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ABSTRACT

Simulations arising from first-principles models or data-driven approaches find ubiquitous

applications across technical fields. In the chemical industry, simulations are used to control unit

operations, establish safe/efficient process configurations for producing a wide variety of prod-

ucts, and design key experiments. In a broader context, simulations often help to define value

propositions for numerous products. Furthermore, robust optimization approaches, which rigor-

ously account for uncertainty, are desirable when the consequences of decisions are extremely

high. However, deterministic optimization (and, in turn, robust optimization) of general nonlinear

forms remains a significant challenge due to the inherent computational complexity. This thesis

addresses two key problems in nonconvex and robust optimization.

The focus of the first section is on advancing general methods for reduced-space deterministic

global and robust optimization. The use of these methods for nonlinear models remains limited by

high computational costs and strict structural requirements. The former problem may be mitigated

by using fast and accurate relaxation methods. I present the development of two such methods.

The first focuses on a specialized relaxation approach for emergent artificial neural networks, and

the second advances reduced-space relaxation methods for intermediate composite bilinear terms.

The development of the global optimizer EAGO, in which each of these methods is implemented,
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is described. The composite relaxation approach used in EAGO allows for deterministic global

and robust optimization of highly complex model formulations surmounting strict structural re-

quirements.

The second portion of this thesis concerns the global solution of optimization problems with

embedded systems of parametric ordinary differential equations. These extremely difficult prob-

lems are of interest in the verification of recurrent neural networks, optimal control of batch pro-

cesses, as well as in methods for the detection and isolation of faults. The handful of existing

algorithms which address these problems are subject to significant limitations. Prior work has

focused on explicit discrete-time methods and continuous-time relaxation approaches, in contrast

to this thesis which describes previously unexplored implicit relaxation approaches. These meth-

ods are typically more accurate than explicit approaches, less expansive, and are well-suited to

challenging problems which embed stiff dynamical systems.
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When one admits that nothing is certain one must, I think, also admit that some

things are much more nearly certain than others.
- Bertrand Russell

We demand guaranteed rigidly defined areas of doubt and uncertainty.

- Douglas Adams
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Chapter 1

Introduction

1.1 Motivation

Mathematical models and simulations thereof are ubiquitous throughout technical disciplines.

These models/simulations inform the design and operation of many technologies encountered in

our everyday life. Recent advances in machine learning (ML) have expanded the domains

informed by mathematical modeling by providing tractable approaches to problems spanning

image recognition [126], natural language processing [85], and process control [142]. As the

complexity of model-based approaches have grown, more and more applications incorporate

multiple types of simulations in different aspects. This has led to interest in modular,

equation-oriented, and acausal models to streamline the workflow associated with addressing the

modeling challenges. While hybrid data-driven modeling approaches, such as physics-informed

neural networks, are key enablers of Industry 4.0 and digital twin paradigms, a number of extant

challenges exist. In particular, the development of effective approaches for dynamic systems that
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Figure 1.1.1: Conversion of furfural to furfuryl alcohol.

adequately address uncertainty is of significant interest. These issues can be made concrete by

through examination of a proposed electrochemical synthesis approach for furfuryl alcohol.

Furfuryl alcohol (FA) is the principal monomer used in the synthesis of furan resins, which

are key components in numerous coatings, adhesives, and thermoset polymers. This

biomass-derived component plays a key role in the development of renewable alternatives to a

number of commodity chemicals and fuels. Currently, the synthesis of FA makes use of a high

temperature and pressure process step resulting in inherent process hazards. One proposed means

of mitigating these hazards while providing adequate selectivity and specificity for FA production

is through the use of a low-temperature electrochemical synthesis pathway. This is a two-step

method in which furfural (FF) is adsorbed onto a surface, and then reacts with adsorbed

hydrogen. Mass balance considerations yield the following system of differential equations

(1.1.1) for a semi-batch tank reactor where Qin is the input flowrate, Qout is the output flowrate, V
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is the reactor volume, and a is the effective surface area [107].

dx1

dt
= C(r1 − r2) (1.1.1)

dx2

dt
=

Qin

V
x2,in − r1a −

Qout

V
x2

dx3

dt
=

Qin

V
x3,in + r2a −

Qout

V
x3

The rate of adsorption of FF onto the surface, r1 and the rate of conversion from FF to FA, r2, are

then given by equations (1.1.2) and (1.1.3), respectively,

r1 = k1x2θv, (1.1.2)

r2 = k2θH(E)2x1. (1.1.3)

A simple multi-layer perception (MLP), θH = θH(E), relates the over-potential E with the

absorption of hydrogen by the Volmer reaction, θH, which in turn determines the production rate

of FA. This MLP-based hybrid model outperforms predictions based derived solely from

first-principles considerations. The impact of uncertainty in empirically-estimated kinetic rate

coefficients on yield and cycle time must be taken into account when designing an FA synthesis

process. Moreover, biomass-derived feedstocks such as FF may be subject to substantial

variations in composition, which may dramatically affect techno-economic analyses. Formally

accounting for uncertainty in this FA production design problem is tantamount to answering a

simple question:

Can one select a design Qin, Qout, E, such that for any realization of (k1, k2, x1,0)

within specified bounds desired yield and cycle time are achieved?

These conservative, or worst-case design under uncertainty problems ensure that reasonable
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performance is guaranteed prior to substantial capital investment. In practice, one typically

formulates this question as multi-level optimization problem (see Section 2.5) that is solved to

select design parameters [120]. Moreover, worst-case designs are of particular interest for

safety-critical systems and timeline-sensitive projects in which the cost of a single failure

dramatically outweighs a marginally larger capital investment.

The furfuryl alcohol model leverages a physics-informed neural ordinary differential

equation (ODE), an emerging class of machine learning that builds on a now common recurrent

neural network (RNN) framework. While a RNN [178]) builds elaborate transformations through

the sequential compositions of simpler transformations f : Rny × Rnθ → Rny as a applied to hidden

states, yt,

yt+1 = yt + f(yt, θ) (1.1.4)

for t ∈ 0, . . . ,T , the neural ODE is an analogous continuous transformation (1.1.5)

dy
dt

= f(y(t), θ), (1.1.5)

which leads to formulation in which f, the right-hand side function participating in the ODE,

resembles a simple neural network. Highly successful machine learning architectures such as

ResNet [126] and FractalNet [159] can be interpreted as Euler and Runge-Kutta discretizations of

(1.1.5), respectively. These neural ODEs are memory-advantaged relative to formulation (1.1.4)

and do not require the specification of the number of network layers beforehand.

Physics-informed dynamic neural networks incorporate these benefits as well as rigorously

accounting for physical laws, such as mass conservation. Unfortunately, models of this form are

distinct from the typical algebraic equation structure addressed by commercial software.
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The presence of nonconvex constraints implied by the incorporation of (1.1.5) into an

optimization problem leads to a nonconvex dynamic program which is a particularly challenging

class of optimization problem before accounting for uncertainty. Moreover, the mere verification

of system-level robustness, requires a program of this form to be solved to global optimality [188]

which necessitates the use of NP-complete methods at the forefront of numerical research. The

full problem formulation is a bilevel programs with coupling equality constraints that implicitly

define functions [78]. General problems of this form cannot be readily solved. However, it may

be addressed by exploiting a implicit function reformulation to a semi-infinite programs with

existing solution methods [298]. In practice, this requires the calculation of convex/concave

relaxation of implicit functions [300] and is enabled by composite relaxation methods [191, 271]

that allow for the modular consideration of substructures.

Robust optimization and associated methods play a pivotal role in addressing a number of

concerns beyond the worst-case design under uncertainty problem. As the preponderance of

machine learning architectures are opaque to users, a number of formal methods have been

employed to ensure that trained models exhibit desired properties. Neural network verification, as

a specialization of model verification, seeks to answer basic “yes” or “no” questions meant to rule

out undesirable behavior [86, 141, 233]. These common adversarial verification methods (or

adversarial attacks) seek to identify inputs that lead to undesirable behavior termed adversarial

examples and training methodologies that can formally ensure that for any input, in any current

(and potentially unknown) state of a system, undesirable behaviors cannot occur, which is itself a

robust optimization problem [32].

This thesis advances methods for reduced-space deterministic global optimization and robust

optimization that are general enough to addresses forms such as (1.1.1). This begins with the

development of the reduced-space global optimizer EAGO.jl and the establishment of specialized
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relaxation approaches for common operators including bilinear term and activation functions.

Subsequently, a reduced-space dynamic optimization method is described along with its

corresponding implementation and robust optimization applications are considered.

1.2 Thesis Structure

The subsequent chapters of this thesis are organized in the following manner. Mathematical

preliminaries are initially reviewed in Chapter 2. Chapters 3 - 5 describe the development of

general methods pertinent to reduced-space global optimization while Chapters ?? - 7 specialize

these methods to dynamic optimization. In Chapter 8, a few applications are highlighted which

make use of the aforementioned methods in a robust optimization context. Finally, the thesis

concludes by summarizing research contributions made herein and discussing potential avenues

for future research. A detailed summary of each chapter is provided below.

• Chapter 2 provides an overview of the mathematical preliminaries relevant to this research

and a discussion of prior work. The topics covered in this chapter include problem

formulations, global optimization, robust optimization, and methods for enclosing the range

of a function.

• Chapter 3 details the development of an extensible deterministic global optimizer (EAGO).

This optimizer is based on a first-of-its-kind implementation of McCormick arithmetic

using a combination of source code transformation, multiple dispatch, and context-specific

approaches. Moreover, the performance of EAGO is comparable and may exceed

state-of-the-art commercial optimizer performance.

• Chapter 4 describes general methods used to compute convex/concave relaxations of
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activation functions that are commonly chosen for use in artificial neural networks (ANNs).

This chapter details the development of a library of envelopes of thoroughly studied

rectifier-type and sigmoid activation functions, in addition to the novel self-gated

sigmoid-weighted linear unit (SiLU) and Gaussian error linear unit (GELU) activation

functions. These envelopes of activation functions lead to tighter relaxations of ANNs on

their domain and lead to a significant reduction in CPU runtime required to solve global

optimization problems involving ANN models.

• Chapter 5 details a novel theory used to generate necessarily tighter reduced-space

McCormick relaxations when a priori convex/concave relaxations of intermediate bilinear

terms are known. This chapter then details three different approaches to generating a priori

relaxations of the arguments participating in intermediate bilinear terms. It is then shown

that the use of subgradient-based a priori relaxations result in an improvement to CPU

runtime of the branch-and-bound algorithm.

• Chapter 6 presents a deterministic global optimization method that uses

unconditionally-stable implicit integration methods to reformulate ODE-constrained

optimization problems into a nonconvex nonlinear program (NLP) with implicit functions

embedded. This problem is then solved to global optimality in finite time using a spatial

B&B framework that progressively evaluates convex/concave relaxations of implicit

functions in a block sequential fashion.

• Chapter 7 adapts the method presented in Chapter 6 to incorporate rigorous bounds on the

truncation error of embedded parametric differential equation systems. This allows for the

incorporation of error bounds to ensure state bounds are rigorous despite them being

calculated using a numerical method. In turn, this allows for the use of adaptive step-sizing

approaches that leads to a computational speed-up; overcoming the time cost associated
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with computing error bounds.

• Chapter 8 details an application of robust optimization which incorporates advances made

throughout this thesis.

• Chapter 9 summarizes the contributions presented in this thesis and potential future avenues

of research are outlined.
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Chapter 2

Mathematical Background

2.1 Interval Analysis

Throughout this thesis, scalar quantities are represented as lower-case letters (e.g., a) and vectors

are denoted by boldface lower-case letters (e.g., a). Ai representing the i-th component of the

vector A. A set Bn is defined as the Cartesian product Bn ≡ B × · · · × B for B ⊂ R. Additionally,

X = [xL, xU] will represent an n-dimensional interval that is a nonempty compact set defined as

X = {x ∈ Rn : xL ≤ x ≤ xU} with xL and xU the lower and upper bounds of the interval,

respectively. A set Xn is defined as the Cartesian product Xn = X × X × · · · × X. Further, let

IRn = {[xL, xU] ⊂ Rn} be the set of all n-dimensional real intervals and for any D ⊂ Rn,

ID = {X ∈ IRn : X ⊂ D} is the set of all interval subsets of D. The image of X under the mapping

f : D→ Rn will be denoted f(X) whereas the inclusion monotonic interval extension of f on X

will be denoted F(X). From the Fundamental Theorem of Interval Analysis (Thm. 1.4.1 in

Neumaier [219]), we have f(X) ⊂ F(X), ∀X ∈ ID. Further, let the diameter of a scalar-valued
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interval, X, be defined as diam(X) = xU − xL and the radius be given by rad(X) = diam(X)/2.

An interval extension of algebraic functions can generally be computed by applying interval

extensions to each subexpression in the function, the natural interval extension. This naturally

leads to overestimation due to either the dependency problem or wrapping effects. The

dependency problem arises due to the inability of interval analysis to identify and compensate for

the appearance of the same variable at multiple points in a given expression [193]. The function

g : x→ x/x evaluated on x ∈ X = [1, 2] clearly illustrates this phenomena. Obviously, g takes the

value of 1 for all x ∈ [1, 2]. However, the natural interval extension of g(X) evaluates to

[1, 2]/[1, 2] = [1/2, 2] , [1, 1]. In comparison, the wrapping effect arises from the fact that the

image set of a function on n-dimensional interval is not itself an m-dimensional interval. These

limitations motivate interest in developing alternative enclosure methodologies that mitigate this

overestimation.

2.2 Convex Analysis

Convex and concave relaxations provide a means of rigorously enclosing the range of a function

that is computationally useful in global optimization. The pertinent definitions and background

information for convex sets, convex functions, and, in turn, convex relaxations are defined herein.

Definition 2.2.1 (Convex Set [51]). A set Z ⊂ Rn is said to be convex if, for every x, y ∈ Z, we

have αx + (1 − α)y ∈ Z, ∀β ∈ [0, 1].

Definition 2.2.2 (Convex/Concave Function [51]). Given a convex set Z ⊂ Rn, a function

f : Z ⊂ Rn → R is said to be convex if

f (βx + (1 − β)y) ≤ β f (x) + (1 − β) f (y) (2.2.1)
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Figure 2.2.1: Illustration of a (left) convex set and a (right) nonconvex set.

for every x, y ∈ Z, we have βx + (1 − βx) ∈ Z, ∀β ∈ [0, 1]. Similarly, a function f : Z → R is said

to be concave if the reverse of inequality (2.2.1) holds.

Graphically, a function f is convex, provided that any line segment connecting the points (x, f (x))

and (y, f (y)) is above f on Z as depicted in Figure 2.2.2.

• (x, f(x))

• (y, f(y))

•
(x,f(x))

• (y,f(y))

Figure 2.2.2: An illustration of (left) a convex function and (right) nonconvex function.
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Definition 2.2.3 (Underestimators and Overestimators). Given Z ⊂ Rn, and define w : Z → R.

Then, a function u : Z → R is called an underestimator of w on Z if and only if u(z) ≤ w(z) for

every z ∈ Z. Similarly, o : Z → R is called an overestimator of w on Z if and only if o(z) ≥ w(z)

for every z ∈ Z.

Definition 2.2.4 (Convex and Concave Relaxations [191]). Given a convex set Z ⊂ Rn and a

function w : Z → R, wcv : Z → R is a convex relaxation of w on Z if and only if it is both convex

and an underestimator of w on Z. Similarly, wcc : Z → R is a concave relaxation of w on Z

provided it is both concave and an overestimator of w on Z.

Note that this definition involves scalar functions. Convex and concave relaxations of

vector-valued functions of f : Z → Rn are then defined by applying the above inequalities

componentwise [300]. The tightest convex relaxation of f on the domain Z and the tightest

concave relaxations are the convex and concave envelope, respectively, as given by Definition

2.2.5.

Definition 2.2.5 (Convex and Concave Envelope [334]). Let f : Z → R where Z ⊂ Rn is a

nonempty convex set. The convex envelope of f on Z is the convex relaxation f cv,env : Z → R such

that f cv(z) ≤ f cv,env(z) holds for all z ∈ Z and every convex relaxation f cv of f on Z. Similarly, the

concave envelope of f on Z is the concave relaxation f cc,env : Z → R such that f cc(z) ≥ f cc,env(z)

holds for all z ∈ Z and every concave relaxation f cc of f on Z.

Definition 2.2.6 (Subgradients [191]). Let Z ⊂ Rn be a nonempty convex set, wcv : Z → R be

convex, and wcc : Z → R be concave. A vector scv
w ∈ R

n is a subgradient of wcv on Z if for each

z̄ ∈ Z, wcv(z) ≥ wcv(z̄) + (scv
w )T(z − z̄),∀z ∈ Z. Similarly, a vector scc

w ∈ R
n is a subgradient of wcc on

Z if for each z̄ ∈ Z, wcc(z) ≤ wcc(z̄) + (scc
w )T(z − z̄),∀z ∈ Z.

Remark 2.2.1. Note that subgradients of vector-valued functions and subgradients of

matrix-valued functions will be defined analogously and will be matrix-valued functions and
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third-order tensor-valued functions, respectively. The subgradients of wcv and wcc at z̄ ∈ Z are then

denoted by scv
w (z̄) and scc

w (z̄), respectively.

2.3 Global Optimization

The general form of optimization problems are given by (2.3.1):

f ∗ = min
z∈Z=[zL,zU ]

f (z) (2.3.1)

s.t. h(z) = 0

g(z) ≤ 0

Az = b

where f : Z → R is the objective function, and g : Z → Rng and h : Z → Rnh are constraint

functions. The lower and upper bounds on the variables are given by zL, zU ∈ Rn, respectively.

The matrix equation specified by A ∈ Rm×n, b ∈ Rm defines the linear equality constraints. In

general, optimization problems are classified by either the functional forms of the participating

objectives and constraints, the characteristics of participating variables, or by the implied

mathematical properties. A problem (2.3.1) is a linear program (LP) if f , g,h are linear and a

second-order cone program (SOCP) if g consists only of second-order conic constraints and f ,h

are affine functions, as formalized in Definitions 2.3.1, and 2.3.2. Accordingly, 2.3.1 is a

nonlinear program (NLP) if even a single constraint or the objective function is a nonlinear

function. A problem (2.3.1) is continuous if all variables z are continuous (i.e., may take any

value in a continuous range), integer if all such variables are drawn from sets of integers, or

mixed-integer if both continuous and integer variables participate in the formulation.
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Definition 2.3.1 (Linear Program [29]). A linear optimization problem takes the form

min
z

cT z + d (2.3.2)

s.t. Az ≤ 0,

where z ∈ Rn is the vector of decision variables, c ∈ Rn and d ∈ R form the objective, A is an

m × n constraint matrix, and b ∈ Rm is the right hand side vector.

