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Abstract

The robust design of performance/safety-critical process systems, from a model-based

perspective, remains an existing challenge. Hybrid first-principles data-driven models of-

fer the potential to dramatically improve model prediction accuracy, stepping closer to the

digital twin concept. Within this context, worst-case engineering design feasibility and reli-

ability problems give rise to a class of semi-infinite program (SIP) formulations with hybrid

models as coupling equality constraints. Reduced-space deterministic global optimization

methods are exploited to solve this class of SIPs to ϵ-global optimality in finitely many it-

erations. This approach is demonstrated on two challenging case studies: a nitrification

reactor for a wastewater treatment system to address worst-case feasibility verification of

dynamical systems; and a three-phase separation system plagued by numerical domain vi-

olations to demonstrate how they can be overcome using a nonsmooth SIP formulation

with hybrid models and a validity constraint incorporated.
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Introduction

Many engineering systems are deemed safety-critical and, as such, require strict guarantees

of performance and safety. Uncertainties, such as those introduced by inaccurate data, should

be accounted for at the design stage of such systems. Therefore, it is necessary to identify the

worst-case performance of these systems to mitigate the impacts of uncertainty on the final de-

sign. For example, in many energy-related applications, the costs associated with operational

failures are extremely high; often including loss of life, substantial environmental damage, se-

vere economic damage, and major sociopolitical fallout. From a model-based perspective, ap-

proaching design problems of this nature amounts to identifying realizations of uncertainty

that result in a simulated worst-case violation of performance/safety constraints as governed

by a system model. As such, deterministic global optimization methods are required to guaran-

tee worst-case realizations of uncertainty may be identified in the general case.

Worst-case design problems have historically been treated as bilevel or more general mul-

tilevel programs. These programs have feasible sets that are characterized by other optimiza-

tion problems. As such, these programs are extremely challenging or even impossible to solve

directly using existing methods. Thus, early studies focused on the simplest cases of worst-

case design problems with linearity and convexity conditions.1,2 Over the years, relevant stud-

ies were extended to more complicated worst-case design problems with nonlinearity.3–5

Gümüş and Floudas 6 developed a global optimization algorithm based on relaxations of

the feasible region for solving worst-case design problems whose bilevel formulations involve

twice-differentiable nonlinear functions. A transformation was proposed to replace the inner

problem with its KKT optimality conditions, transforming the inner program into nonlinear

algebraic constraints under the linear independence constraint qualification. This approach

requires convexity for the KKT conditions to be necessary and sufficient, however general non-

convex functions were considered by exploiting αBB relaxations within a branch-and-bound

framework for the solution of the KKT-reformulated NLP. Feasibility and flexibility index prob-
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lems were considered within this context in a follow-up work.7 However, this approach cannot

provide valid convergent upper bounds for bilevel programs with nonconvex inner programs,

in general.8 Mitsos et al. 8 proposed a bounding algorithm to resolve this problem that can solve

nonlinear bilevel programs to global optimality without any convexity assumptions. However,

the approach is limited to only considering inequality constraints (see Mitsos et al. 8, Assump-

tion 3).

As an alternative strategy to solving bilevel programs, multiparametric programming was

developed by recasting them into single-level deterministic optimization problems.9,10 This

strategy is unique in that the parametric solution of the inner program is characterized explic-

itly and therefore can be utilized in real-time optimization applications. However, the devel-

oped methods require the inner programs to be linear or quadratic programs.10 For general

nonconvex objectives and general nonlinear and nonconvex inner programs, multiparametric

programming is not applicable. In this work, we investigate the most general worst-case design

problems that may involve nonlinear coupling equality constraints, and in doing so we consider

the methods that reformulate bilevel programs as equivalent semi-infinite programs (SIPs).

The solution of general nonconvex SIPs has been an active area of research in recent years,

yielding approaches that perform well for solving classes of worst-case design problem formu-

lations. Many of the recent advancements have been based on the discretization-based cutting-

plane algorithm developed by Blankenship and Falk 11 . Mitsos 12 developed an algorithm with

a new procedure for feasible point generation by setting a restriction condition of right-hand

side of the semi-infinite constraints. Stuber and Barton 13 developed a modified version of the

SIP algorithm proposed by Mitsos 12 and finally extended the method to the most general non-

convex case accounting for semi-infinite equality constraints without assuming that they admit

closed-form parametric solutions.

Djelassi and Mitsos 14 developed a hybrid discretization-based algorithm for the global so-

lution of SIPs without semi-infinite equality constraints. The algorithm proposed by Mitsos 12 is

employed for upper-bounding and lower-bounding problems, and an oracle problem adapted
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from the algorithm proposed by Tsoukalas and Rustem 15 is employed to generate cheap lower

bounds and adaptive updates to the restriction of this algorithm. The hybrid algorithm can

avoid a dense population of the discretization, and has superior computational performance

as a result.

Solution methods for higher-complexity SIP formulations have also been studied. The al-

gorithm of Mitsos 12 was extended to generalized semi-infinite programs (GSIPs) by Mitsos and

Tsoukalas 16 . Djelassi et al. 17 then extended this GSIP algorithm16 and considered the mixed-

integer bilevel program to allow the presence of coupling equality constraints. In their method,

a subset of the lower-level variables are treated as dependent variables to cope with conver-

gence issues introduced by coupling equality constraints. This algorithm requires an increase in

the dimensionality of continuous variables for some subproblems, but the performance penalty

was not observed in their numerical experiments. Djelassi and Mitsos 18 most recently pro-

posed an algorithm for the global solution of existence-constrained SIPs (ESIPs) that are a gen-

eralization of standard SIPs with three levels. This is the first algorithm that can solve ESIPs

to global optimality without any convexity assumptions. Some other recent developments in

nonconvex SIP applications and algorithms have been reviewed by Djelassi et al. 19 .

A key concern pertinent to many applications of SIPs within engineering design, is the need

for high-accuracy and low computational complexity models of safety-critical systems (whose

performance must satisfy strict requirements).20 In many cases, strict performance/safety re-

quirements must be satisfied over a range of potential input disturbances or process noise.

While it is possible that such disturbances and noise may be well characterized for some cases,

this is not often typical for nascent designs. In addition, many process systems models involve

implicit functions as their nonlinearity prohibits explicit closed-form solutions. Even though

a method for solving SIPs with implicit functions has been developed by Stuber and Barton 13 ,

the algorithm is computationally expensive and high-complexity models compound the com-

putational cost. Hybrid modeling approaches are attractive here because they can accurately

represent complicated process systems that are not fully understood, and may also reduce the
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mathematical complexities caused by implicit functions, nonlinearity, complicated dynamics,

and multivariate uncertainty. Thus, the central goal of our work is to utilize hybrid models

within SIP formulations for the optimal design, simulation, and robustness verification of pro-

cess systems (i.e., process systems that satisfy all predetermined performance/safety require-

ments21) in the face of worst-case uncertainty.

Hybrid models consist of structured combinations of rigorous first-principles models (FPMs)

that account for necessary/known system mechanisms and empirical or data-driven models

(DDMs) that describe phenomena that cannot be readily described using FPMs due to a lack

of adequate knowledge.22 Over the past few decades, the use of hybrid modeling approaches,

particularly those that exploit machine learning approaches, have found a wide variety of appli-

cations in the process systems engineering community. These methods have enhanced process

output,20 improved controller performance,23,24 and enabled integrated system-level designs

of highly complex processes.25,26 In this paper, we explore applications of hybrid models to

worst-case design problems to investigate and verify their applicability in SIPs.

SIPs governed by hybrid models are of particular importance in process systems engineer-

ing,26–28 yet their usage within general (nonconvex) SIP contexts remains absent. This is likely

a consequence of the coupling equality constraints introduced by the FPMs that significantly

complicate the problem. In this paper, we propose addressing these gaps with the following

main novel contributions:

1. We formalize the approach to use hybrid models with SIPs. One application of this ap-

proach is to resolve complications due to coupling equality constraints via a reduced-

space formulation.

