/mL) in the

normal tissue surrounding the tumor.

Pore Theory

We follow the pore theory developed in Bungay and Brenner [244]. The pores of the vessels

are assumed to be cylindrical, in this case, we can evaluate the hydraulic conductivity of the

tumor vessels Lp, the vascular permeability P , and the reflection coefficient σ by the pore

theory

Lp =
γr2o
8µL

(A.21)

P =
γHDo

L

σ = 1−W

where γ is the fraction of the surface area occupied by pores, ro is the pore radius (nm),

µ is the blood viscosity (mm Hg-sec), L is the thickness of the vessel wall (µm), Do is the

diffusion coefficient of the nanocarrier in free solution at 37◦C given by the Stokes-Einstein

relationshipDo = kBT/(6πµrp), H andW are respectively diffusive and convective hindrance
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factors based on the ratio of the particle size over the pore size which are given in Bungay

and Brenner [244]:

H =
6πΦ

Kt

,

W =
Φ(2− Φ)Ks

2Kt

,

where Φ is the partition coefficient defined as the ratio of the average intrapore concentration

to that in the bulk solution at equilibrium. When the interactions between the solutes and

pore wall are purely steric, the partition coefficient is taken as Φ = (1 − λ)2, where λ is

the ratio of particle size (dm, nm) to the pore size (do, nm). The Kt and Ks factors for the

convective hindrance term W are defined as

Kt =
9

4
π2
√
2(1− λ)−5/2[1 +

2∑
k=1

αk(1− λ)k] +
4∑

k=0

αk+3λ
k

Ks =
9

4
π2
√
2(1− λ)−5/2[1 +

2∑
k=1

βk(1− λ)k] +
4∑

k=0

βk+3λ
k

The corresponding coefficients ak and bk are listed in Table A.8. As indicated by (A.21), the

vascular permeability P depends on the particle size and vessel wall properties, such as pore

size, thickness, charge, and arrangement. Larger particles will result in lower P and when

the particle size is larger than the pore cut-off size, P becomes zero. The vascular hydraulic

conductivity Lp relies on the morphology of the wall and the fraction of the wall surface

occupied by active pores [115].
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Solution Strategy

The fluid and solute transport models were solved numerically. First, the dimensionless form

of the tumor radius, IFP, and solute concentration, were defined as:

r̂ =
r

R
,

p̂ =
p− p∞
pss − p∞

,

ĉ =
c− c∞
co − c∞

.

After reformulating the tumor transport model into dimensionless form, the centered finite

difference method was used to discretize the spatial domain. The IFP profile is obtained by

solving the fluid transport model (A.18). As for the solute transport model, the backward

difference scheme was employed for discretization of the first partial derivative ∂c/∂r. Then,

the explicit Euler method was used to integrate the transient convection-diffusion equation

with stepsize set as h = 15 s to obtain the medicine concentration profile over the tumor

radius.

A.2.2 Simplification of Inequality Constraints

In this section, we demonstrate that the inequality constraints on the superficial IFP in (4)

of the main manuscript can be expressed as linear constraints on the optimization variables,

Lp and K, such that K = ζLp, with ζ ∈ R.

First, the dimensonless analytical solution of the fluid transport model[129] (A.18) can be
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derived as:

p̂ =

(
1− sinh (r̂α)

r̂ sinh (α)

)
,

where α is given in (A.18).

Then, the IFP in the superficial region can be represented as:

p̂peri =

(
1− sinh (r̂periα)

r̂peri sinh (α)

)
, (A.22)

where r̂peri is the dimensionless radius from the center towards the superficial region of a

tumor.

Substituting (A.22) into the inequality constraints of (4) of the main manuscript results in:

(
1− sinh (r̂periα)

r̂peri sinh (α)

)
≥ p̂peri,min, (A.23)(

1− sinh (r̂periα)

r̂peri sinh (α)

)
≤ p̂peri,max. (A.24)

If (A.23) is active, then the following equality holds:

1− sinh (r̂periα)

r̂peri sinh (α)
= p̂peri,min. (A.25)

Differentiating (A.25) with respect to Lp, yields the following expression:

(
− r̂peri sinh (α) cosh (r̂periα)− sinh (r̂periα) cosh (α)

r̂peri sinh
2 (α)

)(
dα

dLp

)
= 0. (A.26)
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Since α > 0 always holds (Lp > 0), it can be verified that
(
− r̂peri sinh(α) cosh(r̂periα)−sinh(r̂periα) cosh(α)

r̂peri sinh
2(α)

)
>

0. Therefore, if the constraint is active, then we must have:

dα

dLp

= 0

⇒
d

(
R
√

SLp

V K

)
dLp

= 0

For this expression to hold, this means that α must be constant with respect to Lp. Since all

parameters in α other than Lp and K are constants, K must necessarily be a scalar multiple

of Lp.

