

Global Dynamic Optimization Using Hardware-Accelerated Programming

Robert Gottlieb, PhD Student Matthew Stuber, Assistant Professor

November 13th, 2022

Importance of Global Dynamic Optimization

1. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and Software 30(3), 424-460 (2014).

2. Limon, D. et al. Robust MPC of constrained nonlinear systems based on interval arithmetic. IEEE Proceedings – Control Theory and Applications 152(3), 325-332 (2005).

EAGO.jl

Deterministic global optimizer

- High performance
- Open-source and free for noncommercial use
- Extensible

To learn more:

- Visit our GitHub!
- Attend my presentation!

Recent Developments in EAGO.jl (Easy Advanced Global Optimization in Julia) <u>Tuesday, Nov 15</u>, 10:06 AM W-101A

https://www.github.com/PSORLab/EAGO.jl

Branch-and-Bound in EAGO

AIChE Annual Meeting 2022

Branch-and-Bound in EAGO

Motivation: Hardware Acceleration

All B&B Implementations

- B&B nodes checked one-at-a-time
- Calculations performed on a CPU
- Bottleneck: Optimization speed tied to CPU hardware advances³

Unexplored Frontier

- Many B&B nodes checked in parallel
- Calculations performed on a GPU
- Potential to outpace CPU hardware

GPU Refresher

*General Purpose Graphics Processing Unit

- EAGO uses McCormick relaxations
- Structure of relaxations depend on variable domain^{4,5}

Example:

 $y(x) = x^3$

4. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

5. Scott, J. K., et al. Generalized McCormick relaxations. *Journal of Global Optimization* 51.4 (2011): 569-606.

AIChE Annual Meeting 2022

- EAGO uses McCormick relaxations
- Structure of relaxations depend on variable domain^{4,5}

Example:

 $y(x) = x^3$

4. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

5. Scott, J. K., et al. Generalized McCormick relaxations. *Journal of Global Optimization* 51.4 (2011): 569-606.

AIChE Annual Meeting 2022

13 (

- EAGO uses McCormick relaxations
- Structure of relaxations depend on variable domain^{4,5}

Example:

 $y(x) = x^3$

4. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

5. Scott, J. K., et al. Generalized McCormick relaxations. *Journal of Global Optimization* 51.4 (2011): 569-606.

AIChE Annual Meeting 2022

14 (

- EAGO uses McCormick relaxations
- Structure of relaxations depend on variable domain^{4,5}

Example:

$$y(x) = x^{\varepsilon}$$

4. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

5. Scott, J. K., et al. Generalized McCormick relaxations. *Journal of Global Optimization* 51.4 (2011): 569-606.

Step 1) Create a "McCormick object" for a variable on a domain X and at a point $x \in X$

xMC = MC{1,NS}(1.0, Interval(-2.0, 5.0), 1)

Step 1) Create a "McCormick object" for a variable on a domain X and at a point $x \in X$

xMC = MC{1,NS}(1.0, Interval(-2.0, 5.0), 1)

Step 2) Use the McCormick object in your desired expression

f(x) = (x-2)/(x+3)
julia> f(xMC)
MC{1, NS}(-2.125, 1.375, [-4, 3], [0.625], [-0.25], false)

Step 1) Create a "McCormick object" for a variable on a domain X and at a point $x \in X$

xMC = MC{1,NS}(1.0, Interval(-2.0, 5.0), 1)

Step 2) Use the McCormick object in your desired expression

Step 1) Create a "McCormick object" for a variable on a domain X and at a point $x \in X$

xMC = MC{1,NS}(1.0, Interval(-2.0, 5.0), 1)

Step 2) Use the McCormick object in your desired expression

Step 1) Create a "McCormick object" for a variable on a domain X and at a point $x \in X$

xMC = MC{1,NS}(1.0, Interval(-2.0, 5.0), 1)

Provide

variable info

Solution to 1) SourceCodeMcCormick.jl

SourceCodeMcCormick.jl

$$f(x) \longrightarrow f^L(x), f^U(x), f^{cv}(x), f^{cc}(x)$$

- > Applies McCormick arithmetic using symbolic substitution with Symbolics.jl⁶
- Creates a general form of the new expressions
 Accounts for all possible variable bounds with a single expression

6. Gowda, S., et al. High-performance symbolic-numerics via multiple dispatch. arXiv:2105.03949 (2021). AIChE Annual Meeting 2022

Step 1) Create an evaluator function for your desired expression

@variables x
f_cv, _ = convex_evaluator((x-2)/(x+3))

Step 1) Create an evaluator function for your desired expression

@variables x
f_cv, _ = convex_evaluator((x-2)/(x+3))

Step 2) Plug in a point $x \in X$ and a domain X

julia> f_cv(1.0, 1.0, 5.0, -2.0)
-2.125

Step 1) Create an evaluator function for your desired expression

@variables x
f_cv, _ = convex_evaluator((x-2)/(x+3))

Step 2) Plug in a point $x \in X$ and a domain X

julia> f_cv(1.0, 1.0, 5.0, -2.0) -2.125 Value of f^{cv} at x = 1.0 where X = [-2.0, 5.0]

Step 1) Create an evaluator function for your desired expression

@variables x
f_cv, _ = convex_evaluator((x-2)/(x+3))

Step 2) Plug in a point $x \in X$ and a domain X

julia> f_cv(1.0, 1.0, 5.0, -2.0) -2.125 Value of f^{cv} at x = 1.0 where X = [-2.0, 5.0]

Step 1) Create an evaluator function for your desired expression

Challenge 2) Parallel Convex Optimization

Given a convex function, how do you find its minimum value?