2. We illustrate how this SIP formulation that incorporates hybrid models is sufficiently gen-

eral such that it may be readily applied to exemplary robust design problems incorporat-

ing process dynamics.

3. We present a hybrid modeling approach that resolves numerical issues relating to domain
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violations, ubiquitous in process systems engineering modeling and simulation, through

use of a novel nonsmooth SIP formulation that incorporates validity constraints.

In this paper, we present new developments on the formulation and solution of SIPs with

embedded hybrid models. Particular attention is paid to the models that use artificial neural

networks (ANNs) with activation functions that are of interest for deep learning as the DDM. In

the following sections, we detail: the mathematical conventions used in the paper (Mathemati-

cal Background), formalize optimization problems with hybrid models (Optimization of Hybrid

Models); formalize SIPs with hybrid models embedded and present a solution algorithm (Semi-

Infinite Optimization with Hybrid Models); present case studies that demonstrate a variety of

optimization under uncertainty problems formulated as SIPs with hybrid models embedded

(Case Studies); and extend the proposed approach to SIPs with implicit functions embedded

(Extension to Implicit Forms). Finally, we suggest future directions for subsequent research.

Mathematical Background

In this section, the necessary mathematical preliminaries for the framework of SIPs with

hybrid models are introduced.

Multilayer Perceptrons

Several DDM methods have been developed and applied to a broad range of process sys-

tems, such as support vector machines,29 random forests,30 and ANNs.31,32 In this work, ANNs

are utilized as a representative DDM approach to demonstrate the formulation of SIPs with

hybrid models, and the corresponding notation is formalized in this section accordingly. The

multilayer perceptron (MLP) is one of the most common classes of ANN structures. As illus-

trated in Figure 1, the MLP is composed of a directed acyclic graph (DAG) containing n layers

enumerated k = 1, . . . ,n. The first layer with k = 1 represents the inputs of the MLP, whereas the
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last layer with k = n corresponds to the output layer. The k = 2, . . . ,n −1 layers are the hidden

layers. Let m(k) be the number of neurons in layer k, a(k) ∈Rm(k)
be the outputs of layer k. As de-

fined, a(1) is the input vector and a(n) is the output vector of the MLP. The vector a(k) for hidden

layers k ∈ {2, . . . ,n} is defined as

a(k) = f (k)
(
W(k−1)a(k−1) +b(k−1)

)
, (1)

where f (k) :R→R is an activation function, W(k−1) ∈Rm(k)×m(k−1)
is a weight matrix, and b(k−1) ∈

Rm(k)
is a bias vector. For ease of introduction, we define o : Rm(1) → Rm(n)

as the representative

input-output function for a generic DDM. Thus, as for a MLP, a(n) = o(a(1)).

When training MLPs, the weight matrices and bias vectors are regarded as optimization

variables whereas the input values of a(1) are taken as parameters. When using fully-trained

MLPs in a hybrid model for simulation or optimization, the weight matrices and bias vectors

are fixed to the trained constant parameters. The notation of MLPs in this section is used for a

typical class of DDMs that will be used for hybrid model formulations.

Input Layer

Hidden Layer n-2
Output Layer

Hidden Layer 1

11

2 2

Input 1
Output 1

2 2

1

Input 2

Input

Output 2

Output 

1

Figure 1: A multilayer perceptron with n layers is illustrated as a directed acyclic graph. The
input layer corresponds to k = 1, the hidden layers correspond to k = 2, . . . ,n−1, and the output
layer corresponds to k = n. The multilayer perceptron has a fully-connected feed-forward net-
work where all neurons in last layer, k −1, are related to all neurons in the subsequent layer, k.
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Hybrid Model Architecture

In this section, we formalize the notation for first-principles and data-driven sub-models as

illustrated in Figure 2. A vector of independent input variables is defined as y ∈ Y ⊂Rny , a vector

ẑF P M ∈ Z F P M ⊂ Rnz f represents state variables governed by the FPMs, hF P M : Z F P M × Z DDM ×
Y → Rnz f represent FPM equations, ẑDDM ∈ Z DDM ⊂ Rnzd is a vector of output variables of the

DDMs. Note that in the scope of this work, we consider MLPs as explicit input-output DDMs

that can be represented by a(n) = o(a(1)) as previously defined.

(a)

(b)

(c)

Figure 2: Flow diagrams of typical hybrid model architectures are presented in this figure
(white blocks represent first-principles sub-models and shaded blocks represent data-driven
sub-models). (a) A parallel hybrid model architecture maps inputs to outputs of each model
type in parallel. (b) A DDM/FPM serial hybrid model architecture maps inputs of the DDM to
outputs that are subsequently used as inputs in the FPM. (c) A FPM/DDM serial model archi-
tecture maps inputs to outputs of the FPM that are subsequently used as inputs to the DDM.

In general, the architecture of hybrid models is classified according to the parallel and/or

serial arrangement of sub-models (see von Stosch et al. 33 for a thorough review and discus-

sion of hybrid model architectures). The mathematical structure of a parallel hybrid model is

illustrated in Figure 2(a). In this formulation, the FPM hF P M (ẑF P M , · ,y) = 0 does not have ex-

plicit dependence on ẑDDM and µ represents the final outputs of the parallel hybrid model that
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can be expressed as µ = ψ(ẑF P M , ẑDDM ), where ψ : Rnz f ×Rnzd → Rnµ represents some func-

tional relationship involving the states of the FPMs and outputs of the DDMs. In cases employ-

ing a parallel model architecture, the FPMs may not be able to accurately capture some of the

phenomena observed in real systems, resulting in a discrepancy. In this situation, a DDM can

be utilized to rectify the mismatch between the prediction of FPM and the observed process

data.27

In the serial architecture, the output of the first sub-model is taken as an intermediate vari-

able that is input to the second sub-model. The DDM/FPM serial architecture is the most com-

mon hybrid model architecture,33 illustrated in Figure 2(b). In chemical engineering systems,

FPMs typically involve conservation laws that may have extremely complicated mathematical

expressions and/or source terms that may fail to accurately capture some observed system be-

havior due to an incomplete understanding of underlying mechanisms. In these situations,

DDMs can be used as a surrogate model to represent intractable parameters and/or subexpres-

sions. Alternatively, the FPM/DDM serial architecture is shown in Figure 2(c). This architecture

can be used to model a system whose intermediate variables are governed by the first-principles

model hF P M (ẑF P M , · ,y) = 0 (with no explicit dependence on ẑDDM ) and the final outputs are

some process parameters that are related to the intermediate state variables.34 In the next sec-

tion, the notation pertaining to hybrid model architectures in embedded optimization formu-

lations is established.

Optimization of Hybrid Models

In this section, optimization problems with hybrid ANN models embedded are formalized.

We use a general formulation to maintain applicability to a wide variety of surrogate modeling

approaches being actively explored by machine learning researchers (e.g., Ghaoui et al. 35 , Bai

et al. 36 , Winston and Kolter 37 , Gu et al. 38) including neural ordinary differential equations39

inspired by the success of ResNet.40 In general, a conventional formulation of an optimiza-
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tion problem involving hybrid models accounts for the modeling equations as explicit equality

constraints. Thus, let the optimization formulation with hybrid models be represented by the

following nonlinear program (NLP):

min
y,ẑF P M ,ẑDDM

φ(ẑF P M , ẑDDM ,y) (2)

s.t. hF P M (ẑF P M , ẑDDM ,y) = 0

hDDM (ẑF P M , ẑDDM ,y) = 0

g(ẑF P M , ẑDDM ,y) ≤ 0

y ∈ Y ∈ IRny

ẑF P M ∈ Z F P M ⊂Rnz f

ẑDDM ∈ Z DDM ⊂Rnzd ,

where IRn is the set of all n-dimensional real intervals, the decision variables consist of the in-

dependent input variables y (e.g., design variables), the output variables of an ANN ẑDDM as

previously defined, and the system state variables ẑF P M that are determined by the FPMs. It is

assumed that the objective functionφ : Z F P M ×Z DDM ×Y →R and the inequality constraints g :

Z F P M ×Z DDM ×Y →Rng are continuous. The equality constraints hDDM : Z F P M ×Z DDM ×Y →
Rnzd are expressed in standard form and represent the DDM equations (i.e., the ANN equations

hDDM (ẑF P M , ẑDDM ,y) = ẑDDM −a(n) = 0). The equality constraints hF P M : Z F P M × Z DDM ×Y →
Rnz f and hDDM : Z F P M × Z DDM × Y → Rnzd are also assumed to be continuous. In general,

bounds on y, ẑDDM , and ẑF P M must be supplied to ensure that the problem is well-posed, al-

though some variables may not require bounds known a priori.