This gives the following result:

K = ζLp, for some ζ ∈ R such that p̂ = p̂peri,min. (A.27)

By the same procedure, K must be a scalar multiple of Lp if (A.24) is active. Therefore,

(A.23) and (A.24) can be simplified as, respectively:

K ≤ ζmaxLp, (A.28)

K ≥ ζminLp. (A.29)

The values of ζmin and ζmax are listed in Table 5 of the main manuscript. The values for

ζmin are calculated according to the following procedure:
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1. Choose two different values of Lp within the interval bounds.

2. Solve the nonlinear equation (A.25) with each value of Lp for the corresponding K

values.

3. Compute ζmin as the slope of the secant line joining the two points on an Lp versus K

plot.

The calculation of ζmax values follow analogously.
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Figure A.3: The radial interstitial concentration profiles at the time corresponding to the
highest spatially-averaged concentrations with respect to control (38.8 h), 3 mg/kg dexam-
ethasone treatment (34.2 h), and 30 mg/kg DEX treatment (53.9 h) cases are presented.
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Figure A.4: The percentages of the spatially-averaged concentrations at 72 h over the highest
spatially-averaged concentrations for the control, 3 mg/kg and 30 mg/kg dexamethasone
(DEX) treatment cases are presented. The DEX treatment enhances the retention effect.
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(a) (b)

Figure A.5: The contributions from convective and diffusive flux to spatially-averaged con-
centrations versus time for (a) control; (b) 3 mg/kg dexamethasone (DEX) treatment cases
are presented. The profiles are plotted with a 12-hour horizon because the diffusive flux
becomes extremely small after that. The contribution from convective flux becomes more
dominant after DEX treatment.
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Figure A.6: The transvascular flux profiles over the dimensionless radius r̂ for the (a) control;
(b) 3 mg/kg dexamethasone (DEX) treatment; and (c) 30 mg/kg DEX treatment cases with
70 kDa dextran one-hour post-administration are presented. (d) The spatially-averaged
convective and diffusive fluxes at one-hour post-administration for different doses of DEX
are presented in this bar plot.
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Table A.8: Hydrodynamic Coefficients for Cylindrical Pore Model [243]

k 1 2 3 4 5 6 7
αk -73/60 77293/50400 -22.5083 -5.6117 -0.3363 -1.216 1.647
βk 7/60 -2227/50400 4.0180 -3.9788 -1.9215 4.392 5.006
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Table A.9: The bounds on input variables, Lp and K, used for the surrogate model con-
struction are listed in this table.

Bounds Control Treatment
Variable Lower bound Upper bound Lower bound Upper bound
Lp (cm/mm Hg-sec) 1.00× 10−7 1.75× 10−6 5.00× 10−7 3.50× 10−6

K (cm2/mm Hg-sec) 1.00× 10−7 1.00× 10−6 7.00× 10−7 4.00× 10−6
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Table A.10: The benchmark metrics for development time and performance of artificial
neural network surrogate models of difference cases (70 kDa - control; 70 kDa - treatment; 500
kDa - control; 500 kDa - treatment) are tabulated. “70 kDa” and ”500 kDa” denote molecular
weights of nanocarriers. “Treatment” denotes both 3 mg/kg and 30 mg/kg dexamethasone
(DEX) treatment.

Time Metrics
Case Data Generation (s) Training (s)
70 kDa - Control 3272 473
70 kDa - Treatment 3072 538
500 kDa - Control 3210 474
500 kDa - Treatment 3761 539

Performance Metrics
Case Mean-Squared Error Mean-Percent Error (%)
70 kDa - Control 5.49× 10−7 0.339
70 kDa - Treatment 2.32× 10−7 0.102
500 kDa - Control 3.23× 10−7 0.467
500 kDa - Treatment 1.55× 10−7 0.096
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Table A.11: Data for diffusion coefficients [245] and blood half-life circulation
time [246] with respect to nanocarrier sizes are presented in this table.

