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Background: EAGO/Julia

How do you get EAGO?
From Julia package manager:

add EAGO

From GitHub:

using Pkg;

Pkg.add("EAGO")|



https://www.github.com/PSORLab/EAGO.jl

Background: EAGO/Julia

How do you get EAGO?
From Julia package manager:

add EAGO

From GitHub:
https://www.qithub.com/PSORLab/EAGO.jl

using Pkg;

Pkg.add("EAGO")|

How do you use EAGQO?
As a solver in the open-source algebraic modeling language JuMP.
. «& As astand-alone solver.
julia
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https://www.github.com/PSORLab/EAGO.jl

Background: Advanced

Formulations

« May be parametric and/or have multilevel structure

min f(x) min f(x,y)

XE X,y

s.t. g(x,p)<0,VpeP s.t. g(x,y) <0
card(P) = oo RN\ x € X € IR"

y € arg max h(X,z)
z€Y (x)

FAGO



Background: Advanced

Formulations

May involve differential equations (ODEs, PDEs, DAES)
Finish

¢ = min ¢(x(p,?,),p)
‘ st %(p.t) = F(x(p.1).p.), Vt € T = [t,,1
x(p,t,) = x,(p)
g(x(p,t,),p) <0
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Background: Advanced

Formulations

« May involve “white box” simulations

FAGO



Background: Advanced

Formulations

« May be parametric and/or multilevel structure
« May involve differential equations (ODEs, PDES)
« May involve “white box” simulations

min objective

var

s.t. advanced

algorithms

FAGO



Background: Deterministic Global

Optimization
« Deterministic search: branch-and-bound
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EAGQO: Core

 Customizable and feature-rich branch-and-bound
— McCormick-based convex/concave relaxations
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EAGO: McCormick Relaxations

« Most broadly known for convex/concave relaxations of bilinear terms

o (z,y) f(z,y) = zy f(z,y)
P
EURO 2022 - July 5, 2022 12 ‘@



EAGO: McCormick Relaxations

Relaxations of g(x) at x in X y = f(g(x),..,h(x))

> Relaxations of
f(x) at xin X

Apply f composite relaxation rules

Relaxations of h(x) at x in X

¢ Improved (tighter) relaxations of composite bilinear terms*
¢ Supports a variety of nonlinear expressions:

FAGO

Common algebraic expressions: log, log2, log10, exp, exp2, exp10, sqrt, +, -, A, min, max, /, X, abs, step, cbrt, ...
Trigonometric Functions: sin, cos, tan, asin, acos, atan, sec, csc, cot, asec, acsc, acot...

Hyperbolic Functions: sinh, cosh, tanh, asinh, acosh, atanh, sech, csch, coth, acsch, acoth

Special Functions: erf, erfc, erfinv, erfcinv

Activation Functions®: relu, leaky relu, sigmoid, softsign, softplus, maxtanh, gelu, elu, selu, silu, ...

Common Algebraic Expressions: x/logx, arh, xexpax

*Under Review




Published Results

Taylor & Francis

Taylkar & Francis Graup

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2020.1 786566

W) Check for updates

EAGO.jl: easy advanced global optimization in Julia

M. E. Wilhelm © and M. D. Stuber

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular
Engineering, University of Connecticut, Storrs, CT, USA

« EAGO exhibits competitive performance on
benchmarking set

Performance Profile on Test Set
1.0 T -
| |

ABSTRACT

An extensible open-source deterministic global optimizer (EAGO)
programmed entirely in the Julia language is presented. EAGO
was developed to serve the need for supporting higher-complexity
user-defined functions (e.g. functions defined implicitly via algo-
rithms) within optimization models. EAGO embeds a first-of-its-kind
implementation of McCormick arithmetic in an Evaluator structure
allowing for the construction of convex/concave relaxations using
a combination of source code transformation, multiple dispatch,
and context-specific approaches. Utilities are included to parse user-
defined functions into a directed acyclic graph representation and
perform symbolic transformations enabling dramatically improved
solution speed. EAGO is compatible with a wide variety of local opti-
mizers, the most exhaustive library of transcendental functions, and
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allows for easy accessibility through the JuMP modelling language.
Together with Julia's minimalist syntax and competitive speed, these
powerful features make EAGO a versatile research platform enabling
easy construction of novel meta-solvers, incorporation and utiliza-
tion of new relaxations, and extension to advanced problem for-
mulations encountered in engineering and operations research (e.g.
multilevel problems, user-defined functions). The applicability and
flexibility of this novel software is demonstrated on a diverse set of
examples. Lastly, EAGO is demonstrated to perform comparably to
state-of-the-art commercial optimizers on a benchmarking test set.