The general optimization formulation (2) can be reformulated compactly as follows. Define

ẑ = (ẑF P M , ẑDDM ), Z = Z F P M × Z DDM , and let h : Z ×Y → Rnz be the concatenation of hF P M

and hDDM such that h(ẑ,y) = (
hF P M (ẑF P M , ẑDDM ,y),hDDM (ẑF P M , ẑDDM ,y)

)
. Then, (2) can be
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reformulated as the following NLP:

min
y∈Y ,ẑ∈Z

φ(ẑ,y) (3)

s.t. h(ẑ,y) = 0

g(ẑ,y) ≤ 0.

In many cases that arise naturally from process flowsheet simulation, model inputs and

parameters (e.g., process design specifications, controllable inputs) define unique state condi-

tions by continuity equations (i.e., conservation laws) as equality constraints that can be solved

explicitly. Thus, in this paper, we assume that there exists a unique explicit closed-form func-

tion z : Y → Z such that h(z(y),y) = 0 for every y ∈ Y . Under this assumption, the equality

constraints can be eliminated and (3) can be simplified as:

min
y∈Y

φ(z(y),y) (4)

s.t. g(z(y),y) ≤ 0.

Since the equality constraints of (3) are entirely eliminated in this formulation, there is a (sig-

nificant) reduction in problem dimensionality. Although we assumed the existence of explicit

functions for the proposed approach, this does not restrict the method. The section Extension

to Implicit Forms discusses how this assumption may be relaxed allowing for the proposed

approach to be applied to more general hybrid models with implicit forms.

Remark. Note that the uniqueness assumption is required for the elimination of the coupling

equality constraints from the original problem formulation (2). This assumption and approach

have been commonly made in practice for addressing design under uncertainty problems (e.g.,

Stuber and Barton 13 , Kwak and Haug 41 , Halemane and Grossmann 42 , Ostrovsky et al. 43 , Dim-

itriadis and Pistikopoulos 44 , Hale et al. 45 , among others), and is not presented as a new ap-

proach here. However, in case of nonunique parametric solutions (e.g., multiple steady states),
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without special consideration this approach would effectively restrict the feasible set. For ex-

ample, consider the model h(ẑ, y) = ẑ2 − y = 0. This problem has explicit closed-form solu-

tions z1(y) = p
y and z2(y) = −py with y = 0 a bifurcation point. To ensure that a global so-

lution of the original problem is obtained, both parametric solution branches z1 and z2 must

be considered or else feasible solutions may be ignored. Within the context of hybrid models,

nonuniqueness may be less of a concern since DDMs are trained as explicit input-output map-

pings representing a system or phenomena of interest and, when coupled to FPMs, are likely

to force adherence to a single solution branch. For problems where this is not the case, each

solution branch of the FPM would need to be considered separately, as in the simple exam-

ple above. For parametric dynamical systems, relatively mild assumptions ensure the existence

and uniqueness of parametric solution trajectories.46

Reduced-space approaches to deterministic global optimization originated from Epperly

and Pistikopoulos 47 , who detailed a convergent branch-and-bound (B&B) algorithm that branched

only on a subset of the decision variables. This reduced-space formulation approach was sub-

sequently generalized for many different problem and model types (e.g., by Stuber 48, Sec. 4.1,

Mitsos et al. 49 , Wechsung 50 , Bongartz and Mitsos 51). This approach avoids the introduction

and explicit handling of auxiliary variables and equality constraints through intermediate cal-

culations by treating the independent input variables y as the only decision variables of the

optimization problem. Since ny << nz in most process systems engineering problems, (4) rep-

resents a significantly lower-dimensionality problem than (3). Due to the curse of dimension-

ality in deterministic global optimization, this reduction in dimensionality often translates to a

significant reduction in the solution time.

In general, formulations (2)-(4) are nonconvex optimization problems that are solved to

guaranteed global optimality via a variation of the spatial B&B algorithm.52–54 This consists of

a presolve step, followed by the successive solution of lower- and upper-bounding problems

with intermediate domain reduction. An upper bound is typically determined by solving the

original nonconvex problem to either feasibility or local optimality. This is distinct from the
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subproblems encountered in domain reduction and the lower bounding routines that construct

and solve relaxations of the nonconvex problem through the computation of convex relaxations

of the nonconvex objective and constraint functions.55

Within this reduced-space context, researchers have addressed the construction of con-

vex and concave relaxations of factorable functions49,56–58 (i.e., a function defined by a finite

recursive composition of sums, products, and univariate transcendental functions) as well as

specific classes of functions that break the factorability assumption. Methods for computing

relaxations of parametric solutions of differential equations46,59,60 as well as implicit functions

evaluated by fixed-point methods, have both been detailed.61 Provided that relaxations of in-

termediate terms may be computed, these relaxations may be readily composed in a general-

ized framework.58 For instance, relaxations of the solutions of parametric differential equations

may be computed provided that convex/concave relaxations of the right-hand side function are

known, and then composed with an algebraic objective or constraint term. As such, this mod-

eling framework is generally applicable to the preponderance of hybrid model architectures.

There are several existing deterministic global optimization solvers capable of addressing

general problems formulated as (3). These include commercially licensed offerings such as

BARON53 and ANTIGONE,62 as well as open-source offerings such as EAGO63 and MAiNGO.64

Due to limitations in how problems are represented and how relaxations of nonconvex func-

tions are constructed, BARON53 and ANTIGONE62 cannot address formulation (4). Alterna-

tively, EAGO63 and MAiNGO64 were developed with this class of problems in mind with more

flexible modeling requirements and advanced methods for constructing relaxations of noncon-

vex functions. Due to the high dimensionality of formulation (3) and the curse of dimensional-

ity in deterministic global optimization, excessively long run times are expected for solving (3).

It has been demonstrated through several examples32,47,51,56,57,61,65 that an equivalent reduced-

space problem (4) can dramatically reduce the run time of a compatible algorithm by dramat-

ically reducing the number of variables branched on. Moreover, the elimination of equality

constraints from (3) plays a particularly important role in ensuring that SIPs of interest in the
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subsequent section, are formulated in a readily solvable manner.

Semi-Infinite Optimization with Hybrid Models

In this section, the foundations for incorporating hybrid models into SIP formulations are

formalized. First, consider the input variables of a hybrid model partitioned as y = (x,p) with

the corresponding domain Y = X ×P with x ∈ X ∈ IRnx and p ∈ P ∈ IRnp . Then, the general form

of an SIP governed by a hybrid model can be expressed as:

φ∗ = min
x∈X

φ(x) (5)

s.t. g (ẑ,x,p) ≤ 0, ∀p ∈ P

h(ẑ,x,p) = 0, ∀p ∈ P.

In this formulation, x represents a vector of decision variables, ẑ represents a vector of inter-

nal state variables governed by the hybrid model equations (as introduced previously), and p

represents a vector of parameters. The objective function φ : X →R depends solely on the vari-

ables x ∈ X and the constraints g : Z × X ×P → R and h : Z × X ×P → Rnz are parameterized

by p ∈ P . Note that the hybrid model h is defined as in the previous section. It is assumed that

the objective function φ, semi-infinite inequality constraint function g , and equality constraint

function h are factorable and continuous on their domains. Note that we have made no as-

sumptions about the smoothness of g . Therefore, multiple performance constraints g1, . . . , gn ,

may be handled trivially by reformulation into a single constraint g = maxi gi .