Particle size 12nm 60nm 125nm 250nm

Diffusion coefficient (cm2/s) 2× 10−7 5× 10−8 6× 10−9 1× 10−9

Half-life circulation time (min) 1480 995 582 500∗

∗represents extrapolation from data
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Table A.12: This table provides benchmark metrics of time and performance (data generation
time, training time, mean-squared error and mean-percent error) for ANN surrogate model
development in (12) of the main manuscript.

Time Metrics Performance Metrics
Data Generation (s) Training (s) Mean-Squared Error Mean-Percent Error (%)

ĉANN
avg 2847 180 7.49× 10−7 0.172
ĉANN
peri 2849 66 5.22× 10−7 0.276

244



Table A.13: Physiological parameter values for the tumor transport model are listed in this
table. “70 kDa” and ”500 kDa” denote molecular weights of nanocarriers.

Parameter Definition Value Reference
S/V (cm−1) Vascular density 200 [247]
D (cm2/sec) Diffusion coefficient 2× 10−7 (70 kDa); 1.375× 10−7 (500 kDa) [245]
pv (mm Hg) Vascular pressure 25 [149]
kd (min) Blood circulation time 1480 (70 kDa); 1278 (500 kDa) [246]
µ (mm Hg-sec) Blood viscosity 3× 10−5 [133]
L (µm) Vessel wall thickness 5 [248]
γ Fraction of pore area 1× 10−3 [121]
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Appendix B

Related Publications and

Presentations

B.1 Journal Articles

Wang, C., Wilhelm, M. E., and Stuber, M. D. Semi-infinite Optimization with Hybrid

Models, Industrial & Engineering Chemistry Research, 61(15), 5239-5254 (2022).

Wang, C., Morgenstern, S., Martin, J. D., and Stuber, M. D. Optimal Therapy Design

with Tumor Microenvironment Normalization, AIChE Journal, in press

Wilhelm, M. E., Wang, C., and Stuber, M. D. Convex and Concave Envelopes of

Artificial Neural Network Activation Functions for Deterministic Global Optimization,

under review.

Wang, T1., Wang, C1., Xu, Z., Cui, C., Wang, X., Demitrack, Z., Dai, Z., Bagtzoglou,

A., Stuber, M. D., and Li, B. Precise control of water and wastewater treatment
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systems with nonideal heterogeneous mixing models and high-fidelity sensing, Chemical

Engineering Journal, 430(3), 132819 (2022). (1 co-first authorship)

Martin, J. D., Panagi, M., Wang, C., Khan, T. T., Martin, M. R., Voutouri, C., Toh,

K., Papageorgis, P., Mpekris, F., Polydorou, C., Ishii, G., Takahashi, S., Gotohda,

N., Suzuki, T., Wilhelm, M. E., Melo, V. A., Quader, S., Norimatsu, J., Lanning,

R. M., Kojima, M., Stuber, M. D., Stylianopoulos, T., Kataoka, K., and Cabral,

H. Dexamethasone Increases Cisplatin-Loaded Nanocarrier Delivery and Efficacy in

Metastatic Breast Cancer by Normalizing the Tumor Microenvironment. ACS Nano.

13(6), 6396-6408 (2019)

B.2 Conference Proceedings

Wang C., Wihelm, M. E., and Stuber, M. D. Robust Optimization with Hybrid First-

Principles Data-Driven Models. In Proceedings, AIChE 2021, Boston, MA, Nov 10,

2021.

Wang, C., Wang, T., Li, B., and Stuber, M. D. System Visualization Using Real-Time

Data-Driven Models Derived From High-Resolution Sensor Profiling. In Proceedings,

AIChE 2020, Virtual, Nov 17, 2020.

Wang, C. and Stuber, M. D. Recent Advances in Bounding Transient PDE Models

With Parametric Uncertainty. In Proceedings, AIChE 2020, Virtual, Nov 17, 2020.

