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Importance of Global Optimization

Physically Meaningful Computations? ( Safety-Critical Systems? \

Stream 7

K Stream 6 )

Metastable Point

Better quality solutions

Equilibrium
than local methods

1. Grajcarova, L. Simulations of structural phase transitions in crystals using ab initio metadynamics. INIS-IAEA (2013)
2. Stuber, M.D. et al. Worst-case design of subsea production facilities using semi-infinite programming. AIChE Journal (2014): 2513-2524.
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Global Optimization

. (Select Region) (Relax Problem + Compute Bound)
» Nonconvex MINLP formulations
naturally arise in many applications .
y y app Active Objective
» MINLP solvers generally rely on P1 |:> v
L . W
some variation of spatial branch-
/
and-bound3# . >
P,
» Relaxed subproblems are used to
compute bounds and are often (start }——> Presolve L—feesil
derived from relaxed functions3# 1 ST
—:{iTsr_c";E;Eigl }_’@ et
TSaect
3. Wilhelm, M.E., and Stuber, M.D.. EAGO.]l: easy advanced global Nede
optimization in Julia. Optimization Methods and Software, J
(2020): 1-26. """ L process 1
4. Horst, R., and Tuy, H. Global optimization: Deterministic :_Iirfrlcﬁ_:*—:__Ngge_ _:

approaches. Springer Science & Business Media, 2013.




3.

EAGO.jl

Deterministic global optimizer? E&GO
» High performance solver

Performance Profile on Test Set

-
o
1
1
1

» Open-source and free for non- J— .
commercial use < 08 i
;}I 0.6
» Designed for user-defined functions L - oavn
and routines = 02 . AnTiconE
— EAGO
100 101 102 103
Wilhelm, M.E., and Stuber, M.D.. EAGO.jl: easy advanced global optimization in Julia. ‘ E
Optimization Methods and Software, (2020): 1-26.
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Language/Solver Capabillities

- Run-time benchmark comparison®

julia/ Z2 sump -

10° o]
» Performance for low-level routines O ol O'Sﬁf%‘i‘i}iif?;ﬂ
> Multiple dispatch & contextual — . i
programming allow for ready P o " | 1 S s
extensibility (e.g., GPU parallelism)
i Julia Fortran Go  JavaScript Python Mathematica R Matlab  Octave

L] L L]
> Ea Se Of Set u p a n d d I St rl b u t I O n Performance comparison of various languages performing simple microbenchmarks. Bench-
mark exe

execution time relative to C. (Smaller is better; C performance = 1.0.)

5. Bezanson, J., et al. Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59: 65-98 (2017).




McCormick Relaxations of Factorable Functions

y = f(gXx), ..., h(x))

Auxiliary Variable Method McCormick-Based Relaxations>®

Relaxations
of g at xon X Apply composite

- relaxation rules .
o Relaxations of

Relaxations of
fat(x z) on (X Z)
° fatxon X
[ Relaxations }

ofhatxonX

5. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.
6. Scott, J.K., et al. Generalized McCormick relaxations. Journal of Global Optimization 51.4 (2011): 569-606.




Reduced Space Relaxations

Implicit Functions’ ODEs and DAEs? Continuous Random Variables®
2200
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7. Stuber, M.D. et al. Convex and concave relaxations of implicit functions. Optimization Methods and i | s
Software 30, (2015), 424-460 :
8. Wilhelm, M.E.; Le, A.V.; and Stuber, M.D. Global Optimization of Stiff Dynamical Systems. A/ChE —0.67 o e
Journal: Futures Issue, 65 (12), (2019). | “-0ee®
9. Shao, Y. and Scott J.K. Convex relaxations for global optimization under uncertainty described by " /
continuous random variables, AIChE Journal, (2018): 3023 — 3033. -1} /
10. Song, Y.; Cao, H.; Mehta, C.; and Khan K.A.. Bounding Convex Relaxations of Process Models from T —
Below by Tractable Black-Box Sampling, Computers & Chemical Engineering, In Press, (2021). =1.5}
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Original EAGO Capabilities