As in formulation (3), the state variables ẑ in (5) are governed by continuous hybrid model

functions h(ẑ,x,p) = 0 for each (x,p) ∈ X × P . Similar to formulation (4), we assert that the

hybrid model functions h(ẑ,x,p) = 0 can be solved explicitly. Thus, the state variables can be

expressed as an explicit input-output mapping z : X ×P → Rnz such that h(z(x,p),x,p) = 0 for
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every (x,p) ∈ X ×P . Under these assumptions, (5) can be reformulated as:

φ∗ = min
x∈X

φ(x) (6)

s.t. g (z(x,p),x,p) ≤ 0, ∀p ∈ P.

The SIP formulation covers classes of robust design and optimization under uncertainty prob-

lems of specific interest in this work.

Remark. Note that the assumption of uniqueness of z(· ) ∈ Z for every y ∈ Y (i.e., ∀(x,p) ∈ X ×P )

was discussed in the previous section as a requirement for the elimination of the coupling

equality constraints. Within the SIP context for robustness verification, caution must be ex-

ercised to ensure that uniqueness can be verified. For systems with multiple solution branches

present, an SIP must be solved with respect to each physically meaningful solution branch.

However, as remarked in the previous section, nonuniqueness is expected to be rare for systems

of interest with hybrid modeling approaches and not an issue for dynamical systems under rel-

atively mild assumptions.

Three problem types that fall under the general formulation (6) will be considered in this

work for their relevance in the design of safety-critical systems. The first problem is the design

under uncertainty feasibility problem. The goal with this problem is to confirm whether there

exists a design that is robust to a worst-case realization of parametric uncertainty:

η∗ = min
d∈D,η∈H

η (7)

s.t. η≥ g (z(d,π),d,π), ∀π ∈Π.

Here, d ∈ D ∈ IRnd represents a vector of design variables, π ∈Π represents uncertain parame-

ters in the hybrid model, and η ∈ H ∈ IR represents a measure of robust feasibility. With respect

to the SIP formulation (6), we have x = (d,η), X = D×H ,p =π, and P =Π. If the optimal solution

value of the feasibility problem satisfies η∗ ≤ 0, then a design exists that is robust to worst-case
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realizations of uncertainty.

The second problem of consideration is the robust optimal design problem. The objective

function is directly defined as a cost function based on a technical or economic objective (e.g.,

total capital cost or process efficiency):

φ∗ = min
d∈D

φ(d) (8)

s.t. g (z(d,π),d,π) ≤ 0, ∀π ∈Π.

Here, with respect to formulation (6), we have x = d,p =π, X = D, and P =Π. A global optimal

solution of this problem will be an optimal system design that is robust to worst-case realiza-

tions of uncertainty (if such a design exists).

The last problem of consideration is the operation under uncertainty feasibility problem.

This formulation is used to determine whether there exist control settings or recourse such

that the system of interest will always satisfy the performance and/or safety specifications. The

problem is formulated as:

η∗ = max
π∈Π,η∈R

η (9)

s.t. η≤ g (z(π,u),π,u), ∀u ∈U .

Here, we introduce control variables u that can be manipulated in response to uncertainty

realizations π. With respect to the general SIP formulation (6), we have x = π,p = u, X = Π,

and P = U . This formulation addresses the question of operational feasibility and verifies the

(non)existence of feasible control actions to mitigate the effects of worst-case uncertainty. If

η∗ ≤ 0, then a feasible recourse control action exists that mitigates the worst-case impacts of

uncertainty on the process with respect to the performance/safety specifications.

A state-of-the-art method for solving SIPs to global optimality is discussed in the following

section.
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Global Solution of SIPs

In this section, the SIPres algorithm introduced by Mitsos 12 is presented with respect to

the formulation (6) for hybrid model systems for completeness. The algorithm flowchart is

illustrated in Figure 3 and relies on solving three nonconvex subproblems (formulated below)

to global optimality at each iteration. The algorithm is guaranteed to converge to ϵ-optimality

in finitely many iterations under the assumptions of continuity of φ and g and the existence of

an SIP Slater point arbitrarily close to a minimizer.

Definition 1 (Lower-Bounding Problem13). Given a finite number of constraints with respect

to p ∈ P LBD with P LBD ⊂ P a finite set, the lower-bounding problem is formulated as:

φLBD = min
x∈X

φ(x)

s.t. g (z(x,p),x,p) ≤ 0, ∀p ∈ P LBD .

Definition 2 (Inner Program13). Given a point x̄ ∈ X , the inner program is formulated as:

ḡ (x̄) = max
p∈P

g (z(x̄,p), x̄,p).

The inner program verifies feasibility of the point x̄ with respect to the original SIP. If ḡ (x̄) ≤ 0, x̄

is feasible in (6).

Definition 3 (Upper-Bounding Problem13). Given a finite number of constraints with respect

to p ∈ PU BD with PU BD ⊂ P a finite set, the upper-bounding problem is formulated as:

φU BD = min
x∈X

φ(x)

s.t. g (z(x,p),x,p) ≤−ϵg , ∀p ∈ PU BD ,

where ϵg > 0 is the restriction parameter,12 representing a parameter for perturbing the right-

hand side of the semi-infinite constraint away from zero, thereby restricting the feasible set of
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the upper-bounding problem. Note that according to Mitsos 12 , the upper-bounding problem

should be solved to global optimality to obtain a global solution of the original SIP (6), but a

valid upper bound φU BD ≥ φ∗ can be obtained by a local solution x̄ of the upper-bounding

problem if its feasibility in the original SIP (6) is verified. That is, any SIP feasible point is a valid

upper bound.
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Figure 3: The SIPres algorithm is illustrated as a flowchart as adapted from that presented by
Stuber and Barton 13 .
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Case Studies

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-

1270 v5 3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to a virtual ma-

chine running the Ubuntu 18.04LTS operating system and Julia v1.6.1.66 Absolute and relative

convergence tolerances for the B&B algorithm of 10−4 were specified for all example problems,

unless otherwise noted and a maximum CPU time limit of the SIPres algorithm was set to 3600

seconds. The EAGO.jl package (v0.6.1)63 was used to solve each optimization problem. Val-

idated interval arithmetic was computed using the package IntervalArithmetic.jl.67 The Intel

MKL package (2019 Update 2)68 was used to perform all LAPACK69,70 and BLAS71 routines. The

data used with and generated from the following numerical examples are openly available in

the Git repository established at https://github.com/PSORLab/RobustHybridModels along

with the corresponding problem formulations.

Case Study 1: Robust Feasibility of a Nitrification CSTR

In this case study, we consider the rigorous verification of robust feasibility of a continuous

stirred-tank reactor (CSTR) undergoing nitrification reactions for wastewater treatment. The

aim here is to verify the existence of a simple robust control policy that maintains the desired

water quality specifications. The system involves a single continuously-flowing feed stream and

a single continuously-flowing outlet stream, as shown in Figure 4. An air diffuser exists at the

bottom of the tank to provide oxygen for oxidizing ammonium. The controller receives feed-

back signals from the conductivity sensor in the reactor and sends a control signal to the valve

on the air stream to increase or decrease the flow of air (i.e., aeration) into the CSTR that, in turn,

controls the nitrification reactions. In practice, this aerobic nitrification step often precedes an

anaerobic nitrification step.
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Figure 4: The dynamic nitrification CSTR system considered in the robust feasibility case study
(Case Study 1), is shown. Under normal operation, oxygen is injected to control the nitrification
reactions using a feedback controller utilizing measurements of the ammonium and dissolved
oxygen concentrations in the outlet stream.