Wang, C. and Stuber, M. D. Robust Simulation of Transient PDE Models under Un-

certainty. In Proceedings, AIChE 2019, Orlando, FL, Nov 15, 2019.
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Wang, C., Martin, J. D., Cabral, H., and Stuber, M. D. Rigorous Parameter Estimation

for Model Validation in Oncological Systems. In Proceedings, AIChE 2018, Pittsburgh,

PA, Oct 29, 2018.
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D. Rodŕıguez-Abreu, D. Moro-Sibilot, C. A. Thomas, F. Barlesi, G. Finley, C. Kelsch,

A. Lee, S. Coleman, Y. Deng, Y. Shen, M. Kowanetz, A. Lopez-Chavez, A. Sandler, and

M. Reck, “Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC,”

New England Journal of Medicine, vol. 378, no. 24, pp. 2288–2301, 2018.

[127] J. E. Murphy, J. Y. Wo, D. P. Ryan, J. W. Clark, W. Jiang, B. Y. Yeap, L. C.

Drapek, L. Ly, C. V. Baglini, L. S. Blaszkowsky, C. R. Ferrone, A. R. Parikh, C. D.

Weekes, R. D. Nipp, E. L. Kwak, J. N. Allen, R. B. Corcoran, D. T. Ting, J. E. Faris,

A. X. Zhu, L. Goyal, D. L. Berger, M. Qadan, K. D. Lillemoe, N. Talele, R. K. Jain,

T. F. DeLaney, D. G. Duda, Y. Boucher, C. F.-D. Castillo, and T. S. Hong, “Total

neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by

266



chemoradiotherapy for locally advanced pancreatic cancer,” JAMA Oncology, vol. 5,

no. 7, p. 1020, 2019.

[128] V. P. Chauhan, T. Stylianopoulos, Y. Boucher, and R. K. Jain, “Delivery of molecular

and nanoscale medicine to tumors: Transport barriers and strategies,” Annual Review

of Chemical and Biomolecular Engineering, vol. 2, no. 1, pp. 281–298, 2011.

[129] L. T. Baxter and R. K. Jain, “Transport of fluid and macromolecules in tumors. i.

role of interstitial pressure and convection,” Microvascular Research, vol. 37, no. 1, pp.

77–104, jan 1989.

[130] ——, “Transport of fluid and macromolecules in tumors. ii. role of heterogeneous per-

fusion and lymphatics,” Microvascular research, vol. 40, no. 2, pp. 246–263, 1990.

[131] ——, “Transport of fluid and macromolecules in tumors: Iii. role of binding and

metabolism,” Microvascular research, vol. 41, no. 1, pp. 5–23, 1991.

[132] ——, “Transport of fluid and macromolecules in tumors. iv. a microscopic model of the

perivascular distribution,” Microvascular research, vol. 41, no. 2, pp. 252–272, 1991.

[133] J. W. Baish, P. A. Netti, and R. K. Jain, “Transmural coupling of fluid flow in mi-

crocirculatory network and interstitium in tumors,” Microvascular research, vol. 53,

no. 2, pp. 128–141, 1997.

[134] P. W. Sweeney, A. d’Esposito, S. Walker-Samuel, and R. J. Shipley, “Modelling the

transport of fluid through heterogeneous, whole tumours in silico,” PLOS Computa-

tional Biology, vol. 15, no. 6, p. e1006751, 2019.

267



[135] E. Begoli, T. Bhattacharya, and D. Kusnezov, “The need for uncertainty quantification

in machine-assisted medical decision making,” Nature Machine Intelligence, vol. 1,

no. 1, pp. 20–23, 2019.

[136] D. Deshpande, J. G. Pasipanodya, S. G. Mpagama, P. Bendet, S. Srivastava,

T. Koeuth, P. S. Lee, S. M. Bhavnani, P. G. Ambrose, G. Thwaites, S. K. Heysell,

and T. Gumbo, “Levofloxacin pharmacokinetics/pharmacodynamics, dosing, suscep-

tibility breakpoints, and artificial intelligence in the treatment of multidrug-resistant

tuberculosis,” Clinical Infectious Diseases, vol. 67, no. suppl 3, pp. S293–S302, 2018.

[137] S. D. Nelson, C. G. Walsh, C. A. Olsen, A. J. McLaughlin, J. R. LeGrand, N. Schutz,

and T. A. Lasko, “Demystifying artificial intelligence in pharmacy,” American Journal

of Health-System Pharmacy, vol. 77, no. 19, pp. 1556–1570, 2020.

[138] K. McBride and K. Sundmacher, “Overview of surrogate modeling in chemical process

engineering,” Chemie Ingenieur Technik, vol. 91, no. 3, pp. 228–239, 2019.