Definition 2.3.2 (Second-Order Cone Program (SOCP)[29]). A second order conic optimization

problem takes the form

min
z

cT z (2.3.3)

s.t. ||Aiz − bi||2 ≤ cT
i z − di, 1 ≤ i ≤ m

where z ∈ Rn is the vector of decision variables, c ∈ Rn and d ∈ R form the objective, A is an

m × n constraint matrix, and b ∈ Rm.

In order to ensure that problem (2.3.1) is well-posed, it is typical to assume that all functions

are continuous and suitably bounded [136]. In this thesis, we refer to variables that appear in any

nonlinear expressions as nonlinear variables and variables that appear in any nonconvex equality,

inequalities, or objective as nonconvex variables. The convexity tests commonly used in

optimization routines check sufficient conditions such as determining that natural interval

extension of the Hessian of the augmented Lagrangian is everywhere positive-definite [220]. As a

consequence, the expressions referred to as convex should be understood to be expressions that

have passed sufficient conditions for convexity.

Most general solution methods for nonconvex problems of the form (2.3.1) rely on some
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variation of the spatial branch-and-bound algorithm (B&B) [136]. In this algorithm, the decision

space is iteratively partitions into subdomains Zl,Zl′ , . . . until the algorithm converges. A lower

bound f LBD
l and an upper bound f UBD

l of the solution to (2.3.1) restricted to a given subdomain Zl

are computed. Subdomains are then fathomed, discarded from consideration, based on

infeasibility when f LBD is less than a known global upper bound of αk. Most complete global

solvers intersperse these bounding calculations with a series of methods that shrink the size of the

subdomain Zl [234]. Any feasible point on subdomain Zl is a valid upper bound f UBD
l ; however,

suboptimal local solutions of (2.3.1) are commonly used to compute upper bounds. In general,

nonconvex solution methods make use of advanced methods that rely on solving

under-approximating mixed-integer convex optimization problems to rigorously furnish lower

bounds.

A continuous optimization problem of the form (2.3.1) is convex, provided that: 1) the

objective function f is convex, 2) all inequality constraint functions g are convex, and 3) all

participating equality constraints are affine nh = 0 [51]. As an immediate consequence of the

limitations on the constraints, the feasible set of the convex optimization problem is convex.

Accordingly, we may state that a convex optimization problem is the minimization of a convex

objective function over a convex set. Convexity of an optimization problem implies that every

local minima on a particular neighborhood is a global minima. As a consequence, any convex

problem that outer approximates the feasible set of (2.3.1) and under estimates the objective

function value, may be solved locally to rigorously compute a lower bound of a nonconvex

optimization problem (2.3.1). This convex relaxation of (2.3.1) may then be constructed by taking

the convex relaxation of all participating nonconvex constraints and the objective function,

succinctly below in (2.3.4),
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f ∗ = min
z∈Z=[zL,zU ]

f cv(z) (2.3.4)

s.t. gcv(z) ≤ 0

hcv(z) ≤ 0

hcc(z) ≥ 0

Az = b

The solution of (2.3.4) is a valid lower bound of (2.3.1). Pointwise convergence of relaxations of

the underlying functions f , g, and h is sufficient to ensure pointwise convergence to the solution

f ∗ of (2.3.4) under mild assumptions [136]. In turn, this ensures that the B&B algorithm furnishes

an ε-optimal global solution to (2.3.1) within a finite number of iterations provided that the upper

bounding method is also convergent; as is the case when using locally optimal solutions of (2.3.1).

Given that a large number of convex NLPs would typically need to be solved during B&B,

the solution of a convex NLP of form (2.3.4) often represents a significant computational cost and

may lead to numerical robustness issues. This contrasts existing LP and MILP optimization

methods that typically solve a problem of similar dimension in much less CPU time, and are

typically more robust to numerical scaling issues. Moreover, a highly-accurate solution of (2.3.4)

may not yield a substantial improvement in the lower bound of (2.3.1) on Z for a weak

approximation of (2.3.4) due to the inherent underestimation that arises from relaxing the original

problem. Each of these factors motivates the use of linearization methods as opposed to a direct

solution of (2.3.4).

Relaxation and subgradient pairs are calculated at specific reference points to construct affine

relaxation at a particular points, z = z̄. These affine relaxations are then used in place of the
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original convex/concave relaxations in (2.3.4) to form LP or MILP outer-approximations of the

underlying set given by (2.3.5).

f ∗ = min
z∈Z=[zL,zU ],η

η (2.3.5)

s.t. gcv
j (z̄i) + scv,T

g (z̄i f )(z − z̄i f ) ≤ 0 for i = 1, . . . , nzg, j = 1, . . . , ng

hcv(z̄i) + scv,T
h (z̄i f )(z − z̄i f ) ≤ 0 for i = 1, . . . , nzhu

hcc(z̄i) + scc,T
h (z̄i f )(z − z̄i f ) ≥ 0 for i = 1, . . . , nzho

f cv(z̄i) + scv,T
f (z̄i f )(z − z̄i f ) ≤ η for i = 1, . . . , nzi

Az = b

For general convex functions, efficient linearization strategies remain an area of active research,

as the selection of the set z̄1, . . . , z̄n may significantly affect the quality of the relaxation [210].

However, specialized approaches, such as the sandwich method [304] can be employed when

problems consist solely of unary or binary operators.

2.3.1 Auxiliary Variable Method

Many modern global optimization methods exploit the auxiliary variable method (AVM)

[291, 303, 305] to compute relaxations. This method consists of a two-step process in which a

factorable program is decomposed into an equivalent problem through the introduction of

auxiliary variables corresponding to factors. A mathematical program in which all participating

functions are factorable, as described in Definition 2.3.4, is referred to as a factorable program.

Definition 2.3.3 (Univariate Intrinsic Function [271]). The function u : B ⊂ R→ R is a

univariate intrinsic function if, for any A ∈ IB, where IB = {X ∈ IR : X ⊂ B}, the following are
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known and can be evaluated computationally:

1. an interval extension of u on A that is an inclusion function of u on A,

2. a concave relaxation of u on A,

3. a convex relaxation of u on A.

Definition 2.3.4 (Factorable Function [271]). A function F : Z ⊂ Rn → R is factorable if it can

be expressed in terms of a finite number of factors v1, . . . , vm, such that given z ∈ Z, vi = zi for

i = 1, . . . , n, and vk is defined for n ≤ k ≤ m as either

1. vk = vi + v j, with i, j < k, or

2. vk = viv j, with i, j < k, or

3. vk = uk(vi), with i < k, where uk : Bk → R is a univariate intrinsic function,

and F (z) = vm(z), for every z ∈ Z. A vector-valued function is factorable if each of its

components are factorable functions.

The concept of a factorable function, formalized in Definition 2.3.4, is general enough to

incorporate the most common algebraic expressions such as (÷, −, log, and sin). For example, the

function f (z1, z2) = (exp (z1) − z1z2
z1+2 )2 on z ∈ [1, 2] × [2, 3] can then be written as the following list

of factors.
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v1 = z1 v5 = v1 + 2

v2 = z2 v6 = v4/v5

v3 = exp (v1) v7 = v3 − v6

v4 = v1v2 v8 = v2
7

This results in a new formulation that contains only nonlinear unary and binary terms that are in a

library of intrinsic functions. For each term present in the formulation, relaxations and bounds

may be readily computed [169, 177, 237, 292]. Interval bounds for each auxiliary variable

introduced are determined through interval constraint propagation. Consider the problem detailed

in Example 2.3.6,

f ∗ = min
z∈[1,2],η

η (2.3.6)

s.t. z + exp(z)z ≤ η

z/ log(z) ≤ 1
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An equivalent program formed using AVM leads to

f ∗ = min
z∈[1,2],v,η

η (2.3.7)

s.t. v1 = exp(z)

v2 = z × v1

v3 = z + v2

v4 = log(z)

v5 = 1/v4

v6 = z × v5

v3 ≤ η

v6 ≤ 1.

Nonlinear terms may then relaxed. Bilinear terms are typically replaced with polyhedral

envelopes developed independently by McCormick [177] and Al-Khayyal [8] and colleagues.

Fractional terms vk = vi/v j are rewritten as the equivalent vi = vkv j [304] and then treated as

bilinear expressions. Convex and concave relaxations of univariate terms are computed based on

known convexity properties [177] and subsequently linearized. The reader is directed to [177] and

[259] for succinct definitions of the envelopes of convex, concave, and convexoconcave functions.

The introduction of numerous auxiliary variables reduces the complexity of underlying

constraints and enables the use of a number of efficient subroutines. For instance, the sandwich

algorithm can efficiently compute linearization points for unary convex functions [304] where

approaches for n-ary functions requires the solutions of optimization problems or lack formal

guarantees of convergence [210]. Subsequent works have expanded on this approach in a number

of ways. Mixed-integer linear relaxations of unary functions and bilinear forms that exploit the
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dramatic improvement of MIP solver efficiency in the past years have be detailed and were shown

to significantly improvement solution time for challenging problems [199, 301, 302]. Additional

efforts have focused on general model structure and potentially higher arity functions to

efficiently compute tight relaxations, such as the work of Khajavirad et al. [150] on convex

transformable intermediates.

Approaches such as the reformulation-linearization technique [281] address specialized

forms such as nonconvex QP or pooling problems [183, 184, 185] begin with the introduction of

auxiliary variables followed by symbolic rearrangements and simplifications. In some cases, the

use of auxiliary variables may lead to tighter and more efficient cutting planes than treating the

problem in the original decision space [186]. This approach is particularly powerful in the case of

0-1 mixed-integer formulations were the application of arithmetic identities for 0-1 variables,

such as z2 = z, significantly simplify expressions containing products. Auxiliary variable methods

suffer from two distinct drawbacks. First, the programs addressed must be factorable, which

substantially limits the applicability of this method to classes of implicitly-defined function [300]

such as those which naturally arise from dynamic formulations [123]. Additionally, B&B

algorithms that underlie all deterministic nonconvex optimization algorithms suffer from

worst-case exponential run times, and as such, the introduction of a large number of variables

may dramatically increase solve time [136]. It is for these reasons, this thesis focuses on the less

explored reduced-space optimization methodologies.

2.3.2 αBB Approaches

A popular family of reduced-space methods used to compute convex relaxations is that of

αBB [5, 6, 13]. These approaches compute convex relaxations for twice-continuously differential

functions f : Rn → R by adding a convex quadratic term αxT x to f (x) wherein the resulting sum
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is convex. Unlike AVM-based approaches, the underlying relaxation is computed in the same

decision space as the original function f (x). Moreover, these relaxations exhibit a quadratic

convergence order under mild assumptions [44]; however, the relaxations computed may be

overly-conservative and computationally expensive. The primary difficulty associated with

applying this method lies in the determination of α. As the determination of the α value which

leads to the tightest relaxation would require the determination of a minimal eigenvalue of the

Hessian matrix associated with f (x), a nonconvex optimization problem, approximations based

on interval arithmetic are commonly used [5, 6]. A small body of work

[7, 134, 182, 217, 288, 289] has focused on improving the initial Gerschgorin theorem [110] and

interval matrix eigenvalue solution methodologies used to calculate α values.

The αBB method has been used in applications ranging from protein folding [105] to reactor

network synthesis [94]. This method forms the basis of general nonlinear relaxation methods used

by commercial MINLP solvers such as ANTIGONE [185]. Additional recent investigations have

focused on combining αBB with transformations, such as that of µ-subenergy [147]. The αBB

approach was subsequently adapted to allow for the construction of edge-concave underestimators

for nonconvex functions and in turn extended to dynamic optimization [19, 124]. However, the

identification of less conservative, less expensive, and more generally applicable methods for

computing convex relaxations remains active areas of research within the global optimization

community that motivates interest in the development of alternative relaxation approaches.

2.3.3 McCormick Relaxations

A general method for constructing relaxations of arbitrary factorable functions was first presented

by Garth McCormick in 1976 [177]. In the past decade, a significant effort was made to further

generalize this approach beginning with the development of a general operator-overloading
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approach for constructing McCormick relaxations [191] analogous to automatic differentiation

[23]. The rules for composition, addition, and multiplication are reviewed in Propositions 2.3.6 -

2.3.8. Relaxations constructed in this manner are no weaker than interval bounds (and often

significantly tighter) [191].

Definition 2.3.5 (Cumulative Mapping [271]). Let the cumulative mapping vk be the mapping

vk : Z → R defined for each z ∈ Z by the value vk(z) when the factors of F are computed

recursively, as per Definition 2.3.4, beginning from z.

Proposition 2.3.6 (Univariate McCormick Composition Rule[191]). Let Z ⊂ Rn and X ⊂ R be

nonempty convex sets. Consider the composite function w = φ ◦ q where w : Z → R is

continuous, φ : X → R, let q(Z) ⊂ X. Let qcv : Z → R and qcc : Z → R be convex and concave

relaxations of q on Z, respectively. Let φcv : X → R and φcc : X → R be convex and concave

relaxations of φ on X, respectively. Let ξ∗min ∈ X be a point at which φcv attains its infimum on X

and let ξ∗max ∈ X be a point at which φcc attains its supremum on X. Then the convex and concave

relaxations are, respectively, given by

wcv : Z → R : z 7→ φcv(mid(qcv(z), qcc(z), ξ∗min)) (2.3.8)

wcc : Z → R : z 7→ φcc(mid(qcv(z), qcc(z), ξ∗max)). (2.3.9)

In the above, the mid(· , · , · ) function takes the median value of its three arguments.

Generally, the application of Proposition 2.3.6 requires the use of closed-form expressions, which

are available for all standard operations (e.g. +, ×, exp, log), to determine the values of ξ∗max and

ξ∗min in conjunction with defined forms of the relaxations φcv and φcc. Convex and concave

envelopes of univariate intrinsic functions (such as exp and tanh) are available in existing

relaxation libraries (e.g. [329]) and are used throughout this thesis for calculations unless
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otherwise specified. In the case of “×”, the rules presented in [191] are used for the calculation of

relaxations and the max operator is addressed using the standard reformulation

max (x, y) = (x + y + |x − y|)/2.

Proposition 2.3.7 (McCormick Multiplication Rule [191]). Let Z ⊂ Rn be a nonempty convex

set. Let w, x1, x2 : Z → R such that w(z) = x1(z)x2(z). Let xcv
1 : Z → R and xcc

1 : Z → R be convex

and concave relaxations of x1 on Z, respectively. Let xcv
2 : X → R and xcc

2 : X → R be convex and

concave relaxations of x2 on Z, respectively. Further, let xL
1 , x

U
1 , x

L
2 , x

U
2 ∈ R be bounds on x1, x2

such that

xL
1 ≤ x1(z) ≤ xU

1 and xL
2 ≤ x2(z) ≤ xU

2 , ∀z ∈ Z.

Let the following intermediate functions α1, α2, β1, β2, γ1, γ2, δ1, δ2 : Z → R be defined as

α1(·) = min{xL
2 xcv

1 (·), xL
2 xcc

1 (·)}, α2(·) = min{xL
1 xcv

2 (·), xL
1 xcc

2 (·)},

β1(·) = min{xU
2 xcv

1 (·), xU
2 xcc

1 (·)}, β2(·) = min{xU
1 xcv

2 (·), xU
1 xcc

2 (·)},

γ1(·) = max{xL
2 xcv

1 (·), xL
2 xcc

1 (·)}, γ2(·) = max{xU
1 xcv

2 (·), xU
1 xcc

2 (·)},

δ1(·) = max{xU
2 xcv

1 (·), xU
2 xcc

1 (·)}, δ2(·) = max{xL
1 xcv

2 (·), xL
1 xcc

2 (·)}.

Then, convex and concave relaxations of w on Z are given by wcv
×,0 and wcc

×,0,

wcv
×,0 : Z → R : z 7→ max{α1(z) + α2(z) − xL

1 xL
2 , β1(z) + β2(z) − xU

1 xU
2 }

wcc
×,0 : Z → R : z 7→ min{γ1(z) + γ2(z) − xU

1 xL
2 , δ1(z) + δ2(z) − xL

1 xU
2 },

respectively.

Proposition 2.3.8 (McCormick Addition Rule [191]). Let Z ⊂ Rn, and w, q, r : Z → R such that
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w(z) = q(z) + r(z). Let qcv, qcc : Z → R be convex and concave relaxations of q on Z, respectively.

Similarly, let rcv, rcc : Z → R be convex and concave relaxations of r on Z, respectively. Then,

wcv, wcc : Z → R, such that

wcv(z) = qcv(z) + rcv(z), wcc(z) = qcc(z) + rcc(z), (2.3.10)

are, respectively, a convex and concave relaxation of w on Z.

The subgradients of McCormick relaxations of factorable functions may be computed via the

forward-mode automatic differentiation approach detailed in [191]. The relevant theorem for

multiplication is included in Theorem 2.3.9.

Theorem 2.3.9 (Multiplication Rule for Subgradients [191]). Suppose that Z ⊂ Rn is a nonempty

convex set, and z ∈ Z. Let w, x1, x2 : Z → R such that w(z) = x1(z)x2(z). Let xcv
1 : Z → R and

xcc
1 : Z → R be convex and concave relaxations of x1 on Z, respectively. Let xcv

2 : X → R and

xcc
2 : X → R be convex and concave relaxations of x2 on Z, respectively. Further, let

xL
1 , x

U
1 , x

L
2 , x

U
2 ∈ R be bounds on x1, x2 such that

xL
1 ≤ x1(z) ≤ xU

1 and xL
2 ≤ x2(z) ≤ xU

2 , ∀z ∈ Z.