Variety of Methods

Newton's Method

Interior Point Method

Cutting Plane Method

[...]

Variable number of steps (Bad for parallelization)

Solution to 2) Black-box Sampling

Recent paper by Song et al.⁷ introduced a method of obtaining a guaranteed lower bound for a convex function

For an *n*-dimensional function, only 2*n*+1 pointwise evaluations (and one algebraic step) are required

7. Song, Y., et al. Bounding convex relaxations of process models from below by tractable black-box sampling. *Computers & Chemical Engineering* 153 (2021), 107413.

Step 1) Use SourceCodeMcCormick.jl to create a convex evaluator function of the objective

Step 1) Use SourceCodeMcCormick.jl to create a convex evaluator function of the objective

Step 2) For each node, identify 2*n*+1 points to evaluate (based on variable bounds)

Step 1) Use SourceCodeMcCormick.jl to create a convex evaluator function of the objective

Step 2) For each node, identify 2*n*+1 points to evaluate (based on variable bounds)

Step 3) Use the convex evaluator function to calculate the value of the convex relaxation at all 2n+1 points for each node **simultaneously**

Step 1) Use SourceCodeMcCormick.jl to create a convex evaluator function of the objective

Step 2) For each node, identify 2*n*+1 points to evaluate (based on variable bounds)

Step 3) Use the convex evaluator function to calculate the value of the convex relaxation at all 2*n*+1 points for each node **simultaneously**

Step 4) Perform the algebraic step for each node to get guaranteed lower bounds

AIChE Annual Meeting 2022

AIChE Annual Meeting 2022

The concentrations of species $j \in \{A, B, D, Y, Z\}$ after an initial laser flash pyrolysis are modeled using the following system of ODEs:⁸

$$x_A(0) = x_B(0) = x_D(0) = 0, \quad x_Y(0) = 0.4, \quad x_Z(0) = 140.$$

8. Taylor, J. W. Direct Measurement and Analysis of Cyclohexadienyl Oxidation. Ph.D. thesis, Massachusetts Institute of Technology.

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 1)</u> SourceCodeMcCormick.jl + DiffEqGPU.jl^{9,10}

^{9.} Rackauckas, C., et al. Differential equations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software 5:1 (2017).

^{10.} Rackauckas, C., et al. DiffEqGPU.jl. GitHub repository, https://github.com/SciML/DiffEqGPU.jl (2019).

^{11.} Wilhelm, M.E. et al. Global optimization of stiff dynamical systems. AIChE Journal 65(12), e16836 (2019).

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 1)</u> SourceCodeMcCormick.jl + DiffEqGPU.jl^{9,10}

SourceCodeMcCormick.jl

9. Rackauckas, C., et al. Differential equations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software 5:1 (2017).

10. Rackauckas, C., et al. DiffEqGPU.jl. GitHub repository, https://github.com/SciML/DiffEqGPU.jl (2019).

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 1)</u> SourceCodeMcCormick.jl + DiffEqGPU.jl^{9,10}

9. Rackauckas, C., et al. Differential equations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software 5:1 (2017).

10. Rackauckas, C., et al. DiffEqGPU.jl. GitHub repository, https://github.com/SciML/DiffEqGPU.jl (2019).

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 2)</u> SourceCodeMcCormick.jl + Explicit Euler integration

 $\frac{dx_j}{dt} = \dots$

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 2)</u> SourceCodeMcCormick.jl + Explicit Euler integration

Explicit Euler

$$\frac{dx_{j}}{dt} = \dots \quad \Longrightarrow \quad x_{j,t+1} = x_{j,t} + hf_{j}(\mathbf{x}_{t})$$

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 2</u>) SourceCodeMcCormick.jl + Explicit Euler integration

11. Wilhelm, M.E. et al. Global optimization of stiff dynamical systems. *AIChE Journal* 65(12), e16836 (2019).

Objective: Adjust $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$ to minimize the SSE between this model and experimental data

<u>Option 2)</u> SourceCodeMcCormick.jl + Explicit Euler integration

CPU: Intel W-2195 GPU: NVIDIA Quadro GV100

CPU: Intel W-2195 GPU: NVIDIA Quadro GV100

Conclusions

- First implementation of parallelized B&B on a GPU
- Weaker lower bounding method than base EAGO
 - Comparable performance to state-of-the-art serial CPU branch-andbound

Future Efforts:

- Other B&B steps can benefit from parallelization
- Parallelizing alternative lower bounding methods can boost performance further

Acknowledgements

Members of the Process Systems and Operations Research Laboratory at the University of Connecticut (<u>https://psor.uconn.edu/</u>)

Funding:

National Science Foundation, Award No.: 1932723

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Questions?

https://www.psor.uconn.edu

https://www.github.com/PSORLab/EAGO.jl

