
Automatic Source Code Generation of Complicated Models For Deterministic
Global Optimization With Parallel Architectures

Robert X. Gottlieb, Pengfei Xu, and Matthew D. Stuber1

Process Systems and Operations Research Laboratory, Department of Chemical and Biomolecular Engineering, University
of Connecticut, Storrs, CT, USA

Abstract
Trends over the past two decades indicate that the majority of progress to accelerate solving optimization prob-
lems is due to improvements in x86 hardware. If we are to make progress beyond our manufacturing capabilities, it
is imperative that alternative architectures be considered, especially those that can make use of massively parallelized
operation. In this paper, we show how complex symbolic models can be generated for use in global optimization
routines and then introduce an approach wherein these symbolic models are used to enable parallelized deterministic
global optimization on GPUs. In two examples, we separately demonstrate the symbolic automatic differentiation of
a complex thermodynamic model and the parallelization of a kinetic parameter estimation problem. A comparatively
weak lower-bounding routine is run simultaneously on 5× 104 branch-and-bound nodes at a time on a GPU, resulting
in 95% problem convergence in 64% of the time of a standard, state-of-the-art CPU implementation of the problem.
This work paves the way for the utilization of alternative hardware architectures that can compete with—or potentially
outclass—the most powerful serial CPU implementations of deterministic global optimizers, and to the best of the
authors’ knowledge, represents the first successful demonstration of deterministic global optimization using GPUs.

Keywords
dynamical systems, parameter estimation, deterministic global optimization, open-source software

Introduction

The increased solution speed of optimization problems
over the past two decades has been primarily due to ad-
vances in CPU hardware (Koch, 2022). Yet, despite this
bottleneck, significant advances that exploit alternative archi-
tectures have largely been missing in optimization research.
Parallel programming, for instance, is a way to exploit well-
known architectures such as general-purpose graphics pro-
cessing units (GPGPUs) that has the potential to outpace
progress from Moore’s law alone. Although the successes of
distributed programming have been well demonstrated (Gar-
land et al., 2008), to date, and to the best of the authors’
knowledge, there has been no publication documenting the
use of GPGPUs in deterministic global optimization. This
paper details the first successful implementation, to the best
of our knowledge, of performing deterministic global opti-
mization using GPGPUs for massive parallelization.

Motivation

Process systems engineers are constantly faced with the
curse of dimensionality, such as when solving parameter es-

1 Corresponding author: M.D. Stuber (E-mail:
stuber@alum.mit.edu).

timation problems involving first-principles models to global
dynamic optimization. In parameter estimation problems,
first-principles models of practical interest may have a large
number of parameters that need to be estimated for model
fitting and validation against experimental data. In dynamic
optimization problems, the dimensionality of solvable prob-
lems is severely limited by the high complexity of the prob-
lem class. Without a method to accelerate the solution speed
of these classes of problems, formulations with more than a
few variables are unsolvable in a reasonable time span. This
barrier limits the practicable applications of these classes and
hinders the use of global optimization for these problems in
the broader community.

A problem of specific interest in our research is the fit-
ting of the electrolyte nonrandom two-liquid (eNRTL) model
to experimental data to accurately simulate the performance
of industrial water treatment systems. The purpose of the
model is to represent the thermodynamic properties of mul-
tisolvent/multielectrolyte systems (Chen and Evans, 1986),
and recent work has extended the model to better match high-
concentration electrolyte systems (Bollas et al., 2008). This
extension is critical for water treatment applications, where
understanding the properties of high-concentration brines
can lead to the development of better water separation tech-
niques. However, the number of parameters to fit in this
model grows polynomially with the number of species. For

mailto:stuber@alum.mit.edu


such a system, finding guaranteed ε-global optimal parame-
ters, even for industrially simple solutions, may take an im-
practically long time using traditional approaches. Our goal
is to overcome this limitation through innovations in software
tools for hardware-specific parallelization.