Hybrid Model Formulation

The reaction mechanism for this nitrification process has two steps:

2NH+
4 +3O2 → 2NO−

2 +4H++2H2O

2NO−
2 +O2 → 2NO−

3

In the first step, the ammonium ions are oxidized to nitrite ions. In the second step, the nitrite

ions are further oxidized to nitrate ions. Based on the molecular biological study, the ammonia

oxidizing bacteria (AOB) predominates the first step and the nitrite oxidizing bacteria (NOB)

carries out the second step.72,73 The dynamic species mass balances in the CSTR are given by
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the ODEs:74

dCN H

d t
= 1

V
(ṁi nCi n −ṁoutCN H )− r AO ·X AO (10)

dCN I

d t
= r AO ·X AO − rNO ·XNO

dCN A

d t
= rNO ·XNO

dCO

d t
=−r AO ·ΨAO ·X AO − rNO ·ΨNO ·XNO +kl a · (C∗

O −CO),

where CN H , CN I , and CN A are the concentrations (mg N/(L · s)) for NH+
4 , NO−

2 , and NO−
3 , re-

spectively, CO is the oxygen concentration (mg O2/(L · s)), ṁi n and ṁout are continuous inlet

and outlet flow rates (L/s), Ci n is the NH+
4 concentration in the inlet stream, and V is the re-

actor volume (1000 L). The ammonium oxidation rate (mg N-NH+
4 / (g VSSAO ·min)) is given by

r AO , X AO is the concentration of AOB (mg VSS/L), rNO is the nitrite oxidation rate (mg N-NO−
2 /

(g VSSNO ·min)), XNO is the concentration of NOB (mg VSS/L), ΨAO is the stoichiometric ratio

between oxygen and ammonia (mg O2/ mg N-NH+
4 ), ΨNO is the stoichiometric ratio between

oxygen and nitrite (mg O2/ mg N-NO−
2 ), kl a is the volumetric mass transfer coefficient (s−1), and

C∗
O is the dissolved oxygen saturation concentration (9.1 mg/L at 20 ◦C,75). The rate equation

for nitrite oxidation rNO can be expressed further as:

rNO = rNO,max
CN I

KSNO +CN I + C 2
N I

KI NO

· CO

KONO +CO
,

where rNO,max is the maximum nitrite consumption rate (mg N-NO−
2 / (g VSSNO ·min)), KSNO is

the Monod constant of nitrite for NOB (mg N-NO−
2 /L), K I NO is the inhibition constant of nitrite

for NOB (mg N-NO−
2 /L), and KONO is the Monod constant of oxygen for NOB (mg/L).

The aeration process is governed by the mass transfer of oxygen into the solution as the

term kl a(C∗
O −CO) in (10), that is derived from the standard oxygen transfer rate (SOTR, mg/s)

defined as: SOTR = kl aC∗
OV .76 Assuming that the air flow rate from the air diffuser is repre-

sented by Q (mg/s), the mass flow rate of oxygen WO in the air stream can be computed from an
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empirical formula: WO = 0.2967Q.77 Then, the standard oxygen transfer rate can be calculated

as SOTR = SOTE·WO , where SOTE is the standard oxygen transfer efficiency (%). Therefore, the

aeration mass transfer coefficient can be rewritten as:

kl a = 0.2967Q ·SOTE

C∗
O ·V .

The parameter values used in the model are listed in Table 1.

Table 1: The model parameters used for the nitrification CSTR case study are listed in this table.

Symbol Definition Value Reference

V Liquid volume (L) 1000 This study

ṁi n Inlet volumetric flow rate (L/s) 4.167 This study

ṁout Outlet volumetric flow rate (L/s) 4.167 This study

C∗
O Saturated oxygen concentration (mg O2/L 9.1 75

X AO Concentration of AOB (mg VSS/L) 505 74

XNO Concentration of NOB (mg VSS/L) 151 74

rNO,max Max. nitrite consumption rate (mg N-NO−
2 / (g VSSNO ·min)) 1.07 74

ΨAO Stoich. ratio of oxygen to ammonia (mg O2/ mg N-NH+
4 ) 2.5 78

ΨNO Stoich. ratio of oxygen to nitrite (mg O2/ mg N-NO−
2 ) 0.32 78

KSNO Monod constant of nitrite for NOB (mg N-NO−
2 /L) 1.6 78

K I NO Inhibition constant of nitrite for NOB (mg N-NO−
2 /L) 13000 78

KONO Monod constant of oxygen for NOB (mg/L) 1.5 78

SOTE Standard oxygen transfer efficiency (%) 10 76

Since this is a complicated biological reaction system in a physicochemical environment,

it is very hard to obtain accurate kinetic parameters under constantly varying conditions for

FPMs. There are situations such that the biological parameters cannot be easily obtained and

verified by experiments. Thus, we propose to use an ANN model to estimate the rate constant

rAO and account for the hybrid modeling approach in this study. The rate constant rAO is re-
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lated to both ammonium concentration cNH and oxygen concentration cO. Consequently, rAO

is calculated as an intermediate variable from the ANN and substituted into the dynamic hybrid

model, as illustrated in Figure 5 to form a dynamic serial hybrid model.

…

First-Principles 

Model
Input Output

Other state variables
YES

NO

Figure 5: The hybrid model architecture used for the nitrification CSTR case study (Case Study
1), is illustrated. This model represents a DDM/FPM serial architecture with a reaction rate
term modeled by an ANN.

Data-Driven Model Construction

A training data set was generated by evaluating a proposed empirical model for r AO pro-

vided by Sánchez et al. 74 , that relates r A0 to CN H and CO . The ANN model is developed to

demonstrate a hybrid modeling approach in more complicated reacting systems. A prelimi-

nary investigation established physically plausible ranges for CN H and CO of [0,40] and [0,9.1],

respectively, while values within [0,4] and [0,1], respectively, were typically observed from ex-

ploratory simulations of the system. For (CN H ,CO) ∈ [0,4]× [0,1], r AO varies significantly with

respect to CN H and CO , while it is relatively flat outside this region. The empirical model was

evaluated over two distinct Latin hypercube sampling (LHC) designs with 105 points each: one

design on the domain [0,40]× [0,9.1], and the other on the domain [0,4]× [0,1], to ensure ade-

quate sampling of the sensitive region. As with the previous examples, the data set was scaled

using a min-max normalization and divided randomly into training (70%), validation (15%),

and test (15%) sets. Training was performed using the Keras79 module in the nightly version of

Tensorflow80 with the Adam optimizer. An early stopping protocol was performed using default

parameters to prevent overfitting.81 An ANN consisting of two hidden layers, each containing
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eight neurons, with the hyperbolic tangent activation function and a sigmoid output layer was

used. This network was trained using a learning rate schedule that began with a value of 0.1 and

was decreased by a factor of 0.5 every 100 epochs. This training protocol lead to loss values of

1.837×10−6 and 1.9708×10−6 for the training and validation sets, respectively.

SIP Formulation and Results

According to the standard of moderate municipal wastewater,82 the concentration of am-

monium ions in the effluent is required to be below 30 mg N-NH+
4 /L. Moreover, the dissolved

oxygen concentration must be lower than 2 mg O2/L to ensure that a viable operating window

exists for a secondary anaerobic denitrification step.83 Thus, the upper specification limits for

ammonium ions (USLNH) and dissolved oxygen (USLO) are set to 30 mg N-NH+
4 /L and 2 mg

O2/L, respectively. The CSTR is initially operating at steady state with a constant concentration

(31 mg N-NH+
4 /L) in the inlet stream. At some moment (t = t0), a concentration shock is ob-

served in the inlet stream within a short operating window (20 s) of the treatment process. It is

our desire to operate the process in an open-loop manner, and so the objective here is to deter-

mine whether there exists a feasible design for the valve setting for air flow rate that is robust

to worst-case realizations of uncertainty at the end of the simulation horizon (t = t f = 100 s).