1. Introduction and motivation

Mathematical optimization problems are ubiquitous in scientific and technical fields.
Applications range from aerospace and chemical process systems to finance. However, even
relatively simple physical processes such as mixing, may introduce significant nonconvex-
ity into problem formulations [60]. As such, nonconvex programs often represent the most
faithtul representations of the system of interest. Multiple approaches have been developed
to address these cases. Heuristics such as evolutionary algorithms, may approximate good
solutions for select problems. However, heuristics may fail to guarantee that even a feasible

CONTACT M.D.Stuber &) stuber@alum.mitedu (@) Process Systems and Operations Research Laboratory,
Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd, Unit 3223, Starrs,
CT 06269-3222, USA

0 Supplemental data for this article can be accessed here. httpsy//doi.org/10.1080/10556788.2020.1786566

i 2020 Informa UK Limited, trading as Taylor & Francls Group
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Recent Advances: ANNS

* Optimization of ANNs




Recent Advances: ANNs

* Optimization of ANNs




Recent Advances: ANNS

* Optimization of ANNs

min ¢(p,x(p))

peP

s.t. g(p,x(p)) <0
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Recent Advances: ANNS

e Optimization of ANNs*
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Solver

Solved Unsolved

EAGO (Envelope)

280 (93.3%) 20 (6.7%)

FAGO (Naive McCormick) 260 (86.7%) 40 (13.3%)
SCIP 240 (80.0%) 60 (20.0%)
BARON 273 (91.0%) 27 1(9.0%)

*Under Review
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1 | INTRODUCTION

Solid tumors feature pathophysiclogical abnommaliies that are
biophysicd barders to the transport of anticancer drugs. These
bamiers impede the effectiveness of such therapies by limiting their
accumulation and spatial distribution.* Ameliorating the pathophysiol-
ogy such that tumor microeniron ment{TME] components have a more
“nomalized” phenotype increases small-molecule and nanocamier-
hased therapies’ delivery and efficacy in cancer patients.”  However,
TME nomalization combined with anticancer therapies has wet to lead
to cures throughout a cancer patient population. Thus, a deeper under-
standing of how TME nomalization affects the transport of therapies

This co ntrbation was ldentded by Jamie Spangler (0 hrs Hopidne University) 2 the Best
Presentiton in $ue sesson “Chemical Enginaerng Applications in Cancer™ of the 2015

AMCHE Anned Mieeting in Orlanda.

Samuel Degnan-Morgenstern® |

John D. Martin? |

Tumor microemnvironment {TME) normalization improves efficacy by inoreasing anticancer
ranocarder delivery by restoring transvascular pressure gradients that induce comnvection
However, transport depends on TME biophysics, normalization dose, and nanocarrier
size. With increased understanding, we could use computation to personalize normaliza-
tion amount and nanocamier size. Here, we use deterministic global dynamic optimization
with novel bounding routines to validate mechanistic models against in vivo data. We find
that normalization with dexamethasone increases the maximum transvascular convection
rate of nanocarders by 48-fold, the tumor volume fraction with convection by 61%, and
the total amount of convection by 360%. Monetheless, 22% of the tumor still ladds con-
wection. These findings underscore both the effectiveness and limits of normalization
Lking artificial neural network surogate modeling, we demonstrate the feasibility of rap-
idly determining the dexamethasone dose and nanccarrier size to maximize accumulation
Thus, this digital testbed quantifies transport and performs therapy design

deterministic global dynamic optimization, machine learning sumogate, mass transport,
ranomedicine, therapy design, tumor mi oroenvironment

within tumorsis necessary to fully bypass these spatially and temporally
heterogeneous biophysical bamiers. Mathematical modeling an be
used to construct 3 robust frrmework for studying how the nomalized
TME modulates biophysical barmriers to transport phenomena in tumors,
thereby enabling the discovery of deeper insights into effective TME
normalization. In tum, such a famework may serve as the foundation
for establishing a technology platform for effective therapy design to
improving thempeutic efficacy.