Dynamic optimization problems—those constrained by a
system of ordinary differential equation initial value prob-
lems (ODE-IVPs)—represent another class whose solutions
can only be achieved in practice for problems with low di-
mensionality. As an example to illustrate the complexity,
one method of solving this type of problem is to discretize
the system of ODE-IVPs, which reformulates them into a
large number of algebraic equality constraints, and then solve
the resulting NLP with a global optimizer. However, the re-
sulting NLP may contain hundreds of thousands of decision
variables and nonlinear equality constraints. Even the best-
in-class commercial global solvers (e.g., BARON (Sahinidis,
1996), ANTIGONE (Misener and Floudas, 2014)) have dif-
ficulty solving such high-dimensional problems in a reason-
able time frame (Wilhelm et al., 2019). However, with par-
allel programming, doing so may become possible and ex-
tremely useful in practice.

Background

Adapting the B&B framework to exploit parallel comput-
ing requires restructuring the entire routine. Typically, this
framework begins with a root node that covers the deci-
sion variables’ interval domain. The lower-bounding prob-
lem proceeds by creating a convex relaxation of the objective
function and obtaining the relaxation’s infimum, which tran-
sitively applies to the objective function on the node’s sub-
domain. The node is then partitioned (i.e., branched) to cre-
ate a pair of new nodes, and a similar lower-bounding prob-
lem is solved on the resulting nodes to obtain progressively
improved lower bounds. This process is repeated until the
greatest global lower bound converges to within some ε dis-
tance from the problem’s lowest upper bound, which can be
found using a variety of methods. In practice, this framework
is applied in serial: a single node is selected as the working
node, the lower-bounding problem is solved for this node,
and following branching, the resulting nodes are added to a
stack from which future working nodes will be selected. Par-
allelizing this process using multiple CPU cores is relatively
straightforward: each CPU thread takes a working node from
the stack and independently solves its lower-bounding prob-
lem. Using a hardware architecture different from x86, such
as GPGPUs, creates additional complications.

To parallelize the processing of B&B nodes on a GPGPU,
several criteria must be met that are not satisfied by stan-
dard B&B methods. First, GPGPU cores operate in lock-
step—unlike in a CPU, where different cores can execute
entirely independent sets of instructions—and all parallel
GPGPU cores must execute the same sets of instructions si-
multaneously. That is, if a calculation is performed on one
GPGPU core, an identical calculation must be performed on
all parallel cores. An example of this is the computation of
C = A+B, with A,B,C ∈ Rm×n, where GPGPUs simulta-
neously execute the elementwise addition. This restriction is

problematic for lower-bounding problems because the math-
ematical structure of each node’s convex relaxations may be
different and the process of finding each relaxation’s lower
bound generally requires a unique and variable number of it-
erations. Second, the performance of GPGPUs is slowed by
control flow. Any process that requires different evaluations
to be made depending on some set of criteria—such as when
calculating the structure of node-dependent relaxations—
will not be fast on a GPGPU. To fully exploit GPGPU ar-
chitectures and the speed-up that comes from parallelization,
these hurdles must be overcome.

The first step in addressing these criteria is to develop a
method for constructing relaxations that can be calculated
in parallel for multiple nodes. A typical method of calcu-
lating relaxations is to represent variables as McCormick ob-
jects with associated lower and upper bounds and convex and
concave relaxations and then evaluate the nonconvex func-
tions of interest using the rules of McCormick (McCormick,
1976; Scott et al., 2011). This operation results in point-
wise evaluations of convex relaxations and their associated
(sub)gradients in the search space, which can be used to de-
termine global lower bounds through convex optimization al-
gorithms such as IPOPT (Wächter and Biegler, 2005). This
method is not appropriate for parallelization on a GPGPU be-
cause the McCormick-based relaxation rules are dependent
on the lower and upper bounds on the variables, which nec-
essarily differ between nodes.