[139] M. Pirdashti, S. Curteanu, M. H. Kamangar, M. H. Hassim, and M. A. Khatami,

“Artificial neural networks: applications in chemical engineering,” Reviews in Chemical

Engineering, vol. 29, no. 4, pp. 205–239, 2013.

[140] R. Horst and H. Tuy, Global Optimization. Springer Berlin Heidelberg, 1996.

[141] M. Wilhelm and M. D. Stuber, “Easy advanced global optimization (eago): An open-

source platform for robust and global optimization in julia.” AIChE, 2017, aIChE

Annual Meeting.

268



[142] C. Wang and M. D. Stuber, “Recent advances in bounding transient pde models with

parametric uncertainty,” in AIChE Annual Meeting 2020, 2020.

[143] C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich

ecosystem for solving differential equations in julia,” Journal of Open Research Soft-

ware, vol. 5, no. 1, 2017.

[144] I. Sobol', “On the distribution of points in a cube and the approximate evaluation of

integrals,” USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,

pp. 86–112, 1967.

[145] L. Bessi and C. Rackauckas, “Surrogates.jl,” 2019. [Online]. Available: https:

//github.com/SciML/Surrogates.jl

[146] M. Innes, E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali,

A. Pal, and V. Shah, “Fashionable modelling with flux,” CoRR, vol. abs/1811.01457,

2018. [Online]. Available: https://arxiv.org/abs/1811.01457

[147] M. Innes, “Flux: Elegant machine learning with Julia,” Journal of Open Source Soft-

ware, vol. 3, no. 25, p. 602, 2018.

[148] M. Han, Z. Shi, and W. Wang, “Modeling dynamic system by recurrent neural network

with state variables,” in Advances in Neural Networks - ISNN 2004. Springer Berlin

Heidelberg, 2004, pp. 200–205.

[149] Y. Boucher and R. K. Jain, “Microvascular pressure is the principal driving force for

interstitial hypertension in solid tumors: implications for vascular collapse,” Cancer

research, vol. 52, no. 18, pp. 5110–5114, 1992.

269

https://github.com/SciML/Surrogates.jl
https://github.com/SciML/Surrogates.jl
https://arxiv.org/abs/1811.01457


[150] V. Subbiah, J. E. Grilley-Olson, A. J. Combest, N. Sharma, R. H. Tran, I. Bobe,

A. Osada, K. Takahashi, J. Balkissoon, A. Camp, A. Masada, D. J. Reitsma, and L. A.

Bazhenova, “Phase ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in

patients with advanced solid tumors,” Clinical Cancer Research, vol. 24, no. 1, pp.

43–51, 2017.

[151] F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K.

Jain, “Vascular permeability in a human tumor xenograft: molecular size dependence

and cutoff size,” Cancer Research, vol. 55, no. 17, pp. 3752–3756, 1995.

[152] P. Papageorgis, C. Polydorou, F. Mpekris, C. Voutouri, E. Agathokleous, C. P.

Kapnissi-Christodoulou, and T. Stylianopoulos, “Tranilast-induced stress alleviation

in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-

independent manner,” Scientific Reports, vol. 7, no. 1, 2017.

[153] U.-P. Wen and S.-T. Hsu, “Linear bi-level programming problems—a review,” Journal

of the Operational Research Society, vol. 42, no. 2, pp. 125–133, 1991.

[154] O. Ben-Ayed, “Bilevel linear programming,” Computers & Operations Research,

vol. 20, no. 5, pp. 485–501, 1993.

[155] G. Anandalingam and T. L. Friesz, “Hierarchical optimization: An introduction,”

Annals of Operations Research, vol. 34, no. 1, pp. 1–11, 1992.

[156] L. N. Vicente and P. H. Calamai, “Bilevel and multilevel programming: A bibliography

review,” Journal of Global optimization, vol. 5, no. 3, pp. 291–306, oct 1994.

270



[157] S. Dempe, “Annotated bibliography on bilevel programming and mathematical pro-

grams with equilibrium constraints,” Optimization, vol. 52, no. 3, pp. 333–359, 2003.

[158] Z. H. Gümüş and C. A. Floudas, “Global optimization of nonlinear bilevel program-

ming problems,” Journal of Global Optimization, vol. 20, no. 1, pp. 1–31, 2001.
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