Let the intermediate functions α1, α2, β1, β2, γ1, γ2, δ1, δ2 : Z → R and convex/concave relaxations

wcv
×,0, w

cc
×,0 : Z → R be defined as in Proposition 2.3.7. Then the subgradients of
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α1, α2, β1, β2, γ1, γ2, δ1, δ2 at z̄ ∈ Z are respectively given by:

sα1(z̄) =


xL

2scv
x1

(z̄) if xL
2 ≥ 0,

xL
2scc

x1
(z̄) otherwise,

sα2(z̄) =


xL

1scv
x2

(z̄) if xL
1 ≥ 0,

xL
1scc

x2
(z̄) otherwise,

(2.3.11)

sβ1(z̄) =


xU

2 scv
x1

(z̄) if xU
2 ≥ 0,

xU
2 scc

x1
(z̄) otherwise,

sβ2(z̄) =


xU

1 scv
x2

(z̄) if xU
1 ≥ 0,

xU
1 scc

x2
(z̄) otherwise,

(2.3.12)

sγ1(z̄) =


xL

2scc
x1

(z̄) if xL
2 ≥ 0,

xL
2scv

x1
(z̄) otherwise,

sγ2(z̄) =


xU

1 scc
x2

(z̄) if xU
1 ≥ 0,

xU
1 scv

x2
(z̄) otherwise,

(2.3.13)

sδ1(z̄) =


xU

2 scc
x1

(z̄) if xU
2 ≥ 0,

xU
2 scv

x1
(z̄) otherwise,

sδ2(z̄) =


xL

1scc
x2

(z̄) if xL
1 ≥ 0,

xL
1scv

x2
(z̄) otherwise,

(2.3.14)

where scv
x1

, scv
x1

, scv
x1

, scv
x1

, are, respectively, subgradients of xcv
1 , xcc

1 , xcv
2 , xcc

2 on Z at z̄ ∈ Z. Finally, the

subgradients scv
w×,0

, scc
w×,0

of wcv
×,0, wcc

×,0 on Z at z̄ ∈ Z are, respectively, given by:

scv
w×,0

(z̄) =


sα2(z̄) + sα2(z̄), if α1(z̄) + α2(z̄) − xL

1 xL
2 ≥ β1(z̄) + β2(z̄) − xU

1 xU
2 ,

sβ1(z̄) + sβ2(z̄), otherwise,
(2.3.15)

scc
w×,0

(z̄) =


sγ1(z̄) + sγ2(z̄), if γ1(z̄) + γ2(z̄) − xU

1 xL
2 ≥ δ1(z̄) + δ2(z̄) − xL

1 xU
2

sδ1(z̄) + sδ2(z̄), otherwise.
(2.3.16)

For details relating to computing relaxations and associated subgradients of factors using other

functional forms, the reader is referred to [191]. For convex/concave relaxations vcv
k , v

cc
k : Z → R

computed through the recursive application of these rules to each factor vk, the factorable function

F also constitutes a cumulative mapping.
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Theoretical developments for constructing convex/concave composite relaxations from

arbitrary convex and concave functions were established [271]. Namely, a composite function of

the form φ(f(·)) on Z, where the outer function φ is factorable, but the inner function f may not be

relaxed using the standard McCormick relaxation technique. However, provided that convex and

concave relaxations of f(·) on Z are known, the generalized McCormick relaxation approach

forms the framework by which convex and concave relaxations of φ(f(·)) on Z may be recursively

computed. Throughout this thesis, the terms generalized McCormick relaxation and McCormick

relaxation will be used interchangeably with the “generalized” descriptor often omitted for

conciseness.

A subsequent theory that extended composition rules to multivariate functions was

developed that resulted in the formulation of tighter composition rules involving multiplication

and maxima operators [207, 310]. A further refinement by Khan and colleagues [151, 152]

produced an alternative methodology with theoretical guarantees of differentiability. McCormick

relaxations were extended to allow for the global optimization of Gaussian process models

[263, 267]. Additional works have focused on developing improvements to functional forms that

appear in numerous model formulations including that of the IAPWS-IF97 property models for

steam [50] as well as additional thermodynamic property and cost models [209].

One distinct feature of McCormick relaxations is that they exhibit quadratic pointwise

convergence properties under mild assumptions [44, 146, 203, 205]. Quadratic convergence can

substantially mitigate clustering about global minimizers during B&B; a key factor that often

limits solver performance [323]. Moreover, the use of tighter interval bounds has been noted as a

key contributing factor by which positive offset may be reduced for McCormick relaxations and

convergence rates further accelerated [205].

Numerous extensions of the generalized McCormick relaxation framework have been
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proposed, including the use of Taylor-McCormick models [45, 255]. Subsequently, Wechsung

and colleagues described a method of propagating McCormick relaxations backwards on a

directed acyclic graph [324]. A method of tightening interval bounds obtained through forward

and reverse interval propagation using the subgradient information associated with

convex/concave relaxations was detailed [206]. Furthermore, methods by which convex/concave

relaxations of implicitly-defined functions have been described [300] and even approaches for

evaluating relaxations of the expected values of continuous random variables have been created

[275]. More recently, a number of key global optimization subroutines, such as linearization

[210], have been extended to efficiently make use of McCormick relaxations.

Tight relaxations formed in reduced-space have contributed to the outstanding performance

of the McCormick relaxation approach in numerous applications with simulations embedded. A

series of works on process flow sheet optimization in the energy sector were detailed in which the

McCormick relaxation approach outperformed commercial solvers implementing the auxiliary

variable approach [47, 48, 49]. Similar work on heat exchanger network design and integration

has demonstrated additional computational benefits [98]. Moreover, preliminary investigations

into the global optimization of artificial neural networks in reduced-space [264] and the

application of these methods to hybrid surrogate models for flash calculations [265] and

thermodynamic models [266], have further demonstrated the outstanding computational

performance of McCormick relaxations when the decision variables that naturally participate in a

formulation are greatly outnumbered by intermediate terms and state variables.

This thesis advances the McCormick relaxation methodology in three substantial ways.

First, a performant and extendable open-source global optimizer, EAGO.jl, was created that uses

the McCormick methodology to construct relaxations of arbitrary nonlinear functions, and is

detailed in Chapter 3. In Chapter 4, the advances in constructing convex relaxations of the

42



activation functions participating in artificial neural networks are detailed. In Chapter 5, novel

approaches for computing less conservative relaxations of functions with intermediate bilinear

terms are described. Moreover, additional contributions were made pertaining to global dynamic

optimization.

2.4 Dynamic Optimization

Dynamic optimization plays a key role in process startup and shutdown, the control of batch and

semi-batch processes, and the verification of select neural network architectures. Locally optimal

solutions of dynamic optimization problems can be readily attained using multiple shooting

methods [43] or the state-of-the-art orthogonal collocation on finite elements method (also known

as direct transcription) [39]. However, the incorporation of dynamics introduces a number of

challenges due to the inclusion of differential equations, such as the handling of stiff systems,

scaling issues, and the selection of discretization parameters, along with ever present concerns

about accuracy and stability. Further difficulties arise when deterministic solutions of dynamic

optimization problems are required; as is the case of safety-critical processes. Namely, rigorous

and tight bounds on the solution trajectories must be calculated. This remains an active area of

research and the dynamic optimization portion of this thesis focuses on our recent advances of

these methods.

The first deterministic global methods for solving dynamic optimization problems used the

αBB to construct convex relaxations [3, 4, 229] or McCormick relaxations [177, 282, 283].

Generally applicable methods for bounding solutions parametric partial differential equations,

delay differential equations, and other dynamic systems currently do not exist. In order to

simplify the analysis, we consider the nonconvex dynamic optimization problem given below in
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(2.4.1a) - (2.4.1d):

φ∗ = min
p∈P⊂Rnp

φ(x(p, t f ),p) (2.4.1a)

s.t. ẋ = f(x(p, t),p, t), ∀t ∈ T ⊂ I = [t0, t f ] (2.4.1b)

x(p, t0) = x0(p) (2.4.1c)

g(x(p, t),p) ≤ 0, ∀t ∈ T ⊂ I (2.4.1d)

where T is finite. The dynamic optimization problem (2.4.1a)-(2.4.1d) embeds a parametric

system of ordinary differential equations. We abbreviate a parametric ordinary differential

equation (singular) as pODE and a parametric ordinary system of differential equations (plural) as

pODEs.

2.4.1 Parametric Ordinary Differential Equations

A system of pODEs is formalized as

ẋ(p, t) =
dx
dt

(p, t) = f(x(p, t),p, t), t ∈ T ⊂ I = [t0, t f ], p ∈ P (2.4.2)

x(p, t0) = x0(p), p ∈ P,

with mappings f : D × Π × T → Rnx and x0 : P→ D, with D ⊂ Rnx , Π ⊂ Rnp , and T ⊂ R open

with P ∈ IΠ. A pODEs is well-posed provided that Assumption 2.4.1 holds.

Assumption 2.4.1. The pODE-IVP system (2.4.2) satisfies the following conditions:

1. x0 : P→ D is locally Lipschitz continuous on P.

2. f is continuously differentiable on D × Π × T .
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A solution of (2.4.2) is any continuous x : P × I → D such that, for every p ∈ P, x(p, · ) : T → D

is continuously differentiable and satisfies (2.4.2) on I. Further, it is assumed that a unique

solution exists over the time domain I for every p ∈ P.

Several approaches have been developed by which convex/concave relaxations of the

solutions of pODEs may be computed [122, 123, 270, 272, 293] and parametric differential

algebraic equation systems (pDAEs) [270]. In general, pDAEs remain a challenging class of

problems as current approaches to constructing relaxations of implicit algebraic equations rely on

the underlying an existence and uniqueness criteria and expansiveness of the state relaxations

often leads to ill-posed problems due to the expansiveness of state variable enclosures. While this

remains a fundamental limitation for broadly relaxing pDAEs systems, many index-1 pDAEs may

be reformulated as pODEs and addressed with general methods. As such, the pODE approaches

discussed here have broad applicability. Most approaches for computing convex/concave

relaxations originate from adaptions of methods by which state bounds may be determined.

Definition 2.4.1 (Adapted from [270]). Continuous functions xL, xU : T → Rnx are called state

bounds for (2.4.2) on T × P if xL(t) ≤ x(p, t) ≤ xU(t), ∀(p, t) ∈ P × T .

Definition 2.4.2. Continuous functions xcv, xcc : T → Rnx are called state relaxations for (2.4.2)

on T × P if xcv(p, t) ≤ x(p, t) ≤ xcc(p, t), ∀(p, t) ∈ P × T , provided that xcv, xcc are, respectively,

convex and concave on P, ∀t ∈ T .

Generally, methods for computing state relaxations can be divided into two categories:

discrete-time relaxation methods (also called discretize-then-relax methods) [256] and

continuous-time relaxation methods (also called relax-then-discretize) [270] in which an auxiliary

pODE system is constructed that describes convex and concave relaxations. The auxiliary pODEs

may then be integrated using a modern numerical solution method such as SUNDIALS [274].

The alternative discrete-time approach discretizes the pODEs into set of algebraic expressions,
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and then computes state relaxations at each discrete time point.

2.4.2 Continuous-Time Relaxation Methods

A general nonlinear method, the differential-inequality approach, which furnishes convex/concave

relaxations originated with Singer and Barton [285]. This approach that leads to relaxation

amplifying dynamics (RAD), in which the overestimation of the state variables grow

monotonically in time, was subsequently refined to a relaxation preserving dynamics (RPD)

approach [270]. The RPD methodology generates relaxations with less overestimation without

this undesirable monotonicity property by exploiting the continuity of the underlying solution. As

an immediate consequence, relaxations at this point of crossing can be evaluated and are

generally more restrictive. This is formalized in Definition 2.4.3 and Proposition 2.4.4.

Definition 2.4.3 (Adapted from [270]). For every i ∈ {1, . . . , nx}, we define

Rcv
i ,R

cc
i : Rnx × Rnx → Rnx × Rnx by Rcv

i (φ, ψ′) = (φ, ψ′), where ψ′k = ψk if k , i and ψ′i = φi, and

Rcc
i (φ, ψ) = (φ′, ψ), where φ′k = φk if j , i with φ′i = ψi.

Proposition 2.4.4. Suppose that state bounds xL, xU : T → Rn are available, and let
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ui(·, ·, ·, ·) = f cv
i (Rcv

i (·, ·), ·, ·) and oi(·, ·, ·, ·) = f cc
i (Rcc

i (·, ·), ·, ·). The auxiliary pODEs-IVP given by

ẋcv
i (p, t) =



ui(xcv(p, t), xcc(p, t),p, t), if xcv(p, t) ∈ [xL
i (t), xU

i (t)]

max
(
ẋL

i (t), ui(xcv(p, t), xcc(p, t),p, t)
)
, if xcv(p, t) < xL

i (t)

min
(
ẋU

i (t), ui(xcv(p, t), xcc(p, t),p, t)
)
, if xcv(p, t) > xU

i (t)

(2.4.3)

ẋcc
i (p, t) =



oi(xcv(p, t), xcc(p, t),p, t), if xcc(p, t) ∈ [xL
i (t), xU

i (t)]

max
(
ẋL

i (t), oi(xcv(p, t), xcc(p, t),p, t)
)
, if xcc(p, t) < xL

i (t)

min
(
ẋU

i (t), oi(xcv(p, t), xcc(p, t),p, t)
)
, if xcc(p, t) > xU

i (t)

(2.4.4)

xcv
i (p, t0) = max

(
xL

i (t0), xcv
i,0(p)

)
(2.4.5)

xcc
i (p, t0) = min

(
xU

i (t0), xcc
i,0(p)

)
(2.4.6)

for each i = 1, . . . , nx fully specify state relaxations xcv, xcc : P→ X ⊂ Rn.

In practice, the ODE system with a discontinuous right-hand-side presented in Proposition

2.4.4, is a hybrid system that can be solved accordingly. The method employed to evaluate

relaxations in the initial work of [270] introduced boolean indicator variables used in an event

detection scheme to select the appropriate behavior of the right-hand side function. Recent efforts

have shown, under mild certain assumptions, that valid convex/convex relaxations may be

achieved when empty McCormick relaxation objects are encountered reducing Proposition 2.4.4

to a standard ODE system. Recent work has shown that the RPD method inherits second-order

convergence properties under mild assumptions [261]. This approach was generalized to an

optimization-based formulation by Song and Khan [293] that is at least as tight as the RPD

formulation.

A series of similar adaptations were presented in Harwood [122, 123] which derive
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polyhedral and affine relaxation of state variables. In [277], use of model invariants that

introduced redundant expressions, was shown to tighten the reachable set enclosure calculated

using differential-inequalities. A discrete-time adaptation of the RPD approach was described, in

which certain monotonicity properties were satisfied [337] as a means by which tight and accurate

bounds on uncertainty could be determined; both desirable properties in a dynamic global

optimization context.

2.4.3 Discrete-Time Relaxation Methods

The preponderance of previous investigations into discrete-time relaxation methodologies focused

on explicit approaches [191, 255, 256, 258]. Early works explored relaxation of standard

numerical solution routines for (2.4.2) such as Explicit Euler [191] and a preliminary

investigation into the Implicit Euler method [300]. Approaches were extended to a

discretize-then-relax framework in which a two-step process is used to construct state relaxations

[256]. The first-step of this method uses an existence and uniqueness test to establish state

relaxations for the entire time interval [ti, ti+1] for a single step. This is followed by a second

contractor step that refines state relaxations at the new time ti+1. These methods find their origin

in analogous interval methods [33, 163, 213, 214]. A further adaptation focused on representing

the uncertainty set as a Taylor model. These Taylor models use a variety of different set-valued

arithmetics to enclose the remainder term [34, 138, 161, 214, 315]. However, a thorough

investigation of implicit methods for evaluating state relaxations has never been conducted. Even

investigations into implicit parametric interval methods have been limited.

Implicit parametric interval methods are particularly promising in that the strong stability

preserving properties can substantially reduce the number of discretization points required. In

[247], the use of a parametric interval Newton method to bound solution sets of pODEs was
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investigated. Marciniak and collaborators make a series of advances to constructing interval

bounds of implicit integrator forms: first, by providing multistep analogs of validated relaxations

of the Nyström and Milne-Simpson types [170], then by analyzing the implicit Adams-Moulton

forms [171], and finally by providing a predictor-corrector method that makes use of both explicit

and implicit forms [174]. Marciniak [172] also adapted these methods to construct valid

relaxations of a parallel Crank-Nicholson algorithm to bound parabolic PDEs. However, these

investigations of implicit interval methods are primarily limited to considering direct interval

extensions of the underlying numerical method. As a consequence, significant improvements may

be achieved by considering mean-valued forms of the integration methods and more advanced

numerical methods.

This thesis introduces novel second-order parametric implicit linear multistep methods for

the computation of state relaxations of numerical solutions of (2.4.2). These are subsequently

extended to rigorously account for truncation error. An analysis of alternative mean-value forms

was also performed along with a comparison to Hermite-Obreschkoff-based relaxations.

Furthermore, these approaches are integrated into the global optimizer EAGO [327], through the

use of the DynamicBounds.jl abstraction layer developed as part of this thesis.

2.5 Robust Optimization

Nominal designs may dramatically fail as they do not account for the influence of parametric

uncertainty at the design stage. These failures manifest as unsatisfied quality specifications or

disastrous equipment damage when operating subject to uncertainty. The two most common

approaches that account for underlying uncertainty are that of stochastic programming and robust

optimization. Stochastic programs are often implemented as a two-stage decision problem in
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which the first-stage decision (design variables) is made before a realization of the uncertain

parameters occurs. A second-stage recourse problem is solved after the realization occurs. Using

stochastic programming approaches, uncertainty is modeled as either a discrete or continuous set

of random events through the use of probability measures. This requires a priori information

pertaining to the probability that a given realization of uncertainty occurs. The reader is directed

toward Li and Grossmann [160] for an extensive review of stochastic programming approaches

for optimization under uncertainty. The focus of this thesis is on worst-case design problems.

Accordingly, probabilistic approaches such as stochastic optimization do not provide adequate

assurances that are required for our purposes.

A deterministic approach is preferred when system-level failures are extremely costly or

when the uncertainty set is poorly characterized. In this case, bounds on uncertainty may be

available when probabilistic characterization is either impractical or impossible. Worst-case

formulations are characterized by the presence of uncertain variables p bounded by a compact

uncertainty set P ⊂ Rnp leading to multilevel program formulations such as the bilevel program:

f ∗ = min
x,ẑ

f (x) (2.5.1)

s.t. max
ẑ,p

g(x, ẑ,p) ≤ 0,

s.t. h(x, ẑ,p) = 0,

x ∈ X,p ∈ P, ẑ ∈ Dz ⊂ R
nz .

In this formulation, x represents a vector of decision variables, ẑ represents a vector of internal

state variables governed by the model equations, and p represents a vector of parameters. Bilevel

programs are generally nonconvex and nonsmooth, and as such, we make no assumptions about

the smoothness of g. As a direct consequence, multiple constraints g1, . . . , gn, may be trivially
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handled by reformulation into a single constraint g = maxi gi. Furthermore, additional constraints

may exist in which only decision variables or uncertain variables participate, which, in turn,

define X and P. We omit these constraints from (2.5.1) and further refinements thereof for brevity.

A number of papers have detailed industrially relevant applications of robust optimization.

These range from the standard robust design problem to novel applications in model predictive

control from optimal disturbance model identification [55] to economic nonlinear model

predictive control formulations [235]. In addition, multilevel optimization problems play an

important role in the optimal design of experiments, as illustrated by a recent investigation of

trilevel formulations [318]. Chapter 8 details a key application of interest that was addressed

during the course of this thesis.

The preliminary work on bilevel programs that focused on linear formulations or convexity

conditions [28, 325] was subsequently extended to nonlinear programs [10, 76, 311]. Then,

Gümüş and Floudas [116] described a nonconvex global optimization method that replaced the

inner program with a set of nonlinear algebraic constraints under the assumption of the linear

independence constraint qualification. The authors then leveraged αBB relaxations with a

branch-and-bound algorithm to solve the KKT-reformulated NLP, despite the requirement of

convexity for the KKT conditions to be necessary and sufficient. A primary limitation relating to

the approach of Gümüş and Floudas [116] is that it cannot generally provide convergent upper

bounds for bilevel problems with nonconvex inner programs. Mitsos et al. [190] subsequently

describe an approach that can solve general nonconvex programs in the absence of coupling

equality constraints.