This paper introduces a novel method implemented as
the open-source SourceCodeMcCormick.jl package, which
applies the McCormick-based relaxation rules to symbolic
functions without a priori knowledge of the variable bounds.
This is accomplished via a source-code transformation ap-
proach that begins by automatically decomposing the in-
put symbolic function into a factorable representation (i.e.,
a sequence of elementary operations and univariate intrinsic
functions). The McCormick rules associated with each factor
are applied symbolically (with the variable bounds expressed
symbolically), and new symbolic functions representing in-
terval extensions and convex/concave relaxations of the orig-
inal function are constructed from the factors. Critically, the
symbolic versions of the McCormick rules applied here are
designed without typical control flow, satisfying the second
GPGPU requirement and making the rules fast to evaluate on
GPGPUs. Since the variable bounds are symbolic, the out-
put from SourceCodeMcCormick.jl is partition indepen-
dent. Consequently, convex/concave relaxations can be cal-
culated on any subdomain using the same set of instructions,
which satisfies the first GPGPU requirement. Additional de-
tails can be found in the Software Toolkit section.

The second point to address is the variable number of steps
required for the lower-bounding problem. This hurdle is ad-
dressed by the black-box sampling technique of Song et al.
(2021). In summary, given a B&B node bounded in Rn, a
rigorous lower bound for the node can be calculated using
2n+1 pointwise evaluations of the objective function’s con-
vex relaxation, at points that can be determined a priori based
on the bounds of the node. Thus, to calculate rigorous lower
bounds for a set of nodes Fk, all that is needed is to produce



a set of 2n+1 evaluation points corresponding to each node
X ∈ Fk, and then evaluate the objective function’s convex
relaxation at those points in parallel using the output from
SourceCodeMcCormick.jl. Evaluations of these points can
then be connected back to their original nodes and the lower
bounds can be calculated using a single algebraic expression
per node for box-constrained problems (Song et al., 2021).

Source-code transformation of symbolic functions has
broad applicability for global optimization beyond only the
scope of SourceCodeMcCormick.jl. One example is our
interest in modeling water treatment systems, where the rel-
evant thermodynamic properties can be obtained by differ-
entiating Gibbs free energy expressions. Although pack-
ages for automatic differentiation exist and have abundant
use cases, such techniques may be inappropriate in a global
optimization context where knowing the mathematical struc-
ture of the derivative is often necessary to calculate tight re-
laxations. This paper presents the use of source-code trans-
formation to obtain symbolic derivatives of a Gibbs free en-
ergy expression for the eNRTL model of interest, to con-
struct a representation of the derivative that is more suited
for global optimization routines such as the newly devel-
oped SourceCodeMcCormick.jl. Source-code transforma-
tion approaches such as this are of special importance in
cases where the underlying expression is complicated, as
manually calculating a derivative expression and inputting it
into an optimization model can be highly error-prone.

Parameter Estimation in Process Systems Engineering

The problem we are focused on in this work is formulated
generally as:

p∗ ∈ arg min
p∈P⊂Rnp

nd

∑
i=1

(yi(p)− ydata
i )2

s.t. h(p) = 0 (1)
g(p)≤ 0.

The objective function is the sum of squared error (SSE) be-
tween the predictions of a model of interest y(p) and a set of
experimental data ydata, where p is the uncertain parameter
vector and nd is the number of experimental data points.

Refined Electrolyte Nonrandom Two-Liquid Model

Predicting the thermodynamic behavior of multielec-
trolyte/multisolvent systems has historically been challeng-
ing due to the complexity of the first-principles models. In
this work, we are interested in the refined eNRTL developed
by Bollas et al. (2008), and the reader is directed to that work
for the full details. From the model’s Gibbs free energy ex-
pression, all other thermodynamic state properties, such as
heat capacity, enthalpy, and entropy can be derived.