11 | Cancer biology

MNanoscale anticancer therapies onthe order of dozens of nanometers,
induding macromolecules such as polymeric micelles and antibodies,
benefit from longer systemic droulation due to slower dearance,
selective accumulation in tumors due to leaky tumor blood wessels,

AIChE | ND2e1THMT.
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Semi-Infinite Optimization with Hybrid Models
Chenyu Wang, Matthew E. Wilhelm, and Matthew D. Stuber®

I: IFtead Online

Gte This: Ind. Eng. Chem. Res. 2022, 61, 5239-5254
-‘\:: SS [l Metrics & More | Article Recomm endations: I
ABSTRACT: The robust design of performance/safety-criticl process systems,

from a model-based perspective, remains an existing challenge Hybrid first-
principles data-driven models offer the potential to dramatically improve model
prediction accuracy, stepping closer to the digital twin concept. Within this
context, worst-case engineering design feasibility and reliahility problems give rise
to a class of semi-infinite program (SIP) formulations with hybrid modeds as
coupling equality constraints. Reduced-space deterministic global optimization
methods are exploited to sobve this class of SIPs to e-global optimality in finitely
many iterations. This approach is demonstrated on two challenging cse studies: a

nitrification reactor for a wastewater treatment system to address worst-case
feasibility verification of dynamical systems and a three-phase separation system
plagued by numerical domain violations to demaonstrate how they can be overcome using a nonsmooth SIP formulation with hybrid

models and a validity constraint incorporated.

B INTRODUCTION

Many engineering systems are deemed safety-critical and, as
such, require strict guarantees of performance and safety.
Uncertainties, such as those introduced by inaccurate data,
should be accounted for at the design stage of such systems.
Therefore, it is necessary to identify the worst-case perform-
ance of these systems to mitigate the impacts of uncertainty on
the final design. For example, in many energy-related
applications, the costs associated with opemtional failures are
extremely high, often including loss of life, substantial
environmental damage, severe economic damage, and major
sociopolitical fallout. From a model-based perspective,
approaching design problems of this natire amounts to
identifying realizations of uncertainty that result in a simulated
worst-case violation of performance/safety constraints as
govemed by a system model. As such, deterministic global
optimization methods are required to guarantee worst-case
realizations of uncertainty may be identified in the general case.

Woaorst-case design problems have historiclly been treated as
hilevel or more general multilevel programs. These programs
have feasible sets that are characterized by other optimization
problems. As such, these programs are extremely challenging
or even impossible to solve directly using existing methods,
Thus, early studies focused on the simplest cases of womst-case
design problems with linearity and convexity conditions.
Ower the years, relevant smdies were extended to more
compliated worst-case design problems with nm]inzar'rt:,'.-‘ s

Giimiis and Floudas® developed a global optimiation
algorithm based on relmations of the feasible region for
solving worst-case design problems whose bilevel formulations
involve twice-differentiable nonlinear functions. A trans-

2 I00F Amedican Chemical Sodety

A4 ACS Publications

5239

formation was proposed to replce the inner problem with
its KT optimality conditions, transforming the inner program
into nonlinear algebraic constraints under the linear
independence constrint qualification. This approach requires
convexity for the EKT conditions to be necessary and
sufficient; however, general nonconvex functions were
considered by exploiting aBB relacations within a branch-
and-bound framework for the solution of the KKT-
reformulated NLP. Feasibility and flexibility index problems
were considered within this context in a follow-up work
However, in general this approach cannot provide valid
convergent upper bounds For!:li]ev:] programs with nonconvex
inner programs.” Mitsos et al.” proposed a bounding algorithm
to resolve this problem that @n solve nonlinear bilevel
programs to global optimality without any convexity
assumptions, However, the approach is limited to c\n'lz'
considering inequality constraints (see Mitsos et al,
Assumption 3 ).