The design variable is taken to be the air flow rate d = Q ∈ D = [440,2000], which can be in-

terpreted as the valve setting. The uncertainty comes from the disturbance in the inlet stream

π = Ci n ∈Π = [31.0,40.0]. Thus, the design under uncertainty feasibility problem accounts for

the following semi-infinite constraints:

CN H (t f ,d ,π)−USLNH ≤ 0, ∀π ∈Π, (11)

CO(t f ,d ,π)−USLO ≤ 0, ∀π ∈Π.

The two semi-infinite constraints present in (11) are then reformulated as a single nonsmooth

semi-infinite constraint, and an epigraph rearrangement of the problem is made to yield the
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following SIP:

η∗ = min
d∈D,η∈H

η (12)

s.t. max{CN H (t f ,d ,π)−USLNH,CO(t f ,d ,π)−USLO} ≤ η, ∀π ∈Π.

This formulation corresponds with the design under uncertainty feasibility problem (7). Again,

the term η represents a measure of robust feasibility. If the optimal solution value of the feasi-

bility problem (12) satisfies η∗ ≤ 0, then a design exists that is robust to worst-case realization

of uncertainty. For this problem, a relative convergence tolerance of 10−3 for the SIP-feasibility

problem (12) was used. An explicit Euler method was used to integrate (10) with a stepsize of

h = 10 s. To avoid domain violations and associated difficulties that arise from overestimation

of CO2 , a positive value of CO2 was enforced by setting CO2 = max(CO2 ,ϵ) with ϵ= 10−10 at each

time step. The SIPres algorithm12 (see Figure 3) was used to solve the SIP given in (12). The

SIPres algorithm solves (12) after a single iteration in 21.86 CPU seconds with an optimal solu-

tion η∗ = 0.288, illustrating that a robust design does not exist for this system with respect to the

given performance/safety specifications.

This motivates a search for alternative approaches to verify robustness. Namely, we seek to

determine if a robust operation is feasible. We consider the same uncertainty source π ∈Π and

the control variable is taken as u =Q ∈U = [440,2000]. We aim to establish a robust operation

problem to verify if a control recourse exists that mitigates the impacts of uncertainty. The

semi-infinite constraints in this problem are:

CN H (t f ,π,u)−USLNH ≤ 0, ∀u ∈U , (13)

CO(t f ,π,u)−USLO ≤ 0, ∀u ∈U .

Accordingly, the operation under uncertainty feasibility problem can be expressed as the fol-
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lowing SIP:

η∗ = max
π∈Π

η (14)

s.t. η≤ max{CN H (t f ,π,u)−USLNH,CO(t f ,π,u)−USLO}, ∀u ∈U .

Again, the SIPres algorithm12 with convex/concave envelopes of activation functions84 was

used to solve the SIP (14). The SIPres algorithm terminates with η∗ = 0.288 after a single it-

eration in 21.14 CPU seconds. As a consequence, we see that a control setting recourse is not

feasible given the provided specifications. Moreover, the presented formulations with dynamic

hybrid models demonstrate the applicability of robustness verification approaches to relatively

complicated processes with dynamic governing equations.

Case Study 2: Worst-Case Design of Subsea Production Facilities - Mitigation

of Domain Violations

In Stuber et al. 85 , the worst-case design of a subsea oil production facility (illustrated in

Figure 6) was formulated as an operation under uncertainty feasibility problem and solved us-

ing several novel methodologies. Namely, the problem was reformulated as an SIP with implicit

functions embedded. The subsea separator model uses transcendental functions with defini-

tions on narrow domains that result in numerical difficulties when simulating and optimizing

the system. For the purposes of this paper, the interest is not in the application itself, but in the

model as representative of a broader class of industrially-relevant examples plagued by numer-

ical simulation and convergence issues caused by domain violations. Within this context, it is of

interest to explore how hybrid modeling approaches might be used to improve the robustness

of an FPM and solvers (i.e., improve the reliable convergence to accurate solutions).

Domain violations are ubiquitous across process systems engineering applications and

pose major challenges to researchers and practitioners of simulation and optimization.86–88
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Within the broader context of numerical simulation, domain violations are encountered when

a solver attempts to evaluate an expression at a point outside of its defined domain (e.g., divide

by zero or square-root a negative number). Hybrid models may pose additional challenges as

they may also suffer from violations of their domains of validity. That is, a solver may attempt

to evaluate a DDM at a point outside of the domain of inputs for which the DDM is considered

to be “valid" (i.e., accurately represents reality). When considering the optimization of hybrid

models, domain violations may be frequently encountered when such domains may not be ex-

plicitly known and accounted for with appropriate constraints, without prior analysis.

In Stuber et al. 85 , a method of forward-backward interval constraint propagation on the

DAG,48,89 interval contractor methods,90 a novel convex/concave relaxation algorithm,61 and a

novel algorithm for solving SIPs13 were all necessary to solve this problem. While these meth-

ods adequately address the problem in question, the broad and robust applicability of this ap-

proach to more general SIPs is wanting. We should note, however,that this approach reduces

the problem in question from a GSIP to that of a standard SIP. This, combined with a desire to

generalize the prior results to allow for the incorporation of more complex physical phenom-

ena, further motivates our interest in this example.
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Figure 6: The process flow diagram for the subsea separator (adapted from Stuber et al. 85), is
presented in this figure. This system is considered in the subsea separator case study for the
use of hybrid models to overcome numerical domain violation issues. A mixture of gas, oil, and
water is fed to the system in S1. Gas is separated from the oil-water mixture in the gas-liquid
separator and oil is separated from water in the liquid-liquid separator.
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Hybrid Model Formulation

In this study, the focus is on a modification of the gas-liquid/liquid-liquid separation train

problem presented in Case 3 of Stuber et al. 85 . To model the performance of gas separation

in each separator, simple exponential decay models based on mean gas bubble sizes were as-

sumed.85 The relationship between inlet and outlet gas quantities may be expected to change

in meaningful ways when a population-based model of bubble sizes is incorporated along with

information about the equipment’s geometry. Moreover, for bubbly mixtures, overflow can oc-

cur in volumes less than those considered by solely taking into account liquid levels, provided

a large gas concentration is present in the inlet. In practice, this type of problem is typically

characterized using a mixture of computational fluid dynamics software and empirical investi-

gation.

We propose simplifying the published model by using an ANN surrogate model to relate

the input variables to the gas-liquid separator and the control variable for the second valve (V-

2) to the system outputs. This serves to eliminate the domain violation issue inherent in the

model, as the activation functions considered lack domain restrictions, and allow the system-

level model to be readily generalized to incorporate information from computational experi-

ments generated by CFD models, or elsewhere. The inputs, outputs, and expected ranges of

each variable in each ANN are summarized in Table 2. As the development of CFD models is

often time consuming, equipment specific, and not the central focus of this work, we will forgo

this and instead illustrate how this approach works at the system level. We use the prior mass

balances and process specifications for the gas-liquid separator (GLS) and the liquid-liquid sep-

arator (LLS). The governing equations for the first valve (V-1), and the gas mixer will be left
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unaltered. The equations governing V-1 lead to the following simplified relationships:

ξW,1 = 1−ξG ,1 −ξO,1, (15)

SG−1
mi x = ξG ,1

SGG
+ ξW,1

SGW
+ ξO,1

SGO
,

ṁ2 = u1Cv1

√
SG−1

mi x(Pwel l −PGLS)+ϵd

ξ2 = ξ1.

These equations specify that the mass fractions in the input stream (ξW,1, ξG ,1, ξO,1) sum to one,

provide a formula relating specific gravity of the mixture SGmi x to the specific gravity of individ-

ual components (SGG , SGW , SGO), and relate the mass flow rate through the valve ṁ2 to valve

position (u1), valve coefficient (Cv1) and a specified pressure difference (Pwel l −PGLS) between

the GLS and the wellhead. A small number ϵd = 10−6 is added to the argument of the
p· function

to avoid the introduction of numerically ill-posed gradients that present computational issues

for local NLP subproblems encountered during global optimization.