To illustrate the source-code transformation approach, we
will focus on the contribution of the short-range interaction

to the molar excess Gibbs free energy GSR, defined as

GSR

RT
=

nm

∑
j=1

Xm j


∑

s∈{m,a,c}

ns
∑

l=1
Xsl Fm j ,sl ,m j τm j ,sl ,m j

∑
s∈{m,a,c}

ns
∑

l=1
Xsl Fm j ,sl ,m j

 (2)

+
na

∑
j=1

Xa j

nc

∑
k=1

 Xck
nc
∑

k′=1
Xck′




∑
s∈{m,c}

ns
∑

l=1
Xsl Fa j ,sl ,ck τa j ,sl ,ck

∑
s∈{m,c}

ns
∑

l=1
Xsl Fa j ,sl ,ck



+
nc

∑
j=1

Xc j

na

∑
k=1

 Xak
na
∑

k′=1
Xak′




∑
s∈{m,a}

ns
∑

l=1
Xsl Fc j ,sl ,ak τc j ,sl ,ak

∑
s∈{m,a}

ns
∑

l=1
Xsl Fc j ,sl ,ak

 .

Here, τt j ,ok,rl refers to the local interaction strength difference
between a center species t j and an objective species ok (the
kth species of type o), in reference to species rl , where the
type r is determined based on t (Chen and Evans, 1986). The
term Ft j ,ok,rl = exp(−ατt j ,ok,rl ) follows the same structure,
with α = 0.3 for t,o,r = m and α = 0.2, otherwise. Addi-
tionally, Xt j represents the effective mole fraction of species
j of type t ∈ {m,a,c} in the solution, defined as

Xt j =
Nt jCt j

∑
t∈{m,a,c}

nt
∑
j=1

Nt j − ∑
t∈{a,c}

nt
∑
j=1

Nt j ht j

, (3)

where m represents neutral solvent molecules, a the anions,
and c the cations, with the cardinality of each type repre-
sented as nm, na, and nc, respectively. E.g., Xc4 would cor-
respond to the fourth unique species of cation in solution.
This indexing is also used for the number of moles Nt j , the
hydration number ht j , the magnitude of the charge number
Ct j (or 1 for neutral species), and the short-range interaction
contribution to the activity coefficient γSR

t j
, defined as

logγ
SR
t j

=
∂

∂Nt j

 ∑
t̂∈{m,a,c}

nt̂

∑
ĵ=1

Nt̂ ĵ

GSR

RT

 . (4)

For the optimization problem given by (1), yi(p) =
γSR

t j
(p,ui), where ui represents the temperature and con-

centrations of each species for experiment i, i.e., ui =
(T,Nm1 , . . . ,Nmnm ,Na1 , . . . ,Nana ,Nc1 , . . . ,Ncnc )i. Given the
multiplicative dimensionalities of τ, it is clear that as the
number of species grows, the number of parameters to esti-
mate increases polynomially. E.g., when there are 10 unique
species of anions and cations, which is common for brines
and industrial wastewater, there are 1140 parameters to fit.
This presents an extreme challenge if a globally optimal so-
lution is required, as even small practical systems may have
an intractable number of parameters. Additionally, even in
situations where the unique species count is low, generating a
derivative and inputting the expression manually into a global
optimizer is both difficult and error-prone. For this reason,
we seek to use source-code transformation to automatically
generate a full symbolic expression of the derivative that can
be directly inputted into an optimization routine.



Transient Absorption Kinetics Model

Another example is the kinetic parameter estimation prob-
lem originally described by Taylor (2005). This problem
consists of a system of ODEs that describes the concentra-
tions of several species after an initial laser flash pyrolysis,
as given by:

dxA

dt
=k1xZxY − cO2(k2 f + k3 f )xA +

k2 f

K2
xD +

k3 f

K3
xB

− k5x2
A,

dxB

dt
=cO2k3 f xA −

(
k3 f

K3
+ k4

)
xB,

dxD

dt
=cO2k2 f xA −

k2 f

K2
xD, (5)

dxY

dt
=− k1sxZxY ,

dxZ

dt
=− k1xZxY ,

xA(0) = xB(0) = xD(0) = 0, xY (0) = 0.4, xZ(0) = 140.