As an alternative strategy to solving bilevel programs,
multiparametric progmmming was developed by recastin
them into single-level deterministic optimization problems.™
This strategy is unique in that the parametric sohition of the
inner program is characterized explicitly and therefore can be
utilized in rea-time optimization applications. However, the

Received: Jamsary 10, 2022
Revised:  March 4, 2022
Accepted: March 21, 2022
Published: Apdl 11, 2022
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Recent Advances: ODEs/DAEs

Global optimization problems constrained by ODEs/DAEs:

2

\ Relax-then-Discretize (McCormick relaxations) /




Recent Advances: ODEs/DAEs

-s/DAES:

\

¢(p,t) = u(p,c(p,?),1),
c(p,f,) = ¢,(p);

C(p,t) = o(p,C(p, 1), 1),
C(p,t,) = C,(p)

. relaxations) /




Recent Advances: ODEs/DAES

SourceCodeMcCormick.jl

dx; N v
— =T +p, — =T + P,
dt 1 pl dt 1 p’L
dx.
dt dzzcv Ccv —I— Ccv dzzcc (616 _|_ CcC
—— =z S, —— = .
dt 3 pZ dt 1 pZ

Source code transformation to generate the auxiliary ODE system

Utilizes ModelingToolkit.jI's ODE format, with numerical integration through the
SciML ecosystem




Recent Advances: ODEs/DAES

SourceCodeMcCormick.jl

using SourceCodeMcCormick, ModelingToolkit

@parameters p[1l:2] t
@variables x[1:2](t)
D = Differential(t)

eqns = [D(x[1]) ~ p[1]+x[1],
D(x[2]) ~ p[2]+x[2]]

@named syst = ODESystem(eqns, t, x, p)
new_syst = apply transform(McCormickIntervalTransform(), syst)

Utilizes ModelingToolkit.jI's ODE format, with numerical integration through the
SciML ecosystem

EURO 2022 - July 5, 2022 24 ‘0



Recent Advances: ODEs/DAES

SourceCodeMcCormick.jl

Original system: dgjL ngU
Differential(t)(x[1](t)) ~ x[1](t) + p[1] i — gl p,L, =Y 4 p?f,
Differential(t)(x[2](t)) ~ x[2](t) + p[2] dt ' ' 0 ! '

Transformed system:

Differential(t)(x_1 lo(t))
Differential(t)(x_1 hi(t))
Differential(t)(x_1 _cv(t))
Differential(t)(x_1 cc(t))
Differential(t)(x_2 lo(t))
Differential(t)(x_2 hi(t))
Differential(t)(x_2_cv(t))
Differential(t)(x_2_cc(t))

& & ¢ & 2 & ¢ 2

ihizes Modeling 1oo
SciML ecosystem

(&) cC
' 17 CU CU dmz SECC ccC
g i ey = TR

e the auxiliary ODE system

cc(t)
ormat, with numerical integration through the
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Recent Advances: ODEs/DAES

Lower-bounding problem solved y 1
using black-box sampling method §
published by Song et al.’ 3
Lower bound constructed using
pointwise evaluations

XT Y x

1. Song et al. Bounding convex relaxations of process models from below by tractable black-box sampling(2021)
EURO 2022 - July 5, 2022 26




Recent Advances: ODEs/DAEs

Hardware solution: exploit GPGPU architecture for ODE parallelization

CPU Workflow (x86 cores) GPGPU Workflow (CUDA cores)

Task 1 Task 2 Task 3 Task 1

1 | ! !

! !
Core 1 Cofe 2 Core 3 w w ® 6 o w w
! ! ! | i

Output Output




Recent Advances: ODEs/DAEs

Typical relax-then-discretize

] Use [p", pY] to ) Evaluate auxiliary
[ Pick B&B Node generate auxiliary system to construct
J ODEs J lower bound

SourceCodeMcCormick.jl relax-then-discretize

Generate auxiliary ] Evaluate auxiliary
ODEs with embedded >[ Pick B&B Node J system to construct
[p4, pV] dependence J lower bound




Recent Advances: ODEs/DAES
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Recent Advances: ODEs/DAES

oo | Infeasible . *
Start Presolve ——— :( _________________ \\
l —-——- P Preprocess Ly

] N 2 I
3 __ ! ( N ( N
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Conclusion

« EAGQO is a feature-rich nonconvex solver and research platform written in
Julia

— Use with JuMP AML or stand-alone
« Exhaustive library of relaxation envelopes
— New theory for composite bilinear relaxations
— ANNSs
« Currently focusing on relaxations for global dynamic optimization
— Source code transformation
— Exploiting GPGPU




Thank You — Any Questions?

This material is based upon work supported
by the National Science Foundation under
Grant No. 1932723. Any opinions, findings,
and conclusions or recommendations
expressed in this material are those of the
authors and do not necessarily reflect the
views of the National Science Foundation.
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