

Recent Developments in EAGO.jl (Easy Advanced Global Optimization in Julia)

Robert Gottlieb, PhD Student

Matthew Wilhelm, PhD Pengfei Xu, PhD Student Matthew Stuber, Assistant Professor

November 15th, 2022

Importance of Global Optimization

Better quality solutions than local methods

1. Grajcarova, L. Simulations of structural phase transitions in crystals using ab initio metadynamics. INIS-IAEA (2013)

2. Stuber, M.D. et al. Worst-case design of subsea production facilities using semi-infinite programming. AIChE Journal (2014): 2513-2524.

Global Optimization

- Nonconvex MINLP formulations naturally arise in many applications
- MINLP solvers generally rely on some variation of spatial branchand-bound^{3,4}
- Relaxed subproblems are used to compute bounds and are often derived from relaxed functions^{3,4}

Wilhelm, M.E., and Stuber, M.D.. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software, (2020): 1-26.

4. Horst, R., and Tuy, H. *Global optimization: Deterministic approaches*. Springer Science & Business Media, 2013.

EAGO.jl

Deterministic global optimizer³

- High performance solver
- Open-source and free for noncommercial use
- Designed for user-defined functions and routines
- 3. Wilhelm, M.E., and Stuber, M.D.. **EAGO.jl: easy advanced global optimization in Julia.** *Optimization Methods and Software*, (2020): 1-26.

Language/Solver Capabilities

julia / 1 JUMP

- Performance for low-level routines
- Multiple dispatch & contextual programming allow for ready extensibility (e.g., GPU parallelism)
- Ease of setup and distribution

Performance comparison of various languages performing simple microbenchmarks. Benchmark execution time relative to C. (Smaller is better; C performance = 1.0.)

McCormick Relaxations of Factorable Functions

$$\mathbf{y} = \mathbf{f}(\mathbf{g}(\mathbf{x}), \dots, \mathbf{h}(\mathbf{x}))$$

5. Mitsos, A., et al. McCormick-based relaxations of algorithms. *SIAM Journal on Optimization*, SIAM (2009) 20, 73-601.

6. Scott, J.K., et al. Generalized McCormick relaxations. *Journal of Global Optimization* 51.4 (2011): 569-606.

Reduced Space Relaxations

Implicit Functions⁷

- 7. Stuber, M.D. et al. **Convex and concave relaxations of implicit functions.** *Optimization Methods and Software* 30, (2015), 424-460
- 8. Wilhelm, M.E.; Le, A.V.; and Stuber, M.D. Global Optimization of Stiff Dynamical Systems. *AIChE Journal: Futures Issue*, 65 (12), (2019).
- 9. Shao, Y. and Scott J.K. Convex relaxations for global optimization under uncertainty described by continuous random variables, *AIChE Journal*, (2018): 3023 3033.
- 10. Song, Y.; Cao, H.; Mehta, C.; and Khan K.A.. **Bounding Convex Relaxations of Process Models from Below by Tractable Black-Box Sampling**, *Computers & Chemical Engineering*, In Press, (2021).

AIChE Annual Meeting 2022

x

Original EAGO Capabilities

Additional Features

- 5. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.
- 11. Grant, M., Boyd, S., & Ye, Y. (2006). Disciplined convex programming. In Global optimization (pp. 155-210). Springer, Boston, MA.
- 12. Wilhelm, M. E., DynamicBounds.jl, (2020), GitHub repository, https://github.com/PSORLab/DynamicBounds.jl
- 13. Tsoukalas, A., and Mitsos, A. Multivariate McCormick relaxations. Journal of Global Optimization 59.2-3 (2014): 633-662.

Extensibility

Seamless Integration with Defaults

- Any function can be replaced with a user-defined routine
- EAGO automatically incorporates new routines with default operation

Applications:

- Test new bounding methods
- Solve unique problem types
- Modify existing methods
- ≻ […]

$$\min_{\mathbf{x}\in X} \;\; \sin(x_1)x_2^2 - \cos(x_3)/x_4$$

In [1]: using EAGO, IntervalArithmetic

In [2]: struct IntervalExt <: EAGO.ExtensionType end</pre>

In [3]: import EAGO: lower_problem! function lower_problem!(t::IntervalExt, x::EAGO.GlobalOptimizer) # Retrieve bounds at current node n = x._current_node lower = n.lower_variable_bounds upper = n.upper_variable_bounds # Define X for the node and compute the interval extension x_value = Interval.(lower, upper) F = sin(x_value[1])*x_value[2]^2-cos(x_value[3])/x_value[4] x._lower_objective_value = F.lo x._lower_solution = IntervalArithmetic.mid.(x_value) x._lower_feasibility = true return end

What's New in EAGO

Documentation

Improvements to McCormick.jl

Parallelization

Maintenance

Documentation

Updates in progress:

- Updated Jupyter notebook examples: <u>https://github.com/PSORLab/EAGO-notebooks</u>
- Overhaul of documentation website
 - Quick-start guide
 - Use examples with varying complexity
 - Guide to creating extensions
- New docstrings for all user-facing functions
- Fixes for all incomplete and outdated docstrings

Using EAGO with a script-defined problem:

Kinetic parameter estimation with explicit Euler integration

- Matthew Wilhelm
- Department of Chemical and Biomolecular Engineering, University of Connecticut

Robert Gottlieb Department of Chemical and Biomolecular Engineering, University of Connecticut

Consider the kinetic parameter estimation problem described in [1.2.3]. It consists of a system of ODEs that describe the concentration of the involved species after initial laser flash pyrolysis given below:

```
 \begin{split} \frac{dx_A}{dt} &= k_1 x_Z x_Y - c_{O_2} (k_{2f} + k_{3f}) x_A + \frac{k_{2f}}{K_2} x_D + \frac{k_{3f}}{K_3} x_B - k_5 x_A^2 \\ \frac{dx_B}{dt} &= c_{O_2} k_{3f} x_A - \left(\frac{k_{3f}}{K_3} + k_4\right) x_B, \\ \frac{dx_D}{dt} &= c_{O_2} k_{2f} x_A - \frac{k_{2f}}{K_2} x_D, \\ \frac{dx_F}{dt} &= -k_{1*} x_Z x_Y, \\ \frac{dx_F}{dt} &= -k_{1*} x_Z x_Y, \\ \frac{dx_F}{dt} &= -k_{1*} x_Z x_Y, \end{split}
```

where x_j is the concentration of species $j \in \{A, B, D, Y, Z\}$. The constants are then given by T = 273, $K_2 = 46 \exp(6500/T - 18)$. $K_3 = 2K_2$, $k_1 = 53$, $k_{1s} = k_1 \times 10^{-6}$, $k_5 = 1.2 \times 10^{-3}$, and $c_{O_2} = 2 \times 10^{-3}$.

One seeks to determine the reaction rate constant from measured intensity data by minimizing the sum-squared-error. A known dependency of intensity on concentrations exists and is given by $I = x_A + \frac{2}{31}x_B + \frac{1}{32}x_D$. The reaction rate constants are $k_2 \in [10, 1200]$, $k_3 \in [10, 1200]$, and $k_4 \in [0.001, 40]$ and form the decision space vector $\mathbf{p} = (k_{2f}, k_{3f}, k_4)$. In the below example, we'll discretize the ODE system via an explicit Euler method taking $\Delta t = 0.01$ and formulate an optimization problem which we'll then solve using EAGO's script_solve function.

For reference, the explicit Euler discretization is given by:

```
 \begin{split} x_A^{i+1} &= x_A^i + \Delta t \left( k_1 x_Y^i x_Z^i - c_{O2} (k_2 f + k_3 f) x_A^i + \frac{k_2 f}{K_2} x_D^i + \frac{k_3 f}{K_3} x_B^i - k_5 (x_A^i)^2 \right) \\ x_B^{i+1} &= x_B^i + \Delta t \left( k_3 f C_{O2} x_A^i - \left( \frac{k_3 f}{K_3} + k_4 \right) x_B^i \right) \\ x_D^{i+1} &= x_D^i + \Delta t \left( k_2 f C_{O2} x_A^i - \frac{k_2 f}{K_2} x_D^i \right) \\ x_Q^{i+1} &= x_D^i + \Delta t \left( -k_{1x} x_Y^i x_Z^i \right) \\ x_Z^{i+1} &= x_D^i + \Delta t \left( -k_{1x} x_Y^i x_Z^i \right) \\ x_Z^{i+1} &= x_Z^i + \Delta t \left( k_{1x}^i x_Z^i \right) \end{split}
```

Load data

We now load the data from the "kinetic_intensity_data.csv" file and bounds from the "implicit_variable_bounds.csv" file

n [10]: using EAGO, JuMP, DataFrames, CSV, Gurobi

data = CSV.read("kinetic_intensity_data.csv", DataFrame)
bounds = CSV.read("implicit_variable_bounds.csv", DataFrame)

pL = [10.0, 10.0, 0.001] pU = [1200.0, 1200.0, 40.0];

Improvements to McCormick Relaxation Library

New Publication:

Wilhelm, M.E., Wang, C., Stuber, M.D. Convex and concave envelopes of artificial neural network activation functions for deterministic global optimization. *Journal of Global Optimization* (2022)

- Tighter relaxations of many common ANN activation functions
- Implemented within McCormick.jl
- Substantial speedup compared to naïve relaxations
- Enables global optimization with embedded ANN surrogate models

Parallelization Efforts

Behind-the-scenes development:

- First deterministic global optimization algorithm to be implemented on a GPU
- Packages that extend EAGO to parallelize some aspects of B&B
- Come see us at FOCAPO / CPC 2023!

Maintenance: JuMP and MOI

Conclusions

EAGO — An extensible deterministic global optimizer

- High performance solver
- Designed for user-defined functions and routines
- Open-source and free for non-commercial use

Future Outlook

- Parallel computing capability
- Regular updates to promote ease of use
- Performance improvements in core EAGO algorithms
- Exploring compiled versions for use with GAMS

Acknowledgements

Members of the Process Systems and Operations Research Laboratory at the University of Connecticut (<u>https://psor.uconn.edu/</u>)

Funding:

National Science Foundation, Award No.: 1932723

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Questions?

https://www.psor.uconn.edu

https://www.github.com/PSORLab/EAGO.jl