Here, x j is the concentration of species j ∈ {A,B,D,Y,Z},
and the given constants are T = 273, K2 =
46exp(6500/T −18), K3 = 2K2, k1 = 53, k1s = k1 × 10−6,
k5 = 1.2× 10−3, and cO2 = 2× 10−3. The uncertain model
parameters are the rate constants p = (k2 f ,k3 f ,k4) with
k2 f ∈ [10,1200], k3 f ∈ [10,1200], and k4 ∈ [0.001,40]. The
objective is to minimize the sum-squared error between this
model and experimentally measured intensity data, where
the intensity has a known dependency on concentrations as
I = xA +

2
21 xB +

2
21 xD, which comes from the Beer-Lambert

law for relating measured absorbance to concentration with
a correction for multiple species (Singer, 2004).

Software Toolkit

The software contributions described in this paper are de-
signed as core components and as extensions of the open-
source deterministic global optimizer EAGO (Wilhelm and
Stuber, 2020). The base EAGO package embeds a novel
McCormick-based relaxation library to construct convex and
concave relaxations of a nonconvex functions and uses the
relaxations in an implementation of B&B. Most notably, in
the context of the present paper, one of EAGO’s design prin-
ciples is to function as a research platform, in the sense that
almost all of the core functionality can be extended and mod-
ified to address any problem-specific complexities or irregu-
larities. This is shown in the documentation and in numerous
Jupyter notebook examples on the group GitHub page. This
extensibility enables new work, such as what is presented in
this paper, to be incorporated seamlessly into EAGO.

McCormick-Based Relaxation Library

A key component of the EAGO ecosystem is the
McCormick.jl package that contains a library of forward-
mode McCormick-based operators to support the computa-
tion of convex/concave relaxations of complicated factorable
expressions. There is support for operators ranging from

common algebraic expressions such as min and sqrt to ac-
tivation functions for machine learning applications such as
leaky relu and gelu.

In particular, the capabilities of the McCormick.jl li-
brary are accessed using McCormick objects that are tu-
ples of the form {L,U,CV,CC,SCV,SCC}, representing a
variable’s lower bound, upper bound, convex/concave relax-
ations, and (sub)gradients of its convex/concave relaxations,
respectively. In a manner analogous to using intervals of
the form [L,U ] with interval arithmetic, these McCormick
objects can be used to evaluate factorable functions com-
prising elementary arithmetic operations and transcendental
functions, which will return McCormick object representa-
tions of the evaluated functions. This interaction is made
possible by Julia’s multiple dispatch paradigm, which is a
feature of the language that allows specialized versions of
functions to be called based on the runtime types of the in-
puts; somewhat similar to operator overloading in other lan-
guages such as C++. In McCormick.jl, elementary and tran-
scendental functions are defined that operate on McCormick
objects and automatically apply the appropriate McCormick
rules associated with the overloaded function. A similar op-
erator overloading approach is used in C++ implementations
of the McCormick rules, such as those used in MC++ (Mit-
sos et al., 2009) and the MAiNGO solver (Bongartz et al.,
2018). McCormick objects that represent relaxations of ob-
jective functions or constraints can then be used directly in
global optimization algorithms.

Source-Code Generation/Transformation

Our novel approach is implemented in the software pack-
age SourceCodeMcCormick.jl, which parses the noncon-
vex functions we wish to relax for optimization and gener-
ates source code representations of the convex/concave relax-
ations for any domain. This is in contrast to McCormick.jl
which uses multiple dispatch to evaluate at runtime the
McCormick-based relaxation rules on a prescribed domain
for a function that we wish to relax, for a single evaluation
point. SourceCodeMcCormick.jl gives up the flexibility to
evaluate different functions at runtime in exchange for the
flexibility to evaluate any points and bounds within the search
space for a single, pre-defined function.