Simple algebraic substitutions of the equations governing V-2 and the LLS behavior lead to

the following algebraic expression:

ξG ,7 = ξG ,4 exp

(
−ṁ4kLLS

VLLS

ρ4 +ϵd

)
. (16)

While additional expressions are required to fully determine all stream characteristics in the

flowsheet, the LLS performance specification (16) is sufficient to construct the SIP constraint.

This specification relates the inlet gas mass fraction ξG ,4, density ρ4, and mass flow rate ṁ4 to

the oil product stream gas mass fraction ξG ,7 by means of a performance constant kLLS . Due to

downstream equipment specifications, the oil product stream gas mass fraction may not exceed

the value Gmax = 0.05. The full model can be found in Stuber et al. 85 with the analysis of the

DAG in Stuber 48, Sec. 8.1.
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Table 2: The state variables for the subsea separator case study are listed in this table along with
their corresponding bounds, units, and identification of whether they are classified as inputs or
outputs for the hybrid model. Bounds directly specified by Stuber et al. 85 were used if available.
Otherwise, natural interval extensions of known quantities were used to compute necessary
values. The parameters Cv1, SGG , SGW , SGO , ga , Pwel l PLLS , PGLS , kGLS , LGLS , and RGLS take
the values previously specified in Stuber et al. 85 .

Variable Lower Upper Unit Layer

ṁ2 8.228 19.517 kg/s Input

u2 0.35 0.8 - Input

ξG ,2 0.35 0.5 - Input

ξW,2 0.1 0.25 - Input

ṁ4 541.364 845.881 kg/s Output

HGLS 0.462165 0.7992 m Output

ξG ,4 9.463053×10−3 0.36 - Output

P4 4.00264×106 4.01079×106 Pa Output

ρ4 584.6 1376.6 kg/m3 Output

30



Data-Driven Model Construction

Training data was generated by repeatedly solving a feasibility problem equivalent to the

nonlinear system:

(ξG ,2 −1)ṁ2 − (ξG ,4 −1)ṁ4 = 0 (17)

u2
2C 2

v2ρ
o
W (P4 −PLLS)−ρ4ṁ2

4 = 0

(P4 −PGLS)−ρ4ga HGLS = 0

ξG ,2 exp

(
−kGLSρ4

(ξG ,4 −1)VGLS(HGLS)

(ξG ,2 −1)ṁ2

)
−ξG ,4 = 0

ρ4
ξG ,4

SGG
+ρ4

ξG ,2(ξG ,4 −1)

SGW (ξG ,2 −1)
+ρ4

ξG ,2(ξG ,4 −1)(1+ξW,2 −ξG ,2)

SGO(ξG ,2 −1)
−ρo

W = 0

VGLS −LGLS

(
(HGLS −RGLS)

√
(2RGLS HGLS −H 2

GLS)+R2
GLS cos−1

[
1− HGLS

RGLS

])
= 0

that is parameterized by w = (ṁ2,u2,ξG ,2,ξW,2) ∈W . Ipopt91 was used to solve (17) with a mul-

tistart approach using 16 initial guesses chosen via an LHC sampling procedure for each set

of parameters considered. An LHC sampling procedure was then performed over a range of

valid values given in Table 2 to generate 105 data points used to train the DDM. As noted in

Stuber et al. 85 , the implicit function characterized by (17) may not exist for some realization of

uncertainty and control variables. Values that yielded a locally-infeasible result were labelled

accordingly, while the solutions of the feasible problems were saved. Of the 105 points gener-

ated, 6,742 infeasible points were evaluated.

The approach to training the ANNs for this problem, parallel the previous examples. The

data set was scaled using a min-max normalization and divided randomly into training (70%),

validation (15%), and test (15%) sets. Training was performed using the Keras79 module in the

nightly version of Tensorflow80 with the Adam optimizer. The surrogate ANN consisted of four

inputs, two dense layers, twelve neurons per layer, and utilized the SiLU activation function. A

sigmoid output layer was used to ensure that the output results remained within the range of

the training data. The surrogate model had min-max-scaled mean-squared-error (MSE) values
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of 7.74×10−5 and 2.2506×10−4 on the training and test sets, respectively. The validity constraint

consists of an ANN with four inputs, two hidden layers, two neurons per layer, and utilizes the

SiLU activation functions with a single hyperbolic tangent output layer that is trained using a

binary cross-entropy loss function. This achieved a binary accuracy greater than 99.0% on both

the test and training sets. Weights and offsets for both the surrogate model and the validity

constraint can be found in the Git repository. Both the surrogate and classifier ANNs used a

learning rate schedule that began with a value of 0.1 and was decreased by a factor of 0.5 every

100 epochs. We note here that, due to the nature of the application, no classifier can be expected

to be exactly accurate as the valid and invalid regions adjoin one another.

SIP Formulation and Results

Any ANN can only be expected to provide valid results when interpolating and special con-

sideration must be given to exclude invalid operating parameters. In general, two distinct out-

comes must be considered: either a domain violation arises from a purely numerical consid-

eration (e.g., instability) or one that corresponds to a nonphysical operating condition (e.g.,

negative density). In the former case, the accuracy of the hybrid model should be verified to

guarantee the results for the corresponding robust operation problem. In the latter case, re-

stricting the model to a domain of validity is sufficient to ensure a guarantee of robustness.

Ensuring validity regions for surrogate models remains an active area of research within

the optimization community. Some approaches include restricting the function evaluations to

be within the convex hull of a finite number of sampled points22,92 or categorizing the data us-

ing a support vector machine.29,93 In either case, this restriction can be framed as a potentially

nonconvex constraint gc : Z ×Π×U → {−1,1} where gc (ẑ,π,u) =−1 indicates a valid model for

(ẑ,π,u) ∈ Z ×Π×U . We note that the forms addressed pertain to standard optimization formu-

lations and the extension of these approaches to multilevel programs has yet to be developed.

In keeping with surrogate modeling frameworks adopted in this paper, we choose to make use

of a second ANN, f AN N
c : Z ×Π×U →R, in addition to the surrogate model, to perform a binary
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classification task via logistic regression.

The binary classification task is performed as follows. Provided that f AN N
c (ẑ,π,u) ≤ 0, the

input features is classified as gc (ẑ,π,u) =−1 (valid classification). In a corresponding manner,

the classification ANN predicts that the the input features will be classified as gc (ẑ,π,u) = +1

(invalid classification) due to a domain violation f AN N
c (ẑ,π,u) > 0. With this validity constraint,

the robust feasibility constraint takes the logical form:

∀π ∈Π,∃u ∈U : g (ẑ,π,u) ≤ 0∧ gc (ẑ,π,u) ≤ 0∧h(ẑ,π,u) = 0. (18)

For this problem, the state variables ẑ can be calculated as an explicit function z :Π×U → Z

such that h(z(π,u),π,u) = 0 for every (π,u) ∈Π×U . The robust operation problem can then be

formulated as an SIP with a nonsmooth semi-infinite constraint:

η∗ = max
π∈Π,η∈H

η (19)

s.t. η≤ max
{

g (z(π,u),π,u), gc (z(π,u),π,u)
}
,∀u ∈U .

Alternatively, (19) may be reformulated as an SIP with a disjunctive constraint or as a mixed-

integer SIP. Note that this form is identical to the structure encountered when relaxing a GSIP

and the reader is directed to Mitsos and Tsoukalas 16 for a discussion of the numerical eccen-

tricities associated with solving that problem class. The robust design problem for the subsea

separator may then be formally stated as:

η∗ = max
π∈Π,η∈H

η (20)

s.t. η≤ max
{
ξG ,7(π,u)−Gmax , gc (z(π,u),π,u)

}
, ∀u ∈U

U = [0.35,0.8]2

Π= [0.35,0.5].
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We note that the valid region of the developed binary classifier is bounded by a 0-sublevel set,

which is potentially a disconnected and nonconvex set, and therefore the following equivalence

can be established:

{(π,u) ∈Π×U : gc (z(π,u),π,u) =−1} ⇔ {(π,u) ∈Π×U : g t (z(π,u),π,u) ≤ 0},

with g t (· , · , · ) ≡ f AN N
c (· , · , · ). By construction, g t is continuous on its domain, and so this refor-

mulation ensures that the semi-infinite constraint is continuous, and in turn, ensures that the

convex/concave relaxations used in the subproblem of the SIPres algorithm12 exhibit desirable

convergence properties.94 Under this equivalence, the SIP (20) is reformulated as:

η∗ = max
π∈Π,η∈H

η (21)

s.t. η−max
{
ξG ,7(π,u)−Gmax , g t (z(π,u),π,u)

}≤ 0, ∀u ∈U

U = [0.35,0.8]2

Π= [0.35,0.5].