Multiparametric programming was developed as an alternative strategy, which consists of

recasting the bilevel program as a single-level deterministic optimization problem. The parametric

solution of the inner program [226, 231] is explicitly characterized, which makes it suitable for
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use in real-time optimization [226]. However, these methods are only applicable if the inner

program is linear or quadratic; accordingly, this method is not suitable for general nonconvex

programs. This thesis focuses on the most general formulation of the robust optimization

problem, which includes nonconvex equality constraints. This motivates the consideration of

equivalent SIP reformulations of the bilevel program, which may be more readily solved.

In many cases, the state variables are uniquely determined once decision variables are fixed

for a given realization of the uncertain variables. The equality constraint h(x, ẑ,p) = 0 then

implicitly specifies a function ẑ = z(x,p). Further, assume that h : Dx × Dz × Dp → R
ny is

continuously differentiable on the open set Dz, that relaxations of h and ∇zh are available, for

instance by using McCormick relaxations provided that h is factorable. In this case, the equality

constraints may be eliminated from (2.5.1) reducing the problem to the inequality-constrained

bilevel program:

f ∗ = min
x,p

f (x) (2.5.2)

s.t. max
ẑ,p

g(x, z(x,p),p) ≤ 0,

x ∈ X,p ∈ P, ẑ ∈ Dz ⊂ R
nz .

The inequality constrained bilevel program (2.5.2) may then be written as the following

equivalent semi-infinite program (SIP):

f ∗ = min
x∈X

f (x) (2.5.3)

s.t. g(x, z(x,p),p) ≤ 0, ∀p ∈ P.

In this formulation, the objective function f : X → R depends solely on the decision variables
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x ∈ X and the constraint g : Z × X × P→ R are parameterized by the uncertain variable p on a set

of infinite cardinality P. The SIP formulation covers classes of robust design and optimization

under uncertainty problems of specific interest to this thesis. The feasibility of a point x̄ with

respect to (2.5.3) is determined by solving the inner program, as defined in Definition 2.5.1, to

global optimality.

Definition 2.5.1 (Inner Program [298]). Given a point x̄ ∈ X, the inner program is formulated as:

ḡ(x̄) = max
p∈P

g(z(x̄,p), x̄,p).

If ḡ(x̄) ≤ 0, x̄ is feasible in (2.5.3).

The pioneering work of Blankenship and Falk [42, 100] provided a cutting-plane

methodology to solve (2.5.3). In the absence of convexity assumptions, the convergence of this

method is only guaranteed in the limit. An αBB estimation scheme was presented [104] that

converges to a stationary point in the limit, and a further adaptation to arbitrary parameter sets has

since been described [294]. A general nonconvex algorithm for solving SIPs in finite time was

first developed by Bhattacharjee et al. [37], which added exponentially more cutting planes at

each iteration of the algorithm. Mitsos [188] then introduced an adaption of this method, SIPres,

that generates cutting planes that scale linearly with the number of iterations. A further adaptive

methodology for formulating the discretization set was detailed by Djelassi and Mitsos [77].

These methods for solving SIPs require that a series of nonconvex optimization problems is

solved to global optimality at each iteration of the algorithm [188, 298]. Lastly, an implicit

approach to generating relaxations of SIPs with implicitly-defined functions was presented by

Stuber and Barton [298], and was subsequently extended to generalized semi-infinite programs

(GSIPs) and bilevel programs with coupling constraints [78]. For a complete review of recent

contributions to nonconvex SIP algorithms and applications, the reader is directed to Djelassi
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et al. [79]

A principal challenge underlying the solution of nonconvex SIPs is the efficient solution of

the nonconvex inner program in reduced space. Chapters 3 - 7 detail a number of advances that

address this very challenge for both nonconvex and dynamic optimization.
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Chapter 3

EAGO.jl: Easy Advanced Global
Optimization in Julia

In this chapter, an extensible open-source deterministic global optimizer (EAGO) programmed

entirely in the Julia language, is presented. EAGO was developed to serve the need for supporting

higher-complexity user-defined functions (e.g., functions defined implicitly via algorithms) within

optimization models. EAGO embeds a first-of-its-kind implementation of McCormick arithmetic

in an Evaluator structure allowing for the construction of convex/concave relaxations using a

combination of source code transformation, multiple dispatch, and context-specific approaches.

Utilities are included to parse user-defined functions into a directed acyclic graph representation

and perform symbolic transformations enabling dramatically improved solution speed. EAGO is

compatible with a wide variety of local optimizers, the most exhaustive library of transcendental

functions, and allows for easy accessibility through the JuMP modeling language. Together with

Julia’s minimalist syntax and competitive speed, these powerful features make EAGO a versatile

research platform enabling easy construction of novel meta-solvers, incorporation and utilization

of new relaxations, and extension to advanced problem formulations encountered in engineering
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and operations research (e.g., multilevel problems, user-defined functions). The applicability and

flexibility of this novel software is demonstrated on a diverse set of examples. Lastly, EAGO is

demonstrated to perform comparably to state-of-the-art commercial optimizers on a

benchmarking test set.

3.1 Introduction

Mathematical optimization problems are ubiquitous in scientific and technical fields.

Applications range from aerospace and chemical process systems to finance. However, even

relatively simple physical processes such as mixing, may introduce significant nonconvexity into

problem formulations [290]. As such, nonconvex programs often represent the most faithful

representations of the system of interest. Multiple approaches have been developed to address

these cases. Heuristics such as evolutionary algorithms, may approximate good solutions for

select problems. However, heuristics may fail to guarantee that even a feasible solution is

detected in finite time [14]. In scenarios where a guarantee is necessary, such as determining a

reactor’s maximum safe operating temperature, complete nonconvex methods must be applied.

As nonconvex optimization problems are NP-hard, the development of appropriate optimizers

remains an active area of research [136].

State-of-the-art complete global optimizers generally require that a problem can be

constructed in an algebraic modeling language (AML). These languages provide a specialized

interface that allows users to construct optimization problems in a manner that can be interpreted

by optimizers; translating high-level syntax into the requisite C/Fortran code and reducing

chances for user-input errors. In addition to serving this central function, AMLs have evolved to

provide additional features such as embedding automatic differentiation (AD) schemes and
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passing standard expression forms to optimizers [106]. This last feature is required by nearly

every complete nonconvex optimizer available today. These regular expressions are then parsed

by the optimizer via the introduction of auxiliary variables until all expressions in the model

correspond to a form in the optimizers reference library of relaxations. In many cases, this

reference library is limited to a few expressions: BARON [254] does not support trigonometric

functions, ANTIGONE [185] and Couenne [27] limit expressions to those allowed by AMPL

[106] or GAMS [176] environments. In addition, these complete optimizers do not support

user-defined functions.

Many real-world optimization problems arise naturally from computer simulations and take

non-canonical forms. Problems defined in terms of ordinary differential equation (ODE) and

differential-algebraic equation (DAE) systems are pervasive in process systems engineering.

Moreover, for many early-stage design problems, optimization of a model with an embedded

simulation represents only one of many valuable tasks. Others may center around validating

simulations, illustrating system dynamics, and assessing sensitivities [31]. It is often necessary to

recast these problems into an AML prior to optimization. The manual reformulation of a model

may be quite challenging for both subject matter experts and non-experts alike. While

application-specific simulation packages attempt to bridge this gap, only gPROMS [24, 25, 92]

provides access to state-of-the-art global optimizers. As a propriety software offering, gPROMS

is not readily extensible to user-defined scripts, and suffers from the same lack of adaptability as

other AMLs. Therefore, users that require non-canonical formulations must resort back to using

AMLs or their own painstakingly implemented code. A few AMLs have mitigated this issue by

offering simpler and more intuitive interfaces. Further enhancements to usability have been

provided by subject area-specific extensions in AMLs, such as Pyomo [121] and JuMP [84].

As an alternative to AML extensions, set-valued arithmetic may be used to construct bounds.
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In this approach, convex and concave relaxations of non-canonical functions are constructed

using composition rules by overloading methods or objects. In each of these approaches, a

set-valued data type is constructed and arithmetic rules such as +, ÷, sin(·), etc., are defined for

this data type. Interval arithmetic [194, 219] was one of the first such approaches, but subsequent

work has extended this to affine arithmetic [72], and most recently McCormick arithmetic

[177, 191, 271]. While interval methods are quite general and can be readily used in global

optimization, McCormick arithmetic offers quadratic convergence rates for a wide class of

functions with tighter bounds [44, 203]. In addition, McCormick operator theory has been

developed to allow for the relaxation of implicit functions, such as those arising in parametric

ODE- and PDE-constrained systems and nonlinear algebraic systems lacking closed-form

parametric solutions [191, 271, 296, 300]. These approaches allow for the relaxation of a wide

variety of user-defined functions that arise in numerous application areas. For instance, a process

flow diagram may be reformulated into a simulation that is solved in a sequential block fashion.

The usage of McCormick relaxations has been limited by two significant factors. First, no

publicly available optimizers made use of McCormick composition rules to construct convex and

concave relaxations. EAGO was the first optimizer to remedy this issue (by a matter of years)

along with a recent release of a C++ implementation, MAiNGO [46]. Secondly, the bounds

furnished by set-valued arithmetic may be markedly weaker than polyhedral approaches, slowing

solution speed [221]. One of the reasons for this disadvantage is that operator-overloading

approaches cannot recognize and exploit internal problem structure during the presolve phase and

exploit this information throughout the course of the branch-and-bound algorithm when the

recognition of linear terms, common subexpressions, and convexity properties—as well as the

introduction of auxiliary variables—may be beneficial [290, 303, 305].

Our package EAGO—an acronym for Easy Advanced Global Optimization—seeks to
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provide a unified framework for both auxiliary variable methods and set-valued arithmetic

methods with a greatly simplified user interface. Included in EAGO are a development toolkit, a

state-of-the-art deterministic global optimizer, and an API for optimizing problems defined as

functions in Julia script. The primary appeal of constructing EAGO in the Julia language [36] is

that it strikes a balance between the speed requirement of scientific computing and the high-level

syntax. Using Julia, algorithms can be written in a syntax simpler than MATLABTM while

achieving execution speeds as fast as C and Fortran [36]. A simple package management system

is included in Julia’s base distribution making propagation of software quite simple. In addition to

the above advantages, EAGO exploits Julia’s Lisp-like abstract syntax tree (AST) for handling

expressions to implement tasks that would be extremely difficult, and in some cases impossible in

other scientific programming languages. As a consequence, optimization problems may be

formulated in Julia script and passed to an advanced global optimizer using a function no more

complicated than MATLAB’s fmincon [63]. This interface serves two purposes. First, it is

expected to act as a bridge to new users, who may be unfamiliar with efficient problem

formulations or AML syntax, by allowing them to try out a global optimizer on a specific class of

test problems before investing the time and energy in learning an AML. In addition, it provides

subject matter experts with unparalleled flexibility and the advanced capabilities needed to

address the highly-complex problems on the forefront of optimization research.

In this chapter, we detail the EAGO deterministic global optimization package and its novel

implementation. In Section 3.2, we describe a nonconvex optimizer developed using this toolkit.

In Section 3.3, we provide preliminary benchmarking data illustrating the relative

competitiveness of EAGO to extant approaches. In Section 3.4, we discuss EAGO’s extensibility

and flexibility. Lastly, we conclude in Section 3.5 by summarizing EAGO’s capabilities and

suggesting directions for future research.
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3.2 Global Optimization Framework

The EAGO package maintains a high-performance deterministic global optimizer. At the time of

writing this, the best optimizer available is detailed below. Further upgrades to EAGO’s default

optimizer will be described in the release notes on future tagged versions of the EAGO.jl package

available through Julia’s package manager. The EAGO optimizer is specialized to treat programs

with nonlinear objectives and constraints via a simulation approach rather than via the auxiliary

variable method. The distinction between the approaches is primarily the result of how the

factorable representation of the problem is treated. In the following section, we discuss the

implementation of the default EAGO optimizer. The relaxations supported are detailed in Section

3.2.2. A description of the presolve steps is presented in Section 3.2.3. An overview of the

domain reduction techniques used is given in Section 3.2.5. In Section 3.2.6, the construction of

the relaxed lower-bounding problem is discussed. In Section 3.2.7, we conclude by discussing the

formulation of the upper-bounding problem.

3.2.1 A Flexible Branch-and-Bound Routine

EAGO includes an implementation of the spatial branch-and-bound algorithm [136]. When

used with specific lower-bounding and node-selection routines, this algorithm furnishes an

ε-optimal global solution after a finite number of iterations. Numerous approaches to generating

bounds and selecting nodes have been shown to provide these guarantees. Further development of

such routines remains the subject of active research. For a detailed discussion of the

branch-and-bound algorithm, the reader is referred to the excellent review presented in [136].

Most complete global optimizers also perform some additional processing routines on each node

to shrink the domain size [234]. EAGO allows the user to define preprocessing and
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postprocessing functions as necessary. Information furnished from computing the relaxations can

be readily accessed from either of these functions.

Figure 3.2.1: A block flow diagram depicting the main flexible branch-and-bound routine implemented in
EAGO.

We will utilize the following notation within the flexible branch-and-bound framework (Alg.
1) presented below. Let Y ∈ IRn be the box constraints on the decision variable y of program
(2.3.1). Let the global lower and upper bound of f ∗ in (2.3.1) at iteration k be denoted by αk and
βk, respectively. Let Yl ∈ IY correspond to a node in the branch-and-bound tree where f LBD

l and
f UBD
l are lower and upper bounds of f on Yl, respectively. Lastly, let f ∗ = f (y∗) be the ε-optimal

objective function value where y∗ is a feasible point corresponding to a solution of (2.3.1) at
termination of the algorithm.

Algorithm 1 (Flexible Branch-and-Bound Framework).

1. Initialization

(a) Set the stack to Σ = {Y}.

(b) Set the iteration number k B 0, set tolerances, set the global upper bound α0 B +∞,
and the global lower bound β0 B −∞.

2. Termination

(a) If Σ = ∅, the algorithm terminates with (2.3.1) infeasible.
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(b) Check if a termination condition is satisfied.1 If the absolute tolerance condition is
satisfied, terminate with f ∗ := αk as the ε-optimal estimate for the optimal objective
function value and y∗ as a feasible point at which f ∗ is attained.

(c) Delete from Σ all nodes with f LBD
l > αk and set βk := min

Y l∈Σ
f LBD
l .

3. Node Selection

(a) Select and delete a node Yl from the stack Σ according to a selection heuristic.

4. Preprocessing

(a) Apply preprocessing routines2. If infeasibility on Yl is established, go to Step 2, else
set Yl to the bounds determined by preprocessing routines.

5. Lower-Bounding Problem

(a) Construct and solve the lower-bounding problem globally on Yl.

(b) If the problem is infeasible, set f LBD
l := +∞. Otherwise, set f LBD

l to the value of the
solution. If f LBD

l < αk and the feasible optimal solution found, y̌, is also feasible in
(2.3.1), then set αk B f LBD

l and y∗ B y̌.

6. Upper-Bounding Problem (optional)

(a) Solve (2.3.1) locally on Yl.

(b) If a feasible solution is found with f UBD
l < αk, αk B f UBD

l and set y∗ to the solution
found.

7. Postprocessing

(a) Apply postprocessing routine2 and adjust bounds of Yl, accordingly.

8. Fathoming

(a) If f LBD
l = +∞ or f LBD

l > αk, go to Step 2.

9. Repetition

(a) Checks if the repetition condition is satisfied3. If so, proceed to Step 4.

10. Branching
1To ensure an ε-optimal solution is reached in finite time, the termination condition must be based on an absolute

tolerance. Other conditions are included to deal with numerical issues. Additional assumptions must also be satisfied
such as pointwise convergence of the relaxations and Lipschitz continuity of the functions involved.

2Typically, domain reduction algorithms may be applied at this step.
3If domain reduction in postprocessing yields a significant improvement, repetition may be beneficial.
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(a) Select a branching dimension i according to a selection heuristic. Partition node Yl in
this dimension to form nodes Yl′ and Yl′′ .

(b) Set the lower bounds of the new nodes, f LBD
Yl′

, f LBD
Yl′′
B f LBD

l , and add these nodes to the
working stack Σ.

(c) Advance the iteration number, k B k + 1, and go to Step 2.

While multiple software implementations of branch-and-bound exist, the degree to which the

user can adapt the actual branch-and-bound algorithm to specialized problem formulations is

often limited [2, 242]. For example, Juniper only provides a framework for branching on integer

variables [156]. EAGO’s flexible branch-and-bound routine is novel in that it circumvents these

limitations by allowing the user to redefine any method used by the main routine. Each block

depicted in Figure 3.2.1 can be set to user-defined subroutines. This is done by defining a subtype

EAGO.ExtensionType and then extending the EAGO’s base method to specialize on this newly

defined type. A demonstration of this usage is provided in Section S2.2 of the Supplementary

Materials. This modular architecture allows for the easy implementation of custom optimization

schemes.

3.2.2 Relaxations

The relaxation libraries provided with EAGO are based on McCormick relaxation composition

rules. The McCormick relaxation of the bilinear function was first introduced by McCormick in

[177]. This relaxation which consists of bounding the bilinear term using a series of affine

inequalities which many commercially available global optimizers such as ANTIGONE and

BARON [66, 117, 185, 254]. In the past decade, a significant effort has been made to further

generalize this approach to arbitrary nonlinear functions. An operator-overloading scheme for

constructing McCormick-based relaxations of functions described by a class of algorithms was

detailed by Mitsos et al. [191] and has been outlined in Section S1 of the Supplementary
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Materials. Variations on this manner of constructing relaxations through operator overloading

have been termed McCormick relaxations; a convention we adopt herein to maintain consistency

with the extant body of literature.

Theoretical developments for generalizing the McCormick relaxation framework and

constructing convex and concave composite relaxations using arbitrary convex and concave

functions were established by Scott et al. [271]. More recently, tighter composition rules for

multiplication and maxima operators were presented in [207, 310]. Methods of generating

relaxations of implicit functions were developed by Stuber et al. [300]. Wechsung et al. [324]

described a method of propagating McCormick relaxations backwards on a direct acyclic graph

(DAG) representation of a problem. A method for tightening interval bounds was described in

[206]. Alternative differentiable relaxations were introduced in [151, 152]. Additionally,

McCormick relaxations have been shown to converge quadratically under reasonable assumptions

[44, 203, 205]; a requirement for avoiding clustering with branch-and-bound [146]. While

multiple papers have shown the utility of solving problems via McCormick relaxations of

factorable functions, the availability of an optimizer using these relaxations is quite limited.