To create this functionality, SourceCodeMcCormick.jl
utilizes Symbolics.jl to represent symbolically the fac-
torable functions to be evaluated. This symbolic representa-
tion is then internally factorized to create a list of subexpres-
sions corresponding to the factorable representation. Mc-
Cormick rules are applied to each subexpression, and the
results are symbolically recombined through substitution to
generate full symbolic expressions of convex/concave relax-
ations and interval bounds of the original expression. A
key part of this implementation is how bounds-dependent
McCormick rules are handled. In McCormick.jl, rules
have different cases depending on the bounds of the input
McCormick objects. In SourceCodeMcCormick.jl, these
rules, with all their possible cases, are embedded within sin-
gle expressions using if-else statements. Julia evaluates
if-else statements without branching, which enables fast

https://psorlab.github.io/EAGO.jl/stable/
https://github.com/PSORLab/EAGO-notebooks


GPGPU performance as the same expression (albeit a com-
plicated one) is evaluated regardless of the conditions.

Although the resulting expressions from
SourceCodeMcCormick.jl are cumbersome, part of their
benefit is that the McCormick rules have been applied up-
front in their creation. This eliminates the need to spend time
determining which rules to follow and which cases to use
at runtime, as is the case with McCormick.jl every time an
expression is evaluated. Thus, SourceCodeMcCormick.jl
incurs an upfront cost to generate a source-code-transformed
evaluation function, but then significantly lowers runtime
costs when the expression is evaluated.

To demonstrate this benefit, consider the simple func-
tion f (x,y,z) = (5− x)2 +(y+2)2 + xy/z with x ∈ [3.0,7.0],
y ∈ [−3.0,3.0], and z ∈ [1.0,5.0]. Using McCormick.jl,
calculating a convex relaxation of f at 105 randomly
selected points in these bounds takes ≈ 43ms. Using
SourceCodeMcCormick.jl, creating the callable convex
evaluation function takes ≈ 200ms (the high upfront cost),
but evaluating the same 105 randomly selected points takes
only ≈ 28µs, or about a 1500x speedup when utilizing an
NVIDIA Quadro GV100 GPGPU. In a global optimization
routine, hundreds of millions of pointwise evaluations of the
convex relaxations of the objective function may be required.
With such a large number of evaluations, the upfront cost of
creating the evaluation function is more than offset by the
speed of evaluating the relaxations at these points.

Exploiting GPGPU Architectures

The ability to parallelize lower-bounding problems for a
GPGPU requires restructuring EAGO’s normal B&B rou-
tine, which is easily accomplished by exploiting EAGO’s
extensibility with a custom extension. In the normal B&B
routine, each iteration proceeds by fathoming nodes from
the main problem stack, selecting a node from the stack to
evaluate, solving the lower- and upper-bounding problems
for that node, and branching. To support parallelization, an
extension was created that contains a “substack” of nodes.
The parallel B&B routine then proceeds first by fathoming,
then by repeatedly selecting nodes from the main stack and
adding them to the substack until a predefined limit has been
reached, and then processing all nodes in the substack simul-
taneously to determine their lower and upper bounds. Nodes
are then removed from the substack in sequence, given their
calculated bounds, and branched on to be added back onto the
main stack. Unlike the standard serial B&B routine, where
each iteration processes a single node at a time, this parallel
routine processes many thousands of nodes simultaneously
in each iteration. By adjusting how nodes are selected from
the main stack, both breadth-first and depth-first branching
heuristics can be adopted within this framework.