We first solved this hybrid model using the SIPres12 routine provided in EAGO v0.6.163,95

and using the convex/concave envelope of SiLU described in a forthcoming work.84 The SIP

was solved to an absolute tolerance of 10−3. The algorithm terminated in 3 iterations, taking

2.9 CPU seconds when using the envelope of SiLU when computing relaxations. The SIPres al-

gorithm terminated after an optimal value was found in the lower-bounding problem and the

maximal value of the corresponding lower-level problem was found to be nonpositive with a

value of η∗ =−6.6×10−4. In contrast, the original method in Stuber et al. 85 provided a solution

value of −5.77×10−3 for this case study. However, it is worth noting that the method proposed

by Stuber et al. 85 has an early-termination criterion whereby the algorithm terminates with

a feasible suboptimal solution as soon as robustness is verified. Thus, the solution value ob-

tained by Stuber et al. 85 is an upper bound on the global solution. Despite this, we notice that
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η∗ >−5.77×10−3, seemingly in violation of the upper bound for the full mechanistic model.85

Since the hybrid model utilizes an ANN to approximate the original equations exhibiting nu-

merical issues (i.e., domain violations), such discrepancies are anticipated. The level of confi-

dence in the solution lies in the accuracy of the trained model versus the constraint satisfaction

and algorithm convergence tolerances. In practice, it may be possible verify SIP feasibility of

an optimal solution with respect to the full mechanistic model. However, this depends entirely

on the existence and complexity of such a model. For this case, the results verify that both

models ensure the robust feasibility of this operation. A performance normalization was used

based on CPU single-core IPC using the Cinebench R15 (Maxon, Newbury Park, CA) single-

core benchmark to enable a fair comparison of the performance of the approach in this work

versus Stuber et al. 85 . The normalized results indicate a 70-fold performance improvement

over the original solution time of 549.3 CPU seconds reported by Stuber et al. 85 . In this par-

ticular case, we expect this improvement to be genuine as prior comparisons of Julia/EAGO to

C++/MC++ implementations differed only by at most a factor of three.96 However, the degree

of computational performance improvement for the surrogate modeling approach relative to

the original work of Stuber et al. 85 will undoubtedly be model-specific. As such, we make no

broad claim of superior performance for this method. However, this example does illustrate

that the use of surrogate modeling represents a viable approach to eliminate the need to apply

specialized parametric interval analysis,48,90 constraint propagation techniques,85 and implicit

relaxation61 methods when addressing bilevel optimization problems with coupling equality

constraints, by replacing these models with a formulation that can be readily addressed with

standard global optimization solvers.

Extension to Implicit Forms

In the Optimization of Hybrid Models section, the assumption was made that a unique ex-

plicit closed-form function z : Y → Z exists such that h(z(y),y) = 0 for every y ∈ Y . This assump-
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tion was also made within the context of SIPs in the section Semi-Infinite Optimization with

Hybrid Models. As mentioned in those sections, the explicit closed-form solution assumptions

do not necessarily restrict the applicability of the approach. Stuber et al. 61 originally developed

a theory for considering implicit functions within deterministic global optimization formula-

tions. This was explored further within the context of SIPs by Stuber and Barton 13 . Summarily,

Stuber and Barton 13 extended the SIP approach for solving (5) to the more general case that the

equality constraints do not admit an explicit closed-form solution. In this section, we discuss

the conditions under which these assumptions may be relaxed and extend the applicability to

a broader class of hybrid models that may involve implicit functions, including implicit ANNs

and general nonlinear mechanistic models.

The conditions for considering implicit functions are established as follows. In the previ-

ous sections, the only requirements of the equality constraints h(ẑ,x,p) = 0 of (5) representing

a hybrid model, were that they are factorable and continuous. Here, we have the additional re-

quirement that h : Z × X ×P → Rnz is continuously differentiable on its domain. Then, it must

be assumed that there exists an implicit function z : X ×P → Z such that h(z(x,p),x,p) = 0 for

every (x,p) ∈ X ×P . For the appropriate theories and methods13,61 to hold, and therefore to be

applicable to hybrid models, it must again be assumed that such a function z is unique in the

set Z . In other words, such a Z must exist within which z is unique on X ×P .

Conditions for guaranteeing uniqueness of z in Z on X ×P may be inferred from the struc-

ture of the feed-forward ANN (as an explicit input-output mapping) and under the conditions

stipulated by the semilocal implicit function theorem (Neumaier 90, Thm. 5.1.3). Furthermore,

existence and uniqueness tests associated with parametric interval methods (e.g., interval New-

ton,90 Krawcyzk,97 Hansen-Sengupta90) may be used to verify this condition. Note that this

does not require that h has a unique solution, and in the event that multiple solution branches

of h exist in Z × X ×P , bisection-based methods may be sufficient to identify a partition such

that the existence and uniqueness of an implicit function can be guaranteed for each element

of the partition (see Stuber et al. 61, App. 1 and Stuber 48, Sec. 3.5 for discussions on this). For-
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mal treatment of cases in which Z ×X ×P encloses bifurcation points and/or multiple solution

branches of h remains an active area of research.

Conclusion

In this work, we formalized the foundations for SIPs with hybrid first-principles and data-

driven models. Particular attention was paid to surrogate modeling via ANNs as the data-

driven sub-models. Reduced-space SIP formulations with hybrid models were proposed and

demonstrated through three common types of robust design and optimization under uncer-

tainty problems. The SIPres algorithm12 was used for solving two case studies to demonstrate

practicability and superiority of our approaches.

In our first case study, we illustrated how an SIP containing a hybrid model may be used

to solve robust feasibility problems pertinent to a continuous nitrification CSTR for wastewa-

ter treatment. The use of hybrid models in this application allowed a data-driven approach to

describe kinetic rate parameters in biological systems. A reformulation to combine two semi-

infinite constraints on ammonium and dissolved oxygen concentrations in the effluent was im-

plemented. The SIP framework presented herein was shown to be sufficiently general such that

it may readily address dynamic robust feasibility problems within the context of hybrid models.

The robust simulation of a horizontal gas-liquid and liquid-liquid separator train was revis-

ited in the second case study. This problem is especially challenging as the modeling equations

are plagued by numerical issues caused by domain violations. The domain violation problem

was addressed with a novel approach that incorporates validity constraints and replaces the

problematic models encountering domain violations with an ANN. This problem demonstrates

how the application of hybrid models may overcome numerical difficulties often encountered

when simulating complicated process systems models. Moreover, the incorporation of validity

constraints naturally leads to a nonsmooth SIP formulation that may readily be reformulated

as a mixed-integer problem, a disjunctive formulation, or a GSIP.
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One interesting application of this work is the solution of problems that require representa-

tion by multiple distinct models. These may arise when modeling dynamical systems stemming

from transport phenomena whose underlying physics change markedly for different realiza-

tions of decision and uncertainty values. In this case, we can generalize the approach detailed

here to associate each model with a region of validity and a nonsmooth SIP formulation of the

optimization problem. The use of specialized forms of validity constraints should be consid-

ered, such as mixed-integer linear formulations, as an alternative to the general nonlinear for-

mulation used herein. This may allow for the use of specialized algorithms that address GSIP

formulations for larger and more complex applications.
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