EAGO fills this void as a pioneering open-source optimization solver and research platform

supporting McCormick-based relaxations of general factorable functions. Envelopes of simple

expressions are used to generate relaxations of nonconvex intermediate functions. The following

functions are currently supported in EAGO with correctly-rounded interval bounds:

• Arithmetic: +, -, ×, /, sqr, power, ln, log, sqrt, exp

• Nonsmooth: abs, sign, min, max

• Trigonometric: cos, sin, tan, sec, csc, cot

• Inverse Trigonometric: acos, asin, atan, asec, acsc, acot
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• Hyperbolic: cosh, sinh, tanh, sech, csch, coth

• Inverse Hyperbolic: acosh, asinh, atanh, asech, acsch, acoth

Additional scaled versions of common operators and transcendental functions such as log10(·)

and sind(·) are also supported. As such, relaxations of nearly all functions available in standard

AD libraries are included in EAGO. Rules for computing subgradients of McCormick relaxations

and gradients of the differentiable McCormick relaxations are also included.

The calculation of convex and concave envelopes for convexoconcave (a univariate function,

q : D→ R, for which ∃p ∈ D such that q is convex on {d ∈ D | d ≤ p} and concave on

{d ∈ D | d ≥ p}), concavoconvex (the negation of a convexoconcave function), and general

periodic functions requires the computation of anchor points at which line segments meet. These

anchor points, that depend only on interval bounds, are calculated using a one-dimensional

root-finding algorithm, such as a secant method or Newton’s method. EAGO computes roots to an

absolute tolerance of 10−10. The computation of these anchor points and propagating

correctly-rounded interval bounds may represent the main computational expense when

generating relaxations as illustrated by Figure 3.2.2.

One of the powerful features of EAGO is its ability to decouple various components required

to evaluate a relaxation via a source code transformation. A Wengert list [114] (synonymously

tape or trace) is generated using a source code transformation technique that supports field

access, nested-tape generation, and array operators that would be challenging for most

state-of-the-art AD software packages [245]. The representation provided by the JuMP AML is

used to create a specialized Evaluator for nonlinear and user-defined expressions. The

Evaluator structure included in EAGO allows for the reuse of intermediate values obtained by

computationally expensive protocols. Interval bounds and anchor points for each factor are only

recomputed if the relaxation is being constructed on a new domain or if both forward and reverse
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Figure 3.2.2: A breakdown of the run-time for computing relaxations associated with implementing an
bjected-oriented approach by operator.

passes are performed (which may alter interval bounds). This expedites additional evaluations

such as those required to add additional cutting planes to form outer approximations or as part of

callback function evaluations requested by a local NLP optimizer. The interval subgradient cut

detailed in Proposition 3.2.1, Section 3.5.4, is only performed during the first forward pass, after

all forward-reverse passes are performed, or evaluation occurs on a new domain. This prevents

the distinct relaxation from being evaluated at each point. Flowcharts depicting the distinction

between this novel approach and a pure overloading-based implementation are provided in Figure

1 of the Supplementary Materials.

To supplement the source code transformation approach, a full multiple dispatch-based

McCormick relaxation implementation is included. This library defines methods for McCormick

operators that dispatch on the struct MC data type. Each instance of the struct MC stores the

convex relaxation in the field cv, the concave relaxation in the field cc, the interval bounds in the
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field Intv, and subgradients of convex and concave relaxations in the cv grad and cc grad fields,

respectively. The user may force EAGO to use the multiple dispatch implementation to compute

relaxations in order to reduce memory requirements using keyword arguments. Additionally, for

some select expressions where source code transformations are not expected to yield

improvements to computational speed, EAGO defaults to a multiple dispatch implementation.

3.2.3 Presolving
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Figure 3.2.3: Suppose z ∈ [−1, 0], a = 2, g(z) = (z + 2)3 and the standard order of operations is used to
evaluate expressions. Left: The function w = alog g(z) ( ) is plotted with convex/concave relaxations of
w = alog g(z) ( ) and the rearrangement wr = g(z)log a ( ). Right: The function w = log g(z)g(z) ( ) is

plotted with convex/concave relaxations of w = log g(z)g(z) ( ) and the rearrangement
wr = log g(z) + log g(z) ( ).

Presolving may dramatically improve solution times by detecting special structures, rearranging

algebraic terms to tighten relaxations, and potentially lifting problems into simpler
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higher-dimensional forms. EAGO utilizes a variety of techniques to accomplish this goal. First,

linear and quadratic constraints are stored in a sparse format during the solution routine. A list of

variables appearing only in linear and quadratic terms are constructed. Subsequently, a DAG

representation of every nonlinear objective and constraint function present in the model is

generated. After construction, the DAG undergoes algebraic rearrangement to improve relaxation

performance. These rearrangements simplify expressions and change terms with weak relaxations

into equivalent terms with tighter relaxations (e.g., treating the subexpression x log(x) as the

convex negative entropy function). This is similar to ANTIGONE’s use of (3.2.1) and (3.2.6) for

reducing the level at which auxiliary variables are introduced in standard factorable program

[185] or using the rearrangements of Khajavirad and Sahinidis [149] to improve the inferences

made via disciplined convex programming (DCP) [279].

EAGO’s framework provides a simple syntax for implementing expression transformation

by registering template DAGs corresponding to subexpressions. This is done by creating the

appropriate Template Graph objects then invoking the register substitution!.

Transformations to the Wengert list are made by locating subexpressions that match specified

forms and substituting in equivalent subexpressions. The rearrangements given in Equations

(3.2.1)-(3.2.7) are included in EAGO’s optimizer and result in McCormick relaxations that may
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be significantly tighter than the original form.

exp(x) exp(y) = exp(x + y) (3.2.1)

log(ax) = x log(a) (3.2.2)

(ax)b = (ab)x (3.2.3)

(xa)b = x(ab) (3.2.4)

alog(x) = xlog(a) (3.2.5)

log(xy) = log(x) + log(y) (3.2.6)

log(x/y) = log(x) − log(y) (3.2.7)

An illustration of the tightening effect produced by applying (3.2.5) and (3.2.6) is given in Figure

3.2.3. Note that (3.2.1)-(3.2.4) reduce the number of subexpressions that are relaxed. This

improves computation speed as calculations of relaxations are significantly more expensive than

floating-point calculations. These rearrangements do not tighten natural interval bounds.

3.2.4 User-Defined Functions

The development of relaxations of functions implemented in a script form rather than an AML

form can be exceedingly difficult for a complete global optimizer to handle. While operator and

method overloading techniques can be applied to a broad class of problems, the introduction of

auxiliary variables for these functions can be challenging. Moreover, basic overloading

approaches can be subject to a number of flaws that limit their practical use. In the case of AD

methods, perturbation errors may result from nested overloading (e.g., required to form

higher-order derivatives) [245]. Additionally, overloading approaches to tape generation require
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Figure 3.2.4: Given an optimization problem, the EAGO generates a DAG representation for all
user-defined functions, composes these into a shared DAG representation of all nonlinear expressions,

further detects special structures, solves the optimization problem, and returns the model with respect to
the original variables.

that all potential promotions are anticipated and accounted for. This limits the ability to integrate

such tracing methods with other packages that may use structures internally to perform

calculations. EAGO makes use of context-oriented programming tools introduced with Julia 0.7

to address forms inaccessible to method overloading or operator overloading approaches [244].

This allows for the generation of DAG representations from functions defined by Julia script; a

core feature of EAGO.

In many technical application areas, components of a simulation may be represented by a

series of scripts. For instance, a chemical process flowsheet model will typically embed a series

of equations of state, mass and energy balances, and rules for solving the system operating under

particular equipment specifications (e.g., adiabatic flash) for each block representing a unit

operation. These simulations may be addressed using methods that embed sequential modular
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solves in these user-defined functions via a semi-explicit approach. EAGO’s handling of

user-defined functions allows for the construction of forward and reverse evaluation of blocks of

these simulations and the determination of DAG structures that span from the process blocks to

the entire model. Figure 3.2.4 illustrates how EAGO’s framework allows it to reconcile process

models with AML defined optimization problems. Additional user-defined functions may arise

naturally as a description of dynamic behavior such as the chemical kinetic examples in [328] and

Section 3.2.4.

AD is a powerful tool for addressing these formulations using local nonlinear optimizers by

providing gradient information of the objective functions and constraints [114]. The direct

optimization of problems with user-defined functions may also be desired in a global optimization

context. To our knowledge, EAGO is the only deterministic global optimizer capable of handling

user-defined factorable functions. User-defined functions may include type-assertions and calls to

functions that aren’t appropriate for direct overloading approaches as defined. Additionally, many

implementations would require that the user change local storage objects. EAGO makes use of a

context-oriented approach that overcomes each of these potential issues when generating the

Wengert list for each function. In this manner, EAGO allows us to solve optimization problems

that include partial derivatives of an arbitrary order as illustrated in Section 3.2.4.

Optimization of a Model With an Embedded Algorithm

Consider an aqueous n-butanol mixture undergoing a separation (by heating at constant pressure,

P [bar], and temperature, T [K], in a fixed volume). Depending on the operating temperature, the

system exhibits two immiscible liquid phases and potentially a minimum boiling azeotrope. We

will assume the existence of two immiscible phases is undesirable due to equipment limitations.
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This implies the following liquid phase stability conditions:

dln(γ1x1)
dx1

> 0,
dln(γ2x2)

dx2
> 0 (3.2.8)

where x1 is the liquid-phase mole-fraction of n-butanol, x2 is the liquid-phase mole-fraction of

water, and a van Laar activity coefficient model is given by

ln(γ1) =
1253/T

(1 + 2.62(x1/x2))2 (3.2.9)

ln(γ2) =
479/T

(1 + 0.382(x2/x1))2 . (3.2.10)

where γ1 and γ2, are the respective activity coefficients of n-butanol and water. A modified

Raoult’s Law and mass balance yield two other equality constraints:

0 = P − x1γ1Pvp
1 + x2γ2Pvp

2

0 = x1 + x2 − 1,

where Pvp
1 and Pvp

2 are respectively the vapor pressures of water and n-butanol, given by:

Pvp
1 = 1.33 × exp(11.83572 − 4169.84/(T − 17.665)

Pvp
2 = 1.33 × exp(11.33986 − 3724.52/(T − 69.854).

An operating condition is sought with the minimum temperature such that the vapor phase mass

fraction of n-butanol is at least 0.95 and no liquid-liquid phase split occurs. The vapor
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composition specification is then represented by the following constraint:

x1γ1Pvp
1 /P ≥ 0.95

We can then write the objective function as:

f (x1, x2,T ) = T (3.2.11)

where we restrict to the ranges of interest as follows x1 ∈ [0.01, 0.99], x2 ∈ [0.01, 0.99], and

T ∈ [363.15, 398.15]. Within 10.1 seconds, EAGO is able to prove that no such operating

condition exists, which is consistent with visual inspection of the T xy-diagrams [307].

Listing 3.1: Script used to set up and optimize the example given in Section 3.2.4.
using JuMP, EAGO, ForwardDiff

# Define the activity model

gamma1_x1(z) = z[1]*(1253/z[3])/(1 + 2.62*(z[1]/z[2]))ˆ2

gamma2_x2(z) = z[2]*(479/z[3])/(1 + 0.382*(z[2]/z[1]))ˆ2

cons_1ex(z...) = ForwardDiff.gradient(z -> log(gamma1_x1(z)), collect(z))[1]

cons_2ex(z...) = ForwardDiff.gradient(z -> log(gamma2_x2(z)), collect(z))[2]

# Define the JuMP model and solve

m = Model(EAGO.Optimizer)

register(m, :cons_1ex, 3, cons_1ex, autodiff = true)

register(m, :cons_2ex, 3, cons_2ex, autodiff = true)

@variable(m, 0.01 <= x[i=1:2] <= 0.99)

@variable(m, 363.15 <= T <= 398.15)

@constraint(m, x[1] + x[2] == 1.0)

@NLexpression(m, P1, 1.33*exp(11.83572 - 4169.84/(T - 17.665)))

@NLexpression(m, P2, 1.33*exp(11.33986 - 3724.523/(T - 69.854)))

@NLconstraint(m, cons_1ex(x[1],x[2],T)*P1 + cons_2ex(x[1],x[2],T)*P2 == 1.02)

@NLconstraint(m, cons_1ex(x[1],x[2],T)*P1/1.02 >= 0.95)

@NLconstraint(m, cons1, cons_1ex(x[1], x[2], T) >= 0.001)

@NLconstraint(m, cons2, cons_2ex(x[1], x[2], T) >= 0.001)

@NLobjective(m, Min, T)

optimize!(m)
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Kinetic Parameter Estimation

Consider the kinetic parameter estimation problem [191], which was adapted from [287, 306].

The reaction mechanism can be modeled using the initial value problem:

dxA

dt
= k1xZ xY − cO2(k2 f + k3 f )xA +

k2 f

K2
xD +

k3 f

K3
xB − k5x2

A

dxB

dt
= cO2k3 f xA −

(
k3 f

K3
+ k4

)
xB,

dxZ

dt
= −k1xZ xY

dxD

dt
= cO2k2 f xA −

k2 f

K2
xD,

dxY

dt
= −k1sxZ xY

xA(0) = 0, xB(0) = 0, xD(0) = 0, xY(0) = 0.4, xZ(0) = 140

where x j is the concentration of species j ∈ {A, B,D,Y,Z}. The constants are given by T = 273,

K2 = 46 exp(6500/T − 18), K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 = 1.2 × 10−3, and

cO2 = 2 × 10−3. Intensity versus time data is available in [296] as well as a known dependency on

concentration, I = xA + 2
21 xB + 2

21 xD[283]. The reaction rate constants k2 f ∈ [10, 1200],

k3 f ∈ [10, 1200], and k4 ∈ [0.001, 40] are unknown and form the parameter vector

p = (k2 f , k3 f , k4).

An implicit Euler discretization was constructed in [300, 328] and solved to global

optimality by constructing relaxations of implicit functions using a fixed-point method. While

EAGO can replicate this implicit approach, we will consider the original case of the explicit Euler

discretization of the problem [191] for simplicity’s sake. In this example, a semi-explicit

approach is used; the relaxations of intermediate factors x that arise during the simulation of the

ODEs are computed. These factors are subsequently propagated through to the objective function

effectively eliminating the need to explicitly consider the x values in the problem formulation, as
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detailed in [48, 191]. A discretization consisting of 200 timesteps provides sufficiently high

accuracy for this problem. The discretized model becomes:

xi+1
A = xi

A + ∆t
(
k1xi

Y xi
Z − cO2(k2 f + k3 f )xi

A +
k2 f

K2
xi

D +
k3 f

K3
xi

B − k5(xi
A)2

)
xi+1

B = xi
B + ∆t

(
k3 f cO2 xi

A −

(
k3 f

K3
+ k4

)
xi

B

)
xi+1

D = xi
D + ∆t

(
k2 f cO2 xi

A −
k2 f

K2
xi

D

)
xi+1

Y = xi
Y + ∆t

(
−k1sxi

Y xi
Z

)
xi+1

Z = xi
Z + ∆t

(
−k1sxi

Y xi
Z

)
where i = 0, . . . , 199 and ∆t = 0.01. While only three parameters are of interest in the original

optimization problem, 1003 variables are required to specify this in an AML along with

knowledge of reasonable variable box bounds. This is because the state vector:

x =
(
x1

A, x
1
B, x

1
D, x

1
Y , x

1
Z, · · · , x

200
A , x200

B , x200
D , x200

Y , x200
Z

)
(3.2.12)

must be accounted for as decision variables in typical formulations. Since EAGO computes

composite relaxations, this problem formulation allows us to treat this state vector as a series of

intermediate expressions to be evaluated; therefore, allowing us to define the problem with

respect to the kinetic parameters of interest p.
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Listing 3.2: Explicit Euler integration scheme used in the kinetic parameter estimation example (Ex. 3.2.4).
function explicit_euler_integration(p)

x = zeros(typeof(p[1]) ,1005); # Data storage array

x[4] = 0.4; x[5] = 140 # Sets initial condition

T = 273; delT = 0.01; cO2 = 2e-3; k1 = 53; k1s = k1*1E-6

K2 = 46*exp(6500/T-18); K3 = 2*K2; h = delT; k5 = 1.2E-3

for i=1:200 # Offset by 1, initial condition is x[1:5]

term1 = k1*x[5i-1]*x[5i]-cO2*(p[1]+p[2])*x[5i-4]

term2 = p[1]*x[5i-2]/K2+p[2]*x[5i-3]/K3-k5*x[5i-4]ˆ2

x[5i+1] = x[5i-4] + h*(term1 + term2)

x[5i+2] = x[5i-3] + h*(p[2]*cO2*x[5i-4]-(p[2]/K3+p[3])*x[5i-3])

x[5i+3] = x[5i-2] + h*(p[1]*cO2*x[5i-4]-p[1]*x[5i-2]/K2)

x[5i+4] = x[5i-1] + h*(-k1s*x[5i-1]*x[5i])

x[5i+5] = x[5i] + h*(-k1s*x[5i-1]*x[5i])

end

return x

end

The objective function for this problem can then be given by

f (p) =

n∑
i=1

(
Ic
i (p) − Id

i

)2
(3.2.13)

where Ic
i are the calculated intensity values at time step i from the model and Id

i are the values

corresponding to the experimental data. The EAGO optimizer converges to within 90% in just 2.6

seconds, and to within 95% in 8.2 seconds which is comparable to the time presented in [191].
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Listing 3.3: Script to load data and define the objective function for the Example given in Section 3.2.4.
using EAGO, JuMP, DataFrames , CSV

# Loads data from csv to DataFrame

data = CSV.read("kinetic_intensity_data.csv")

pL = [10.0, 10.0, 0.001]; pU = [1200.0, 1200.0, 40.0]

# Defines function for intensity

I(xA,xB,xD) = xA + (2/21)*xB + (2/21)*xD

# Integrates the ODEs and calculates SSE

function objective(p...)

x = explicit_euler_integration(p)

SSE = zero(typeof(p[1]))

for i=1:200

SSE += (I(x[5i-4],x[5i-3],x[5i-2]) - data[:intensity][i])ˆ2

end

return SSE

end

Listing 3.4: Build the JuMP model and calculate a ε-global optimal solution of Example in Section 3.2.4.
# Create model and add variables

m = Model(EAGO.Optimizer)

@variable(m, pL[i] <= p[i=1:3] <= pU[i])

# Register objective , add objective function, and optimize

fobj(p...) = objective(p...)

JuMP.register(m, :fobj, 3, fobj, autodiff=true)

@NLobjective(m, Min, fobj(p...))