Preliminary Results

eNRTL Model

To illustrate the functional complexity necessitating
the automatically-generated source-code approach, we

Figure 1: Convergence plot for the kinetic parameter estima-
tion problem.

present here the results for a simple solution of aque-
ous NaCl. In this case, there are 6 decision variables
that must be determined through optimization: p = (ha1 ,
hc1 ,τm1,a1,m1 ,τm1,c1,m1 ,τa1,m1,c1 ,τc1,m1,a1), and there are 2
terms to compare with experimental data: logγSR

c1
and logγSR

a1
,

representing the activity coefficients of Na+ and Cl−, respec-
tively. As a demonstrative example, logγSR

c1
is generated as:

Nm1_f=Nm1-Na1*ha1-Nc1*hc1
log_gamma_c1=(tC1M1A1*Nm1_f*exp(-0.2tC1M1A1))
/ (Na1+Nm1_f*exp(-0.2tC1M1A1))
+ (tM1C1M1*Nm1_f*exp(-0.2tM1C1M1))
/ (Nm1_f+Na1*exp(-0.2tM1A1M1)+Nc1*exp(-0.2tM1C1M1))
+ (-Na1*tA1M1C1*Nm1_f*exp(-0.2tA1M1C1))
/ ((Nc1+Nm1_f*exp(-0.2tA1M1C1))ˆ2)
- (((Na1*tM1A1M1*exp(-0.2tM1A1M1)
+ Nc1*tM1C1M1*exp(-0.2tM1C1M1))*Nm1_f)
/ ((Nm1_f+Na1*exp(-0.2tM1A1M1)
+ Nc1*exp(-0.2tM1C1M1))ˆ2))*exp(-0.2tM1C1M1)

Although complicated, this symbolic expression
can then be used directly for simulation or sent to
SourceCodeMcCormick.jl to generate code for con-
vex/concave relaxations and interval bounds. While we
present only this relatively simple term, the source-code
transformation approach can be used to generate symbolic
expressions for an arbitrary number of m,a,c species.

Transient Absorption Kinetics Model

To solve the kinetic parameter estimation problem, an ex-
plicit Euler discretization was used to approximate the so-
lution of the initial value problem. The problem was then
sent to the base version of EAGO, which achieved 95% con-
vergence in 43.1s, as shown in Figure 1. The problem was
then solved using the SourceCodeMcCormick.jl source-
code transformation approach which used the explicit Eu-
ler discretization to generate a function representation of the
objective function’s convex relaxation. As described previ-
ously, this approach employs a black-box sampling approach
to solve the lower-bounding problem for multiple nodes si-
multaneously. The black-box approach produces weaker
bounds than convex optimization methods that make use of



(sub)gradients, but with massive parallelization, solving a
large number of these problems simultaneously may lead to
faster global convergence than tighter, single-node methods.

The SourceCodeMcCormick.jl method was used in two
ways: first with an Intel W-2195 (i.e., single core of a CPU),
and second with an NVIDIA Quadro GV100 GPGPU. In
each case, 5× 104 nodes were solved simultaneously using
the source-code-generated function to evaluate the convex re-
laxations of the objective function. As shown in Figure 1, the
SourceCodeMcCormick.jl method, when performed on the
x86 architecture, performs slower than the base EAGO im-
plementation of the problem. Although many nodes are eval-
uated simultaneously, the weaker bounds of the black-box
method cannot compete with the (sub)gradient techniques on
standard x86 hardware, reaching 95% convergence in 633.3s.
When the same algorithm is paired with a GPGPU, how-
ever, the benefits of the alternative architecture’s paralleliza-
tion becomes clear: 95% convergence is achieved in 27.6s, or
roughly two-thirds of the time of the base EAGO algorithm.

Conclusion

Source-code transformation and generation approaches
are of special importance in cases where the mathematical
structure of an expression plays a role in the solution tech-
nique. Deterministic global optimization falls in this cat-
egory, as convex/concave relaxations of nonconvex func-
tions are dependent on both the operations that comprise
those functions as well as the overall composition/structure
of those functions. This paper documented two cases where
source-code transformation was useful for global optimiza-
tion. First, in a problem rooted in thermodynamics where the
objective function was described by the derivative of a com-
plicated expression, and second, in the implementation of a
method that used the problem structure to exploit an alterna-
tive hardware architecture. In both cases, source-code trans-
formation was critical to arriving at a final result that was
directly useful in a deterministic global optimization context.