Extendable Support for Script Defined Functions Performant Subroutines

Parameter Estimation for Nonideal Two-Liquid Mixture

» Nonconvex MINLP & SIP solver

» Bounds Tightening Routines:
» Optimization-based
» Feasibility-based

x1[11,p)-Cp_exp[1,31)~2

» Preprocessing Routines:
» Algebraic Rearrangements
» Subexpression Elimination
» Regular Problem Classification

objective(Tdata,x1ldata,Cp_exp,p...}

min ) (CF%(T, xi,p) — G (Ty, x1))

pEP
2

mOdl a G
Cp % (T, x;,p) = _Tiﬁ (T;, xi, p)
P
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Additional Features

Built-in Convexity Detection , L Improved Composite Bilinear
(Disciplined Convex Programmingll, etc.) Global Dynamic Optimization Relaxations

"
\\\\ 4

Subgradient Priors Subgradient Priors * Interval

VEX_CONCAVE
[log(\/E T 1)J MONO_NONDECR

DynamicBounds.jl!2

N v

dx _ )
- = exP(P)sin(x)(2 — ),

VEX_CONCAVE
MONO_NONDECR

Max-Concave Priors Max-Concave Priors + Interval

A
N N

VEX_CONST
MONO_CONST

x(0)=1, pe[0.011], te[0,5]

VEX_CONCAVE
MONO_NONDECR
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z z

McCormick Relaxation®
Multivariate McCormick Relaxation3
A priori Calculation (Subgradient)

VEX_AFFINE
MONO_NONDECR

5. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.

11. Grant, M., Boyd, S., & Ye, Y. (2006). Disciplined convex programming. In Global optimization (pp. 155-210). Springer, Boston, MA.

12. Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository, https://github.com/PSORLab/DynamicBounds.jl AIChE Annual I\/Ieeting 2022 9
13. Tsoukalas, A., and Mitsos, A. Multivariate McCormick relaxations. Journal of Global Optimization 59.2-3 (2014): 633-662.




Extensibility

Seamless Integration with Defaults

» Any function can be replaced with a
user-defined routine

» EAGO automatically incorporates
new routines with default operation

Applications:

» Test new bounding methods
» Solve unique problem types
» Modify existing methods

> [...]

min sin(z1)z3 — cos(z3)/z4
xeX

using EAGO, IntervalArithmetic
struct IntervalExt <: EAGD.ExtensionType end

import EAGO: lower_problem!
function lower_problem!(t::IntervalExt, x::EAGD.GlobalOptimizer)
# Retrieve bounds at current node
n = x._current_node
lower = n.lower_wariable bounds
upper = n.upper_variable bounds

# Define X for the node and compute the interval extension
®_wvalue = Interval.(lower, upper)
F = zin(x walue[1])*x value[2]*2-cos(x_value[3])/x_value[4]
®. lower objective wvalue = F.lo
¥. lower sclution = IntervalArithmetic.mid. (x_walue)
¥. lower feasibility = true
return
end




What's New in EAGO

{Improvements to}

[ Documentation } McCormick.jl

Parallelization Maintenance




Documentation

Using EAGO with a script-defined problem:
U pd ates i n p roq ress : Kinetic parameter estimation with explicit Euler integration

Wilhelm
Wilhelm

Department of Chemical and Biomolecular Engineering, University of Connecticut

b

Department of Chemical and Biomolecular Engineering, University of Connecticut

; U pd ated J u pyte r n Ote boo k exa l I I p I eS " Consider the kinetic parameter estimation problem described in [1.2,3]. It consists of a system of ODEs that describe the concentration of the involved species after initial
.

laser flash pyrolysis given below:

Robert Gottl

dzy

https://github.com/PSORLab/EAGO-notebooks s e e

kg
= coskayza (B—i t }H)l‘u:

dt

dzp kag
—— = ca,ka —zp,
pr €o, k25T 4 KZJ.JJ
dry

%= kyszzTY,

dzz

& kyxzxy,

» Overhaul of documentation website

where z; is the concentration of species j © {A, B, D,Y, Z}. The constants are then given by T' = 273, Ky = 46exp(6500/T — 18), K3 = 2K, ky = 53,
Fy, =k x10°% ks =12 x 10°% and ¢, = 2 x 10°%