JuMP.optimize!(m)

3.2.5 Domain Reduction

Various techniques are commonly used to shrink each subdomain Y l generated within the

branch-and-bound algorithm. These techniques may significantly speed up the branch-and-bound

algorithm by eliminating large regions of the search space. EAGO makes use of three main

families of these routines: optimality-based bounds-tightening (Sec. 3.2.5), feasibility-based
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bounds-tightening (Sec. 3.2.5), and duality-based bounds-tightening (Sec. 3.2.5). EAGO executes

the first two approaches during preprocessing while duality-based bounds-tightening is applied

during postprocessing.

Optimization-Based Bounds-Tightening (OBBT)

In addition to the lower bound calculation, relaxations are also used to tighten bounds via

optimization-based bounds-tightening (OBBT). For variables participating in a nonlinear term,

problem (3.2.14) is solved to obtain potentially tighter lower and upper variable bounds. EAGO

implements OBBT using a greedy algorithm with filtering [111].

min
y
±yk (3.2.14)

s.t. gcv(y) ≤ 0

hcv(y) ≤ 0

hcc(y) ≥ 0

f cv(y) ≤ αk

OBBT entails solving a large number of optimization problems. As such, EAGO uses OBBT at

the root node and then uses a heuristic to determine if it will be used at deeper nodes in the

branch-and-bound tree. For a node of depth d ≤ k (default k: 4), OBBT is performed. For nodes

of depth d > k, the OBBT performed with probability 2k−d [26].
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Duality-Based Bounds-Tightening (DBBT)

Duality-based bounds-tightening (DBBT) is performed following the solution of the relaxed

problem. The dual multiplier λi of each variable yi is queried along with the lower bound LBD;

all positive dual multipliers are used to shrink the variable bounds [251]:

yi ≥ y
U
i − λ

−1
i (αk − LBD)

yi ≤ y
L
i + λ−1

i (αk − LBD).

Feasibility-Based Bounds-Tightening

Expression specific feasibility-based bounds-tightening is provided for linear constraints,

univariate quadratic constraints [81], and bivariate quadratic constraints [312]. For linear

constraints, the following relationships are used. The set of linear constraints∑
j=1:n ai jy j ≤ bi, i = 1, . . . ,m. Each linear constraint i is then processed sequentially and the

variable bounds are refined through application of the following relationship:

yU
k ≤

1
ai j

bi −
∑
j,k

min(ai jy
U
j , ai jy

L
j )

 aik ≥ 0

yL
k ≥

1
ai j

bi −
∑
j,k

min(ai jy
U
j , ai jy

L
j )

 aik < 0.

For a full discussion of univariate and bivariate constraint bounds-tightening, the reader is

encouraged to consult [81] and [312], respectively.
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Constraint Propagation on the Directed Acyclic Graph

A two-stage constraint propagation scheme is used for nonlinear terms represented on the DAG.

In this first stage, natural interval extensions along with McCormick relaxations (and with

associated subgradients) computed at a reference point ȳ of the nonlinear constraints and the

objective are calculated via a forward pass on the DAG in topological order. The subgradients are

used to improve the interval bounds if possible, according to Proposition 3.2.1 [206, 300]. The

computed bounds of the constraints are then intersected with constraint bounds. In the second

stage, a reverse interval pass is then performed in reverse topological order [299]. This is

repeated, inferring tighter variable values until either the variable bounds fail to tighten by a

preset factor (default: 0.99) or a maximum number of repetitions is reached (default: 3)

Proposition 3.2.1. Let v : Y → V be a factor in the computation of McCormick relaxations such

that V = [vL, vU] are known interval bounds (e.g., by a natural interval extension) with

convex/concave relaxations vcv/vcc of v on Y and their respective subgradients scv
v , scc

v computed at

y = ȳ ∈ Y . The functions ω, µ : Y → R are the affine relaxations of the convex and concave

relaxations of v on Y , respectively, and defined as:

ω(y) ≡ vcv(ȳ) + scv
v (ȳ)T(y − ȳ)

µ(y) ≡ vcc(ȳ) + scc
v (ȳ)T(y − ȳ).

The lower and upper bounds of these relaxations are themselves valid bounds of v on Y . Valid

lower and upper bounds of the image set v(Y) are given by:

vL,new := max(vL, ωL(Y)) (3.2.15)

vU,new := min(vU , µU(Y)). (3.2.16)
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By construction, the bounds furnished by (3.2.15) and (3.2.16) are at least as tight as the original

interval bounds. EAGO uses the midpoint of Y as the reference point, ȳ; this is repeated until

either the variable bounds reduction falls below a preset threshold (default: 0.99) or until a

maximum number of repetitions is reached (default: 5).

3.2.6 Lower-Bounding Problem

A lower bound on the optimal solution value is calculated by solving to global optimality the

relaxation of (2.3.1), given as:

f LBD = min
y∈Y

f cv(y) (3.2.17)

s.t. gcv(y) ≤ 0

hcv(y) ≤ 0

hcc(y) ≥ 0.

EAGO’s default optimizer further relaxes this form via polyhedral outer approximation of the

McCormick-based relaxations. For nonlinear expressions, an affine relaxation is generated via an

affine approximation of the expression at the midpoint of the domain using subgradient

information [191]. Objective function value cuts taken at the midpoint are also added using the
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current global upper bound, αk:

f LBD = min
y∈Y

f cv(ȳ) + scv
f (ȳ)T(y − ȳ)

s.t. gcv(ȳ) + scv
g (ȳ)T(y − ȳ) ≤ 0

hcv(ȳ) + scv
h (ȳ)T(y − ȳ) ≤ 0

hcc(ȳ) + scc
h (ȳ)T(y − ȳ) ≥ 0

f cv(ȳ) + scv
f (ȳ)T(y − ȳ) ≤ αk.

This is done in part because the standard McCormick relaxations [191] are potentially

nonsmooth and therefore may pose difficulty for gradient-based NLP optimizers. Additionally,

the polyhedral relaxation can be significantly faster than a differentiable NLP relaxation for

certain problems. The lower-bounding problem is then solved using the specified LP optimizer.

Additional cutting planes are generated by adding constraints at new reference points based on

the solution of prior relaxation (default: up to 3) and the objective is then updated with the new

reference point. Alternatively, EAGO can supply an Evaluator structure to local NLP optimizers.

This evaluator can be queried for function and subgradient values. If differentiable McCormick

relaxations are selected a MathOptInterface-wrapped local NLP optimizer may be used to furnish

lower bounds instead.

3.2.7 Upper-Bounding Problem

The use of tight upper bounds can accelerate the convergence of the branch-and-bound algorithm

by increasing the rate at which nodes are fathomed. One popular choice is that of a feasible local

solution. As solving an NLP to local optimality can be computationally expensive, EAGO makes

use of a heuristic similar to that of Couenne [26] to limit the number of upper-bounding problems
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solved. That is, for a node of depth d less than a tolerance k, the local NLP is solved. For nodes of

depth d > k, the local NLP is solved with probability 2k−d [26]. By default, EAGO uses Ipopt

[317], but any other MathOptInterface.jl compatible NLP optimizer can be specified passing

keyword arguments to the EAGO optimizer.

3.3 Numerical Experiments

The data files and code for all examples are freely available in the EAGO Git repository,

https://github.com/PSORLab/EAGO.jl. Additional special use cases in the Supplementary

Materials further illustrate EAGO’s flexibility. EAGO version 0.4.0 was used with an absolute

tolerance of εa = 10−3 and a relative tolerance of εr = 10−3. All numerical experiments were run

three times on a single thread of a 3.60GHz (4.00GHz turbo) Intel Xeon E3-1270 v5 processor

with 32GB in Ubuntu 18.02LTS and Julia v1.4.2. The lower-bounding problem was solved using

Gurobi 9.0.2 [117]. The upper-bounding problem was solved using Ipopt v3.12.13 [317]. Julia,

Ipopt, and CPLEX are all compiled with Intel MKL 2019 (Update 3) versions of

LAPACK/BLAS. EAGO makes use of the JuMP mixed-mode AD scheme for general problems

[84] and a forward-mode AD scheme for user-defined functions [245]. MathOptInterface v0.9.13

and JuMP version 0.21.2 were used to formulate problems and provide interfaces to sub-solvers

in a myriad of internal subroutines. The ValidatedNumerics.jl library was used for

correctly-rounded interval calculations [167] using the :accurate rounding mode that is slightly

more conservative than the IEEE Standard 1788-2015 [143], but is often significantly faster.
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Benchmark Performance

One of the primary advantages of EAGO is the relative speed of the Julia language. To illustrate

this, we provide a comparison of the solution times between EAGO and three state-of-the-art

deterministic global optimizers: BARON, ANTIGONE, and SCIP. Twenty problems were

selected from the MINLP2 and GLOBAL library that contains only expressions supported by

BARON, ANTIGONE, and SCIP. A list of the problems along with a brief summary of

formulation traits is given in Table 3.3.3. A maximum of 1000 seconds are allowed for each

numerical experiment. BARON v17.10.16, ANTIGONE v1.1, and SCIP v5.0 were used for these

experiments. Optimizer performance is assessed using the methods presented in Dolan and

Moore [80]. A performance profile for this test set is provided in Figure 3.3.1 and accompanying

data is provided in Tables 2 and 3 of the Supplementary Materials. The performance of optimizer

s is the time in CPU seconds, tp,s, required to solve problem p. The performance ratio on problem

p by optimizer s is the ratio of the optimizer’s performance to the best optimizer’s performance in

the set:

rp,s =
tp,s

min{tp,s : s ∈ S }
.

The performance profile of optimizer s is the plot of the distribution function of the performance

metric where ρs(τ) is the probability that a performance ratio rp,s is within a factor τ ∈ R of the

best possible ratio

ρs(τ) =
1
np

card{p ∈ P : rp,s ≤ τ}

where card(S ) denotes the cardinality of set S , P is the set of problems, np = card(P). The

percent relative gap remaining at time t for problem p is given by
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gt = 100 × (UBD − LBD)/max(|UBD|, |LBD|). As illustrated by Figure 3.3.1, EAGO solves

many problems with times comparable to state-of-the-art global optimizers. Of the problems not

solved within the time limit, EAGO typically yields a smaller percent relative gap than the other

optimizers. This suggests EAGO can provide meaningful run time results when used to develop

novel optimization routines. However, no claim of superiority is appropriate at this time. This is

particularly evident for nonconvex quadratic programs in which SCIP and BARON both

outperform EAGO. This is expected as EAGO makes use of the McCormick-based relaxation

framework for relaxing quadratic constraints whereas other optimizers use specialized routines for

relaxing quadratic constraints. We leave a more exhaustive benchmarking analysis for a later date.
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Figure 3.3.1: Performance profiles for the test set enumerated in Table 3.3.3.
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3.4 Extensibility of EAGO

The EAGO framework has already been used to demonstrate multiple novel approaches to global

optimization. The quasiconvexity of a hybrid-solar system was exploited allowing for the

problems to be solved with a certificate of global optimality [297]. In subsequent works, novel

affine relaxations [54] and relaxations of implicit functions [328], were implemented by

customizing and extending EAGO, respectively. One illustration of this capability is contained in

EAGO itself as nonconvex semi-infinite programs (SIPs) solution functionality in Section 3.4.1.

3.4.1 Solving Semi-Infinite Programs

EAGO implements the SIPres algorithm [188, 298] for solving general nonconvex SIPs that

converges in a finite number of iterations under mild assumptions. For full implementation

details, the reader is directed to the EAGO GitHub repository at

https://github.com/PSORLab/EAGO.jl. Consider the standard-form SIP:

f ∗ = min
x∈X

f (x) (3.4.1)

s.t. g(x,p) ≤ 0, ∀p ∈ P, |P| ≤ ∞

X = {x ∈ Rnz : xL ≤ x ≤ xU}

P = {p ∈ Rnp : pL ≤ p ≤ pU}.

A design centering problem developed in [104] is presented here. A location consisting of

coordinates x1, x2 is sought such that a disk with maximal radius, x3, can be inscribed within a
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nonconvex container set. The SIP is stated formally as:

f ∗ = max
x∈X

x3 (3.4.2)

s.t. g1(x, p) = 0.3sin(πz1(x, p)) − z2(x, p) ≤ 0, ∀p ∈ P

g2(x, p) = z1(x, p)2 + 0.3z2(x, p)2 − 1 ≤ 0, ∀p ∈ P

X = [−1.5, 1.5] × [−1, 2] × [0, 1.5]

P = [0, 2π]

where the z terms are determined by the expressions:

z1(x, p) = x1 + x3cos(p)

z2(x, p) = x2 + x3sin(p).

This problem is constructed in the few lines of code contained in Code Listing 3.5. Using

EAGO’s implementation of the SIPres routine in combination with its global optimizer, we were

able to solve (3.4.2) and obtain certification of global optimality with an absolute tolerance of

εa = 10−3 in 1.97 seconds. All prior attempts to address this problem required approximations of

the constraint set or the use of approximate methods as done in the original work of Floudas [104].
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Listing 3.5: The code for solving the design centering problem given in Example 3.4.2 originally presented
in [104]

using EAGO, Gurobi

f(x) = x[3] # Define objective

z1(x,p) = x[1] + x[3]*cos(p[1])

z2(x,p) = x[2] + x[3]*sin(p[1])

gSIP1(x,p) = 0.3*sin(pi*z1(x,p)) - z2(x,p) # Define SIP constraints

gSIP2(x,p) = z1(x,p)ˆ2 + 0.3*z2(x,p)ˆ2 - 1.0

xL = [-1.5, -1.0, 0.0]; xU = [1.5, 2.0, 1.5] # Defines bounds

pL = [0.0]; pU = [2.0*pi]

opt = Gurobi.Optimizer()

result = explicit_sip_solve(xL, xU, pL, pU, f, [gSIP1, gSIP2],

sip_sense = :max, relaxed_optimizer = opt)

3.4.2 Customizing EAGO’s Solver: A Quasiconvex Problem

In addition to supporting a wide variety of problem forms, EAGO can be readily adapted to suit

the unique needs of users and application requirements. In this example, we will modify EAGO’s

branch-and-bound solver to solve a quasiconvex problem using a bisection technique. The

problem consists of minimizing a quasiconvex function f : C → R over a convex feasible set.

This can be done using a few simple lines of code. Consider the quasiconvex problem presented
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in [144]:

f ∗ = min
y∈Y

f (y) (3.4.3)

s.t.
5∑

i=1

i · yi − 5 = 0 (3.4.4)

5∑
i=1

y2
i − 0.5π ≤ 0 (3.4.5)

−

(
1
2
y2

1 +
1
2
y2

2 + y2
3 + 2y1y2 + 4y1y3 + 2y2y3

)
≤ 0 (3.4.6)

− y2
1 − 6y1y2 − 2y2

2 + cos(y1) + π ≤ 0 (3.4.7)

Y = [0, 5]5

where

f (y) = −
ln((5 + y1)2 +

∑5
i=1 yi)

1 +
∑5

i=1 y
2
i

. (3.4.8)

Interval analysis shows that f ∗ ∈ F = [ f L, f U] = [−5, 0]. As such, we can introduce a new

auxiliary variable t ∈ T = F and formulate the equivalent problem below:

t∗ = min
y∈Y,t∈T

t

s.t. (3.4.4)-(3.4.7)

f (y) − t ≤ 0

Y = [0, 5]2, T = [−5, 0].

In order to solve this problem, we resort to a bisection algorithm with respect to the interval

T . Let φτ(y) = f (y) − τ such that τ = (tL + tU)/2, then we solve for y subject to constraints
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(3.4.4)-(3.4.7) such that φτ(y) ≤ 0. If this problem is feasible, t∗ ∈ [tL, τ]. Otherwise, t∗ ∈ [τ, tU].

The other interval is then discarded (fathomed) and this manner of bisection is repeated until an

interval containing a feasible solution with a width of at most ε is located [51]. Then, we simply

need to bisect solely in the t dimension. To implement this new solver using EAGO, three main

modifications to the optimizer must be made. First, we will short circuit the preprocessing,

postprocessing, and upper-bounding steps.

Listing 3.6: Preprocessing, postprocessing, and upper-bounding problem for example in Section 3.4.2.
using MathOptInterface , EAGO, JuMP

import EAGO: Optimizer

struct QuasiConvex <: EAGO.ExtensionType end

import EAGO: preprocess!, upper_problem!, postprocess!

function EAGO.preprocess!(t::QuasiConvex , x::Optimizer)

x._preprocess_feasibility = true

end

function EAGO.upper_problem!(t::QuasiConvex , x::Optimizer)

x._upper_feasibility = true

end

function EAGO.postprocess!(t::QuasiConvex , x::Optimizer)

x._postprocess_feasibility = true

end

Next, one specifies that the algorithm should terminate on convergence to an ε-optimal point and

return status codes should indicate a feasible optimal solution was returned.
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Listing 3.7: Modify convergence and termination criteria for example in Section 3.4.2.
import EAGO: convergence_check , termination_check , repeat_check

function EAGO.convergence_check(t::QuasiConvex , x::Optimizer)

gap = (x._upper_objective_value - x._lower_objective_value)

return (gap <= x._parameters.absolute_tolerance)

end

function EAGO.termination_check(t::QuasiConvex , x::Optimizer)

flag = EAGO.convergence_check(t, x)

if flag

x._termination_status_code = MathOptInterface.OPTIMAL

x._result_status_code = MathOptInterface.FEASIBLE_POINT

end

return flag

end

It is further specified that bisection should only occur in the t dimension and only the feasible

node need be saved.

Listing 3.8: Specify dimensions for bisection for example in Section 3.4.2.
branch_variable = [i == 6 for i=1:6]

EAGO.repeat_check(t::QuasiConvex , x::Optimizer) = true

We then specify how the subproblem should be solved at each iteration. Here, the problem is

solved at the midpoint value of t using the native EAGO function upper problem!. Bounds are

then contracted depending on the feasibility of the subproblem.
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Listing 3.9: Modify lower-bounding problem to solve new subproblem for example in Section 3.4.2.
import EAGO: lower_problem!

function EAGO.lower_problem!(t::QuasiConvex , x::Optimizer)

y = x._current_node

lower = y.lower_variable_bounds[6]

upper = y.upper_variable_bounds[6]

midy = (lower + upper)/2.0

y.lower_variable_bounds[6] = midy

y.upper_variable_bounds[6] = midy

EAGO.solve_local_nlp!(x)

feas = x._upper_feasibility

y.lower_variable_bounds[6] = feas ? lower : midy

y.upper_variable_bounds[6] = feas ? midy : upper

x._lower_objective_value = y.lower_variable_bounds[6]

x._upper_objective_value = y.upper_variable_bounds[6]

x._lower_feasibility = true

return

end

We can now define the problem using a JuMP syntax and retrieve the solution. The two keyword

options which don’t reference previously-defined functions specify an absolute tolerance of

εa = 10−8 should be used and the routine should not terminate when a feasible point is located

(even though no objective is specified).
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Listing 3.10: Construct and optimize the JuMP model for example in Section 3.4.2
m = Model(optimizer_with_attributes(EAGO.Optimizer ,

"absolute_tolerance" => 1E-8,

"branch_variable" => branch_variable ,

"ext_type" => QuasiConvex()))

@variable(m, ((i<6) ? 0 : -5) <= y[i=1:6] <= ((i<6) ? 5 : 0))

@constraint(m, sum(i*y[i] for i=1:5) - 5 == 0)

@constraint(m, sum(y[i]ˆ2 for i=1:5) - 0.5*piˆ2 <= 0)

@expression(m, expr1, 2*y[1]*y[2] + 4*y[1]*y[3] + 2*y[2]*y[3])

@constraint(m, -(0.5*y[1]ˆ2 + 0.5*y[2]ˆ2 + y[3]ˆ2 + expr1) <= 0)

@NLexpression(m, expr2, log((5 + y[1])ˆ2 + sum(y[i] for i=1:5)))

@NLconstraint(m, -y[1]ˆ2 -6*y[1]*y[2] -2*y[2]ˆ2 +cos(y[1]) + pi <= 0)

@NLconstraint(m, -expr2/(1 + sum(y[i]ˆ2 for i=1:5)) - y[6] <= 0)

@objective(m, Min, y[6])

JuMP.optimize!(m)

# retrieve solution info

solution = JuMP.value.(y[1:5])

global_obj_value = JuMP.value.(y[6])

This problem can then be solved to an absolute tolerance of εa = 10−8 in just 0.7 seconds.