Acknowledgements

Funding is provided in part by the National Alliance for
Water Innovation (NAWI) funded by the U.S. Department
of Energy, Office of Energy Efficiency and Renewable En-
ergy (EERE), Advanced Manufacturing Office, under Fund-
ing Opportunity Announcement Number DE-FOA-0001905,
and by the National Science Foundation under Grant No.
1932723. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National
Science Foundation, NAWI, or the Department of Energy.

References

Bollas, G. M., C. C. Chen, and P. I. Barton (2008). Refined
electrolyte-NRTL model: Activity coefficient expressions
for application to multi-electrolyte systems. AIChE Jour-
nal 54(6), 1608–1624.

Bongartz, D., J. Najman, S. Sass, and A. Mitsos (2018).
MAiNGO - McCormick-based Algorithm for mixed-
integer Nonlinear Global Optimization.

Chen, C.-C. and L. B. Evans (1986, mar). A local compo-
sition model for the excess gibbs energy of aqueous elec-
trolyte systems. AIChE Journal 32(3), 444–454.

Garland, M., S. L. Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov
(2008, jul). Parallel computing experiences with CUDA.
IEEE Micro 28(4), 13–27.

Koch, T. (2022, July). Progress in mathematical program-
ming solvers from 2001 to 2020. Presentation at EURO
2022, Espoo, Finland.

McCormick, G. P. (1976, dec). Computability of global so-
lutions to factorable nonconvex programs: Part I — con-
vex underestimating problems. Mathematical Program-
ming 10(1), 147–175.

Misener, R. and C. A. Floudas (2014, mar). ANTIGONE: Al-
gorithms for coNTinuous / integer global optimization of
nonlinear equations. Journal of Global Optimization 59(2-
3), 503–526.

Mitsos, A., B. Chachuat, and P. I. Barton (2009, jan).
McCormick-based relaxations of algorithms. SIAM Jour-
nal on Optimization 20(2), 573–601.

Sahinidis, N. V. (1996, mar). BARON: A general purpose
global optimization software package. Journal of Global
Optimization 8(2), 201–205.

Scott, J. K., M. D. Stuber, and P. I. Barton (2011, feb). Gen-
eralized McCormick relaxations. Journal of Global Opti-
mization 51(4), 569–606.

Singer, A. B. (2004). Global Dynamic Optimization. Ph. D.
thesis, Massachusetts Institute of Technology.

Song, Y., H. Cao, C. Mehta, and K. A. Khan (2021, oct).
Bounding convex relaxations of process models from be-
low by tractable black-box sampling. Computers & Chem-
ical Engineering 153, 107413.

Taylor, J. W. (2005, September). Direct Measurement and
Analysis of Cyclohexadienyl Oxidation. Ph. D. thesis,
Massachusetts Institute of Technology.

Wilhelm, M. E., A. V. Le, and M. D. Stuber (2019, nov).
Global optimization of stiff dynamical systems. AIChE
Journal 65(12).

Wilhelm, M. E. and M. D. Stuber (2020, aug). EAGO.jl:
easy advanced global optimization in Julia. Optimization
Methods and Software, 1–26.

Wächter, A. and L. T. Biegler (2005, apr). On the implemen-
tation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Pro-
gramming 106(1), 25–57.


	Introduction
	Motivation
	Background

	Parameter Estimation in Process Systems Engineering
	Refined Electrolyte Nonrandom Two-Liquid Model
	Transient Absorption Kinetics Model

	Software Toolkit
	McCormick-Based Relaxation Library
	Source-Code Generation/Transformation
	Exploiting GPGPU Architectures

	Preliminary Results
	eNRTL Model
	Transient Absorption Kinetics Model

	Conclusion
	Acknowledgements
	References