. .
> Q u I C k_Sta rt g u I d e One seeks to determine the reaction rate constant from measured intensity data by minimizing the sum-squared-error, A known dependency of intensity on concentrations

exists and is given by I = 24 + 45 + 4 xp. The reaction rate constants are kag € [10,1200], kay & 10,1200, and ks € [0.001,40] and form the decision space

vector p = (Kag, kag, k). In the below example, we'll discretize the ODE system via an explicit Euler method taking At = 0.01 and formulate an optimization problem

» Use examples with varying complexity

For reference, the explicit Euler discretization iz given by:

kay kay

> Guide to creating extensions ek i ot )

) kay

et i (82 1 1)a)
B B X, )8
; i ST

oy =ah + AL (A‘z;Lozr,l Easn)

it = 2k + At (—knzieh)

i =Y + At (hizyrl)

» New docstrings for all user-facing functions

We now load the data from the "kinetic_intensity_cata.csv” file and bounds from the “implicit_variable_bounds.csv” file.

using EAGO, JuMP, DataFrames, CSV, Gurobi

data = CSV.read("
bounds = CSV.

» Fixes for all incomplete and outdated docstrings

pu

, DataFrame)
v", DataFrame)

[10.6, 16.0, ©.001]
[1200.0, 1200.9, 40.0];



https://github.com/PSORLab/EAGO-notebooks

Improvements to McCormick Relaxation Library

New Publication:

Wilhelm, M.E., Wang, C., Stuber, M.D. Convex and concave envelopes
of artificial neural network activation functions for deterministic
global optimization. Journal of Global Optimization (2022)

» Tighter relaxations of many common ANN 2o 2 20 2
activation functions

Function = «rreeeeees McCormick relaxation ——— Envelope

» Implemented within McCormick.jl

5

» Substantial speedup compared to naive
relaxations
> Enables global optimization with embedded e i e

] EAGO (McCormick)

ANN surrogate models ; e

L L L 1
0.0 2,5 5.0 7.5 10.0




Parallelization Efforts

Behind-the-scenes development:

>

First deterministic global optimization
algorithm to be implemented on a GPU

Packages that extend EAGO to parallelize
some aspects of B&B

Come see us at FOCAPO / CPC 2023!

Ratio of lower to upper bound

080 L L L L
1 10 100

—— Base EAGO Implementation
--- SourceCodeMcCormick; CPU
------ SourceCodeMcCormick; GPGPU

-------------
o0’
.

CPU time in seconds

1000




Maintenance: JuMP and MO

Current Status Update in Progress

os JUMP es JUMP

vli.1l.1 v1.4.0

Nonlinear functionality Nonlinear functionality
handled by JuMP handled by MathOptinterface

abstraction layer
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Conclusions

EAGO — An extensible deterministic global optimizer
» High performance solver

» Designed for user-defined functions and routines

» QOpen-source and free for non-commercial use

Process Systems and
@ Operations Research
@ OLaboratory

Future Outlook

» Parallel computing capability

» Regular updates to promote ease of use

» Performance improvements in core EAGO algorithms
» Exploring compiled versions for use with GAMS




Acknowledgements

Members of the Process Systems and Operations Research Laboratory
at the University of Connecticut (https://psor.uconn.edu/)

Process Systems and
Operations Research

Laboratory

Funding:
National Science Foundation, Award No.: 1932723

Any opinions, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foundation. P

AIChE Annual Meeting 2022 17 ‘G


https://psor.uconn.edu/

Questions?

®» Process Systems ana
Operations Research E@OGO
® OLaboratory
https://www.psor.uconn.edu https://www.github.com/PSORLab/EAGO.jl
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https://www.github.com/PSORLab/EAGO.jl
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