3.5 Concluding Remarks

We have presented the first openly-available McCormick relaxation-based global optimizer. This

optimizer contains a number of features prevalent in modern nonconvex optimization software

and each of these features can be readily included or omitted from user-developed routines.

Among the features discussed were an interval constraint programming algorithm, an affine

interval bounds-tightening algorithm, duality-based bounds-tightening algorithm, and a generic

optimization-based bounds-tightening routine. Routines for constructing outer approximations of

convex function envelopes were discussed.

The basic optimizer developed in EAGO performs impressively relative to state-of-the-art
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deterministic global optimizers on the selected examples shown. The number of algebraic

expressions supported by EAGO is significantly larger than the existing complete global

optimizers. In fact, the library size is comparable to that of modern AD software [23]. Most

notably, we have illustrated the use of our deterministic global optimizer with native Julia code.

As illustrated, support for script-defined functions serves a two-fold purpose. First, it allows

non-experts to explore simple optimization problems without domain-specific knowledge.

Second, it provides a framework that experts can use to construct specialized algorithms for

computing global optima of problems with embedded simulations, already utilized in recent

works [54, 297, 328].

Multiple avenues exist to further improve EAGO’s branch-and-bound optimization

framework and default optimizer. One potential avenue of interest is exploring the use of tighter

interval arithmetic in conjunction with McCormick-based relaxations. The use of tighter interval

bounds such as those generated by interval-Taylor arithmetic [33] may yield significantly tighter

relaxations and speed solution time [205]. Another potential improvement to EAGO lies in

further specializing it to handle various categories of models with embedded simulations. One

such improvement may lie in selectively adding auxiliary variables to the formulation in the

presolve step to tighten relaxations and improve domain reduction. Another improvement may lie

in the automatic detection of implicit function reformulations [300, 328] and the application of

specialized routines to address these. One major adaptation of the EAGO toolkit presently

underway is the incorporation of a branch-and-cut framework for solving mixed-integer nonlinear

problems [305].
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Mean Solution Time (CPU Seconds)

Name EAGO SCIP BARON ANTIGONE

alkyl 0.07 0.742 0.296 0.16

BeckerLago 0.14 0.34 0.08 60.6

ex2 1 8 0.12 0.632 0.671 0.324

ex3 1 1 0.476 0.758 0.422 0.459

ex4 1 9 0.168 0.29 0.06 0.148

ex5 4 3 0.056 0.26 0.15 0.143

ex6 2 10 > 1000 > 1000 67.3 189

ex6 2 11 21.9 > 1000 9 5.228

ex6 2 13 > 1000 > 1000 95.5 > 1000

ex6 2 14 2.07 > 1000 0.8 0.283

ex7 2 1 0.22 > 1000 > 1000 0.424

ex7 2 3 509 > 1000 > 1000 > 1000

ex7 2 4 37.0 5.37 > 1000 3.57

ex8 4 1 > 1000 214.4 0.4 0.76

ex8 4 2 > 1000 > 1000 > 1000 > 1000

gold 0.69 4.03 1.52 316.17

hart6 5.21 2.01 0.08 0.338

meanvar 0.03 1.253 0.532 0.863

Model13 0.13 50.37 0.08 6.701

process 0.61 0.66 0.62 0.34

Table 3.3.1: The solution times (CPU seconds) of the benchmarking problems are reported for each of the
solvers in the comparison study. The relative standard error (RSE) of the three trials was less than 5% for

all instance with total run time less than 0.5 seconds and less than 2% in all other instances.
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Relative Gap at Termination

Name EAGO SCIP BARON ANTIGONE

ex6 2 10 0.031 949.96 - -

ex6 2 11 - 4.01E7 - -

ex6 2 13 0.185 1783 - 0.2284

ex6 2 14 - 0.47 - -

ex7 2 1 - 3.83 0.013 -

ex7 2 3 - 234.42 0.698 0.114

ex8 4 1 0.404 - - -

ex8 4 2 0.967 Inf 0.7812 0.496

Table 3.3.2: The relative gap remaining for each solver and benchmarking problem pair that did not
converge to the desired tolerance within 1000 CPU seconds.
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Benchmarking Problem Set Summary

Name Variables Inequalities Equalities Nonlinear Terms

alkyl 15 0 7 ×, (·)2

BeckerLago 2 0 0 (·)2 √(·)

ex2 1 8 24 0 10 ×

ex3 1 1 8 6 0 ×

ex4 1 9 2 2 0 (·)2, (·)4

ex5 4 3 16 13 0 ×, (·)/(·), (·)a

ex6 2 10 6 0 3 ×, log, (·)/(·)

ex6 2 11 3 0 1 ×, log, (·)/(·)

ex6 2 13 6 0 3 ×, log, (·)/(·)

ex6 2 14 4 0 2 ×, log, (·)/(·)

ex7 2 1 7 14 0 ×, (·)/(·), (·)2

ex7 2 3 8 6 0 ×, (·)/(·)

ex7 2 4 8 0 7 ×, (·)/(·), (·)a

ex8 4 1 22 0 10 (·)2

ex8 4 2 24 0 10 (·)2

gold 2 0 0 ×, (·)2

hart6 6 0 0 exp(·), ×, (·)2

meanvar 8 0 2 ×

Model13 6 0 0 exp(·), ×, (·)2

process 10 0 7 ×, (·)/(·), (·)2

Table 3.3.3: The selected benchmarking problems are summarized by their scale and complexity in terms
of the number of variables, inequality and equality constraints, and types of nonlinear terms.
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Chapter 4

Convex and Concave Envelopes of Artificial
Neural Network Activation Functions for
Deterministic Global Optimization

In this chapter, we present general methods to construct convex/concave relaxations of the

activation functions that are commonly chosen for artificial neural networks (ANNs). The choice

of these functions is often informed by both broader modeling considerations balanced with a

need for high computational performance. The direct application of factorable programming

techniques to compute bounds and convex/concave relaxations of such functions often lead to

weak enclosures due to the dependency problem. Moreover, the piecewise formulation that

defines several popular activation functions, prevents the computation of convex/concave

relaxations as they violate the factorable function requirement. To improve the performance of

relaxations of ANNs for deterministic global optimization applications, this study presents the

development of a library of envelopes of the thoroughly studied rectifier-type and sigmoid

activation functions, in addition to the novel self-gated sigmoid-weighted linear unit (SiLU) and
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Gaussian error linear unit (GELU) activation functions. We demonstrate that the envelopes of

activation functions directly lead to tighter relaxations of ANNs on their input domain. In turn,

these improvements translate to a dramatic reduction in CPU runtime required for solving

optimization problems involving ANN models to epsilon-global optimality. We further

demonstrate that the factorable programming approach leads to superior computational

performance over alternative state-of-the-art approaches.

4.1 Introduction

Machine learning and general surrogate modeling approaches provide a means to describe

physical phenomena when accurate first-principles models (FPMs) may lead to intractable

formulations and when field-specific knowledge may not be adequate to formulate accurate FPMs

[145]. These approaches make use of either real-world data or computationally generated datasets

to train data-driven models (DDMs) that adequately approximate the underlying system behavior.

In many cases, the DDMs primarily serve to reduce intractable models into forms that allow for

subsequent analysis, such as process design, sensitivity analysis, or an assessment of

controllability. Optimization methods are often embedded in each of these tasks which makes the

deterministic optimization of nonconvex models which embed these DDMs, a pursuit of interest.

Numerous data-driven modeling approaches have been applied to engineered systems that

include: artificial neural networks (ANNs) [129, 264], Gaussian (Kriging) process models

[53, 267, 332], and support vector machines [268]. ANNs, in particular, have seen greatly

increased usage with the advent of widely-accessible and highly-capable software tools, such as

Tensorflow [1] and Pytorch [230]. These universal approximators represent one class of DDMs

that has seen an abundance of usage in the recent decades with optimization-based applications
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ranging from synthesis of biodiesel processes [97], selection of optimal of fermentation media

[201], optimal control of pressure swing absorption processes [15], design of cross-flow filtration

systems [82], and many others [142, 211, 227]. More recently, there has been an emergence of

interest in applying deep ANNs (usually defined as ANNs with four or more hidden layers in

contrast to shallow ANNs that have a single hidden layer) to process system engineering

applications as well as standard classification and ranking tasks. One recent example consists of

using deep ANNs to predict multiphase flow characteristics in a pipe [273]. Renewed interest in

deep ANNs has resulted in the exploration of novel ANN structures that may provide better

performing models (lower computational cost, improved robustness, and better predictive value).

Accompanying these investigations are efforts [69, 197, 316, 333] to uncover superior activation

functions to be used in the more complex structures that characterize deep ANNs that hold the

potential to reduce computational time and improve robustness relative to the state-of-the-art

ReLU activation function.

Approaches that solve optimization problems deterministically with trained ANNs

embedded, have largely been limited to ReLU network-based models. Full-space formulations

may exploit the equivalency of ReLU networks to mixed-integer linear programs (MILP)

[12, 103, 158, 309] or adapt ReLU network representations of piecewise linear functions to

perform adaptive partitioning and domain tightening [115]. The resulting problems are then

solved using state-of-the-art MILP (or MINLP solvers if nonlinear terms are present). Despite

recent developments enabling deterministic global optimization of certain ANNs for process

systems engineering applications [264, 266], there still remains a need for theoretical

developments that enable support for a broader library of activation functions and additional

families of ANNs. Namely, trained neural networks incorporating these activation functions may

be described by systems of equations and in turn embedded in a mathematical program.

Unfortunately, most activation functions embedded in this manner are nonlinear and exhibit
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significant nonconvexities that lead to difficulties in solving the resulting optimization

formulation.

Explicit consideration of activation functions may lead to tighter relaxations of nonconvex

optimization problems involving ANNs. The availability of tighter relaxations remains desirable

as their use may greatly accelerate the convergence of the branch-and-bound (B&B) algorithm

that underlies all commercially available state-of-the-art deterministic global optimizers. Support

for more general ANNs is also desirable for two other important reasons. First, it increases the

variety of ANN model forms that may be developed for use in global optimization applications.

Second, it allows for the integration of a broader family of legacy models built for general

predictive purposes. These may be difficult to adapt to alternative surrogate model formulations

due to domain-specific modeling considerations or potential logistical hurdles such as the

unavailability of legacy training data. As such, methods that are directly applicable to these

models are desirable. In this chapter, we make the following novel contributions that serve to

address these outstanding issues:

1. We discuss ANN structures of current research interest and reduced-space reformulations

for specialized ANN structures that may participate in global optimization formulations

(the reader is directed to Section 4.4 for a summary of reduced-space formulations). In

particular, we highlight a collection of activation functions without standard factorable

representations using software libraries and categorize these according to convexity

properties.

2. We derive novel convex/concave envelopes for the increasingly popular implicitly

regularizing activation functions sigmoid-weighted linear unit (SiLU) and Gaussian error

linear unit (GELU).

3. We analyze the convexity properties of numerous common activation functions and
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highlight how naı̈ve McCormick relaxations lead to overestimation of convex/concave

relaxations due to the dependency problem (i.e., overestimation inherent to set-valued

arithmetic due to the inability to recognize multiple occurrences of the same variable in a

given expression [193, 255]).

4. We illustrate that the use of envelopes for common/popular activation functions leads to

increased performance relative to a naı̈ve application of composition rules originating from

Garth McCormick’s foundational work [177] using a randomly generated benchmark set.

These contributions ultimately lead to faster solution times associated with reduced-space

optimization methods for a wide variety of ANN-based machine learning models. Moreover, our

contributions allow for an extended library of activation functions to be utilized in nonlinear

programs that must be solved with a certificate of global optimality.

In this chapter, we present new developments on the relaxation of activation functions

common in recent ANN-based models. In Section 4.2, we detail pertinent neural network

preliminaries. Subsequently, in Section 4.3, we develop and analyze convex and concave

relaxations of several activation functions that have become increasingly prevalent in broader

machine learning applications. In Section 4.4, we describe full-space and reduced-space

formulations for global optimization problems; we then proceed to detail how ANNs may readily

be incorporated into either formulation. In Section 4.5, we present the numerical results arising

from a randomly generated benchmark set that illustrate the performance improvements readily

achievable using these novel envelopes. Lastly, in Section 4.6, we reflect on current technical

challenges and suggest future directions for subsequent research.
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4.2 Artificial Neural Networks Preliminaries

One of the most common ANN structures is that of the MLP. The MLP is a class of feed-forward

ANN that consists of a directed acyclic graph (DAG) containing n layers enumerated k = 1, . . . , n.

The first layer consists of inputs to the MLP. The subsequent k = 2, . . . , n− 1 layers are the hidden

layers, with k = n the output layer. The number of neurons in layer k is denoted m(k). Let

a(k) ∈ Rm(k)
be the output vector of layer k. Accordingly, a(1) is the input vector and a(n) is the

output vector of the MLP. For layers k ∈ {2, . . . , n}, the vector a(k) is defined componentwise by

a(k)
i = f (k)

((
w(k−1)

i

)T
a(k−1) + b(k−1)

i

)
, i = 1, . . . ,m(k), (4.2.1)

where f (k) : R→ R are activation functions, W(k−1) =
[
w(k−1)

1 w(k−1)
2 · · · w(k−1)

m(k)

]
∈ Rm(k)×m(k−1)

is a

weight matrix, and b(k−1) ∈ Rm(k)
is a bias vector. For ease of introduction, we define

o : Rm(1)
→ Rm(n)

to represent the input-output function for a generic DDM. In the case of an MLP,

we have a(n) = o(a(1)). A depiction of this type of network is provided in Figure 4.2.1. When a

feedforward ANN is trained, the weight matrices and bias vectors become optimization variables

while the values of the input vector a(1)
i for i = 1, . . . ,m(1), are treated as parameters. When a

trained feedforward ANN is embedded in an optimization problem, the weight matrices and bias

vectors are fixed to constant parameter values.

It should be noted that while the MLP structure may be readily decomposed into a factorable

representation, many ANNs of active interest may not. For instance, residual networks and

recurrent neural networks have analogous continuous-time representations [108, 118, 166, 250].

These continuous-time representations are often desirable as they may be evaluated using

state-of-the-art ODE integrators and in turn circumvent the need to search for an optimal number

of hidden layers. This has motivated recent interest in neural-ordinary differential equations
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Figure 4.2.1: The directed acyclic graph representation of a multilayer perceptron with n layers. The input
and output layers are the first (k = 1) and n-th (k = n) layers, respectively. The hidden layers are labeled

k = 2 to k = n − 1. Note that the multilayer perceptron is a fully-connected network in which each neuron
in layer k − 1 is connected to all neurons in the subsequent layer k.

[60, 238]. These models may be addressed by exploiting specialized continuous-time relaxation

methods for ODEs [270, 272, 293, 328]. Alternatively, deep ANNs with an implicit

representation [88] may require the solution of nonlinear systems via fixed-point methods in order

to evaluate the neural network outputs and specialized relaxation methods for fixed-point methods

need to be applied [300]. However, in both these cases, using tighter relaxations of the activation

functions participating in the overall network will result in tighter relaxations of the overall

network. Nonetheless, the methods described herein will be applicable to generalized feed

forward neural networks [57], including deep feedforward networks [112], extreme learning

machines [139], discrete recurrent neural networks [178], and deep residual networks [126] as

activation functions represent a key component of each of these networks.
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4.3 Relaxations of Activation Functions

To solve nonlinear programs with a certificate of global optimality, the use of a deterministic

global optimization method (e.g., B&B) is required [136]. These methods typically require that

convex (and concave) relaxations of the participating nonconvex expressions may be readily

computed. After the seminal work of McCormick [177], there has been a significant effort to

develop libraries of relaxations of common mathematical expressions and intrinsic functions that

are often encountered in common mathematical models and relevant optimization problems. In

this section, we further contribute to these efforts by developing convex and concave relaxations

of common activation functions encountered in ANNs.

Previous work has focused on ANNs with a hyperbolic tangent [264, 265, 266] activation

function. It was noted that increasing ANN depth is undesirable when holding the number of

neurons fixed, due to the overestimation of relaxations [264]. In this section, we review

relaxations of several common activation functions that have been developed more recently, with

special attention paid to the Gaussian error linear unit (GELU) and the sigmoid-weighted linear

unit (SiLU) functions. Many of these activation functions are known to perform better in a deep

network configuration, specifically by either reducing the training time for equivalent network

structures or by enabling networks with fewer terms that yield a more accurate fit to data. As a

consequence of using these activation functions, the number of nonconvex expressions

participating in a DDM may be reduced while maintaining the desired accuracy. This can lead to

more tractable formulations of otherwise prohibitively expensive optimization problems.

We also note that the construction of relaxations of activation functions using standard

McCormick libraries (e.g., [58, 329]) may often be inadequate. For example, in some cases, the

piecewise definitions cannot be readily implemented via overloading approaches, and in other

cases, the direct application of overloading approaches leads to weak relaxations. Note that this
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applicability to broader classes of ANNs is desirable as it allows legacy models, built for

long-term prediction, to be readily embedded in process simulations for optimization-based

design tasks. We begin this section with a discussion of common families of activation functions

and their associated convex/concave envelopes. Finally, we derive the envelopes for the recent

SiLU and GELU activation functions that will be utilized in the case studies in this chapter.

4.3.1 Convex Activation Functions

One of the most ubiquitous activation functions currently used in machine learning is that of the

Rectified Linear Unit (ReLU), f : R→ R : x 7→ max(x, 0). The development of the ReLU

represented a significant breakthrough in the supervised training of deep ANNs [155], and has

since become the standard activation function used in deep learning. The simplicity of the ReLU

in concert with the lack of any vanishing gradient issue, wherein nonlinearities lead to

near-singular values of the input-output Jacobian, have often been noted as distinct advantages of

this activation function. Additionally, networks comprised of ReLU functions may be readily

modeled as MILPs [103] and solved using well-established MILP solvers. One proposed

alteration to the ReLU resulted in the development of the exponential linear unit (ELU) which

allows for negative outputs and avoids the “dying” ReLU problem — when ReLU neurons

participating in a network only output 0 for any input during network training [165] — at the cost

of significantly more complex arithmetic operations [62]. A scaled ELU was also proposed that

avoids both vanishing and exploding gradient problems, and incorporates an internal

normalization routine [153]. Many of these newly proposed activation functions belong to a

family of monotonically increasing convex functions.

The convex envelope of a univariate scalar-valued convex function f on a compact set [a, b]

is simply the function itself. Whereas, its concave envelope is the affine function joining the
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endpoints f (a) and f (b) [177]. Relaxations of compositions involving these terms can be

computed using the Univariate McCormick Composition Theorem, Proposition 2.3.6 herein.

While some activation functions such as the ReLU have exact convex/concave relaxations when

computed via naı̈ve McCormick composition [177, 191], others are defined as compositions of

multiple algebraic expressions that lead to overestimation due to the well-known dependency

problem. Functions such as ReLU consist of only a single expression and are already included in

McCormick relaxation software libraries [58, 327, 329]. Other activation functions such as

Maxsig, Maxtanh, and Softplus have relaxations that are weaker than their envelopes when

computed using the algebraic expressions listed in Table 4.3.1, as illustrated in Figure 4.3.1, due

to the dependency problem associated with the computation of relaxations of composite

functions. Other convex activation functions, namely, ELU, SELU, and parametric ReLU, cannot

be easily implemented using the frameworks of [177] and [191], as the conditional statement in

the activation function definitions break the factorable function assumption inherent to these

relaxation algorithms.

Two other considerations serve to motivate interest in alternatives to the ReLU function.

First, the use of a twice-differentiable activation function is desirable as twice-differentiability is

generally sufficient to ensure the second-order pointwise convergence of relaxations of ANNs

[44]; a key consideration in mitigating the clustering problem present in deterministic global

optimization algorithms [146]. While no function other than softplus listed in Table 4.3.1 is twice

differentiable, one can reasonably expect a more significant degree of nondifferentiability to

generally occur within nonsmooth activation functions as the nonsmooth behavior may arise from

both the mid(·) operator present in the McCormick composition rule and the envelope itself.

Second, the time spent calculating relaxations of the activation function may be minor when

compared with the time spent in solving linear, mixed-integer, and convex nonlinear problems in

any given iteration of the B&B algorithm. As such, it may be beneficial to compute tighter
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Activation Function Form f (x) Source

ReLU max{0, x} [202]

Parametric ReLU
0 < α < 1

x, if x > 0
αx, otherwise

[125]

Maxsig
(Let a be a root of
1 + exp(−a) − a−1)

max(x, 1/(1 + exp(−x))) [85]

Maxtanh max(x, tanh(x)) [85]

Softplus log(1 + exp(x)) [339]

Exponential Linear
Unit (ELU) α > 0

x, x > 0
α(exp(x) − 1), x ≤ 0

[62]

Scaled Exponential
Linear Unit (SELU)

λ = 1.0507, α = 1.67326
λ

x, x > 0
α(exp(x) − 1), x ≤ 0

[153]

Table 4.3.1: Convex activation functions and their first derivatives are defined in this table.

relaxations of slightly more computationally expensive terms if one may substantially reduce the

overall number of iterations performed by the global solver and gain additional benefits

associated with bounds tightening algorithms or other key heuristics [252, 305]. These

considerations remain important for sigmoidal (convexoconcave) activation functions and novel

self-gating activation functions.

4.3.2 Convexoconcave Activation Functions

Some of the earliest-used activation functions for ANNs are convexoconcave — a univariate

function consisting of a convex region followed by a concave region. The preliminary use cases

for convexoconcave activation functions primarily involve sigmoid and hyperbolic tangent
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Figure 4.3.1: Relaxations of some common rectifier-like activation functions are weaker than their
corresponding convex/concave envelopes when the relaxations are computed using the rules presented in
[177]. The activation function, the relaxations of form f (x) from Table 4.3.1 computed according to the

rules presented in [177], and convex/concave envelope of the activation function, are shown in each subplot
on the domain x ∈ [−2, 2]. These plots illustrate the overestimation of the classical McCormick relaxation

approach compared to the envelopes for (Left) Softplus, (Middle) Maxsig, and (Right) Maxtanh functions.

activation functions [135] participating in shallow ANNs used for regression or classification

tasks. As the sigmoid activation functions are bounded, inclusion of sigmoid layers may be used

to constrain the range of ANN predictions. Continued investigations into sigmoid-shaped ANNs

have focused on reducing the necessary computational time and minimizing the vanishing

gradient problem, leading to forms such as the Softsign (i.e., ElliotSig) [91, 112]. Several

equivalent algebraic forms of the hyperbolic tangent were examined by [264]. The authors noted

that the direct application of McCormick composition rules leads to substantially weaker

relaxations than the envelope for the majority of the alternative algebraic forms. We demonstrate

here that these results hold for many other convexoconcave activation functions. While astute
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Activation Function Form f (x) Derivative f ′(x)

Softsign x/(1 + |x|) (1 + |x|)−2

Hyperbolic tangent tanh(x) sech2(x)

Penalized hyperbolic
tangent

tanh(x), x > 0
tanh(αx), x ≤ 0

sech2(x), x > 0
α(sech2(αx)), x ≤ 0

Sigmoid (1 + exp(−x))−1 exp(−x)(1 + exp(−x))−2

Bipolar sigmoid (1 − exp(−x))/(1 + exp(−x)) 2 exp(x)(1 + exp(x))−2

Table 4.3.2: Convexoconcave activation functions and their first derivatives are defined in this table
[85, 225].

usage of algebraic rearrangements may improve the quality of relaxations, such as the conversion

of the bipolar sigmoid function to the equivalent tanh(x/2) form, this is not possible for all

activation functions.

Convex/concave envelopes of convexoconcave activation functions can be computed using

the rules described by [177] and [259]. A tie point xcv
m is computed at which the function’s

derivative (provided the function is differentiable at xcv
m ) equals the slope of the secant line

between ( f (xcv
m ), xcv

m ) and ( f (xU), xU). Similarly, a tie point xcc
m is computed at which the function’s

derivative (provided the function is differentiable at xcc
m ) equals the slope of the secant line

between ( f (xcc
m ), xcc

m ) and ( f (xL), xL). That is,

f cv,env(x) =


f (xU) +

f (xU )− f (xcv
m )

xU−xcv
m

(x − xU), x ≥ xcv
m

f (x), otherwise
(4.3.1)

f cc,env(x) =


f (xL) +

f (xL)− f (xcc
m )

xL−xcc
m

(x − xL), x ≤ xcc
m

f (x) otherwise.
(4.3.2)
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Figure 4.3.2: Many sigmoidal activation functions have relaxations that are weaker than their envelopes
when computed using the rules presented in [177]. The activation function, the relaxations of form f (x)

from Table 4.3.2 computed according to the rules presented in [177], and convex/concave envelopes of the
activation function are shown in each subplot on the domain x ∈ [−2, 2]. These plots illustrate the

overestimation of the classical McCormick relaxation approach compared to the envelopes for (Left)
Softsign, (Middle) Sigmoid, and (Right) Bisigmoid functions.

As illustrated in Figure 4.3.2, the envelopes yield substantially tighter relaxations than the direct

application of McCormick composition rules [191] to the arithmetic expressions presented in

Table 4.3.2.

4.3.3 Other Activation Functions

Models involving the ReLU function, as well as many of the convex activation functions

presented here, lead to nondifferentiability, which may present issues for subsequent optimization

and analysis. Moreover, sigmoid activation functions often suffer from a vanishing gradient issue

when applied in deep ANNs. Two other activation functions have recently garnered significant
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interest that are differentiable and avoid the vanishing gradient problem. The GELU function,

denoted as gelu : R→ R, was developed as a means of merging stochastic dropout and zoneout

procedures naı̈vely with the ReLU activation function [130]. The cumulative distribution function

arising from the stochastic zero or identity transformation yields the gelu(·) function, defined as:

gelu(x) =
x
2

(
1 + erf

(
x
√

2

))
. (4.3.3)

Another activation function of particular interest in the past few years that was originally

purposed for use in reinforcement learning by [90], is the SiLU function, herein denoted

silu : R→ R, and defined as:

silu(x) =
x

1 + exp (−x)
. (4.3.4)

It was noted that the silu(·) function exhibits a basic self-stabilizing property [89]. Akin to the

gelu(·) function, the global minimum of the silu(·) function serves as an implicit regularizer that

inhibits learning of large magnitude weights. Subsequent exploratory work by [243] used a

reinforcement learning approach with a recurrent ANN to identify several potentially useful

activation functions. They found the silu(·) activation function and provided strong numerical

evidence that it outperforms a myriad of alternative activation functions.

Figure 4.3.3 illustrates the gelu(· ) and silu(· ) activation functions and their respective

inflection points. We note that the convexity of silu(·) parallels that of gelu(·). Namely, each

function has inflection points xr,1 and xr,2 that bound a region where they are convex. Outside of

this region, the functions are concave. These inflection points occur at ±
√

2 and approximately

±2.39935 for gelu(·) and silu(·), respectively. Given a domain X, if xr,1, xr2 < X, then the function

is either concave or convex on X and the envelope may be constructed as described in Section

4.3.1. If xr,1 < X, xr,2 ∈ X, then f ∈ {gelu, silu} is convexoconcave on X and convex and concave
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Figure 4.3.3: The gelu(· ) and silu(· ) activation functions are plotted on the domain X = [−5, 5]. The left
and right inflection points, xr,1 and xr,2, respectively, are marked by the dashed vertical lines with the color
corresponding to the respective function. Each function is concave on the domain (−∞, xr,1], convex on the

domain [xr,1, xr,2], and concave on the domain [xr,2,+∞).

envelopes may be computed from (4.3.1) and (4.3.2), respectively. If xr,1 ∈ X, xr,2 < X, then

g = − f , with f ∈ {gelu, silu}, is convexoconcave and its envelope may be computed using (4.3.1)

and (4.3.2), and then by applying the identity ( f cv,env, f cc,env) = (−gcc,env − gcv,env). We now proceed

to derive the convex and concave envelopes of gelu(· ) and silu(· ) on X, with xr,1, xr,2 ∈ X in the

following Theorem 4.3.1.

Theorem 4.3.1. (Convex/Concave Envelopes of gelu(·), silu(·)) Let f : R→ R be defined as

either gelu(·) or silu(·), as defined in (4.3.3) and (4.3.4), respectively. Let xr,1, xr,2 ∈ X ∈ IR be the

inflection points of f (·) such that xr,1 < xr,2 and let xmin be the point at which f attains its

minimum on R. Let f cv, f cc : X → R denote convex and concave relaxations of f on X,
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respectively. Then, for each x ∈ X, f cv(x) is given by

f cv(x) =



f (xL) +
f (xcv

m,1)− f (xL)

xcv
m,1−xL (x − xL) x < xcv

m,1

f (x) xcv
m,1 ≤ x < xcv

m,2

f (xcv
m,2) +

f (xU )− f (xcv
m,2)

xU−xcv
m,2

(x − xcv
m,2) xcv

m,2 ≤ x

(4.3.5)

where the tie points xcv
m,1 ∈ [xr,1, xmin] and xcv

m,2 ∈ [xmin, xr,2] are points that respectively satisfy the

following:

f (xcv
m,1) − f (xL) − (xcv

m,1 − xL) f ′(xcv
m,1) = 0, (4.3.6)

f (xU) − f (xcv
m,2) − (xU − xcv

m,2) f ′(xcv
m,2) = 0. (4.3.7)

Similarly, for each x ∈ X, f cc(x) is given by

f cc(x) = f (xL) +
f (xU) − f (xL)

xU − xL (x − xL). (4.3.8)

Proof. Note that under the hypothesis xr,1, xr,2 ∈ X and the convexity/concavity properties of

f (· ) ∈ {gelu(· ), silu(· )} on X, the envelopes of f are required on a domain consisting of three

adjoining regions where f is concave (R1 = [xL, xr,1]), convex (R2 = [xr,1, xr,2]), and concave

(R3 = [xr,2, xU]), such that X =
⋃

i Ri. First, we note that both gelu(· ) and silu(· ) are twice

differentiable. Beginning with the convex envelope, we note that f is monotonically decreasing

and since xmin > xr,1, f (x) > f (xmin) for all x ∈ R1. As a consequence, there exists a tie point

xcv
m,1 ∈ [xr,1, xmin] satisfying (4.3.6) such that a secant line may be constructed between (xL, f (xL))

and the point (xcv
m,1, f (xcv

m,1)). This secant line is defined by the first case of (4.3.5) and is the

convex envelope of f on R1 and part of R2. Similarly, since xmin < xr,2 and f is monotonically
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increasing on R3, f (x) > f (xmin) for all x ∈ R3. Thus, there exists a tie point xcv
m,2 ∈ [xmin, xr,2]

satisfying (4.3.7), such that a secant line may be constructed between (xcv
m,2, f (xcv

m,2)) and the point

(xU , f (xU)). This secant line is defined by the third case of (4.3.5) and is the convex envelope of f

on R3 and part of R2. For x ∈ [xcv
m,1, x

cv
m,2], f (x) is convex and therefore is trivially its own convex

envelope on this subdomain. Thus, (4.3.5) defines the convex envelope of f on X. Next, we

consider the concave envelope. Since f is monotonically decreasing on [xL, xmin] and

monotonically increasing on [xmin, xU], the concave envelope is defined by the secant line

connecting the endpoints (xL, f (xL)) and (xU , f (xU)), defined by (4.3.8). �

We now proceed to examine the convergence behavior of activation function envelopes and

contrast these with naı̈ve McCormick calculations.

2 0 2

2

1

0

1

2

3

gelu

2 0 2

2

0

2

silu

Function McCormick relaxation Envelope

Figure 4.3.4: Left: The Gaussian error linear unit (gelu(·)) function , the convex/concave relaxations of
x
(
1 + erf

(
x/
√

2
))
/2 computed according to the rules presented in [177] and the convex/concave envelope

of the gelu function are plotted on x ∈ [−3, 3]. Right: The sigmoid-weighted linear unit (silu(·)) function,
the convex/concave relaxations of x/(1 + exp (−x)) computed according to the rules presented in [177] and

the convex/concave envelope of the silu function are plotted on x ∈ [−3, 3].
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4.3.4 Convergence Properties of Convex/Concave Relaxations of Activation
Functions

We now compare the relative performance of naı̈ve McCormick relaxations versus the newly

defined envelopes of the library of activation functions: Softplus, Maxsig, Maxtanh, Softsign,

Sigmoid, Bisigmoid, SiLU, and GELU. Figure 4.3.1, Figure 4.3.2, and Figure 4.3.4 visualize the

relative tightness of McCormick relaxations versus the envelopes. Here, we quantify the

performance of the proposed envelopes versus the naı̈ve McCormick relaxations using two

analyses. First, the relative computational times are measured for constructing convex and

concave relaxations on a domain and evaluating these relaxations and subgradients at a single

point. The second analysis compares the relaxations of prototypical ANNs of varying depth under

a width metric. Relaxations of each activation function have been implemented in the

McCormick.jl [329] subpackage of the author’s optimization package EAGO.jl [327], and is

openly available.

The computational time comparison was conducted using the BenchmarkTools.jl[59]

package in Julia v1.6.2 with the default settings. For each benchmark run, 104 samples were used

with an automatically-generated number of expression evaluations per sample (chosen by the

package for accurate timings). Relaxations of each activation function on the domain X = [−3, 3]

were computed using the implemented envelopes as well as applying the standard McCormick

rules to the algebraic forms of each activation function. This domain was chosen as it encloses the

inflection points of all activation functions considered.

The timing results for calculating envelopes are recorded in Table 4.3.3 as percentages

relative to naı̈ve McCormick relaxations. In most cases, the envelopes are significantly more

computationally expensive to calculate. This is because the tie points xcv
m , x

cc
m must be calculated to

construct the envelopes, which in turn requires the solution of nonlinear algebraic equations.
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Function Softplus Maxsig Maxtanh Softsign Sigmoid SiLU GELU

envelope (µs) 0.172 0.134 23.1 0.919 0.898 1.41 249

naı̈ve (µs) 0.158 0.384 14.9 0.0199 0.221 0.189 135

τ (%) 8.74 -65.2 54.8 4519 306 643 83.9

Table 4.3.3: The costs of calculating convex and concave relaxations and corresponding subgradients of
the considered activation functions are tabulated for the newly defined envelopes and naı̈ve McCormick
relaxations. The absolute CPU times (µ s) and relative times (%) τ are reported. For almost all activation
functions in this table, the envelope calculations are more expensive (and sometimes significantly) due to

the necessity of calculating the tie points.

Softplus and Maxsig are exceptions because they are convex on X, and thus their envelopes are

trivial and less expensive to calculate than naı̈vely applying the McCormick composition rules.

However, the increased CPU time required to compute envelopes is still considered small when

compared to the CPU time requirements for the other subroutines encountered in global

optimization, such as optimization-based bounds tightening, the exact solution of MILPs, and

local solution of nonlinear programs, which are all bottlenecks in the solution of global

optimization problems. Moreover, it is well-known that the use of tighter relaxations accelerates

node fathoming, and therefore, reduces the number of subproblems that must be considered. For

complex nested subexpressions, such as ANNs, the gains achieved may be substantial. We

demonstrate the tightness conferred to the relaxations of ANNs by the use of envelopes using the

illustrative numerical example below.

For the analysis of relaxations of ANNs on an input domain, a simple MLP is generated with

two hidden layers, each with a single type of activation function f (k)(· ) ∈ {gelu(· ), silu(· )}, and a

fully-connected affine layer defining a single output value (i.e., fmlp = a(4) = o(a(1))). Ten neurons

are included in each layer and the weights and bias values were randomly selected from a uniform

distribution between 0 and 1. To simplify the calculations, we set the input variable a(1) to

p ∈ P =
[
−δp, δp

]
and allowed δp to vary by factors of 10 from 10−1 to 10−4. We consider two
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distinct metrics used to assess the tightness of relaxations. First, we consider the maximal

pointwise distance from the convex relaxation to the concave relaxation,

P(P) = maxp∈P

(
f cc
mlp(p) − f cv

mlp(p)
)
, which relates to the pointwise convergence properties of

McCormick relaxations. Secondly, we consider a tightness metric for convex and concave

relaxations,H(P) = diam
([

minp∈P f cv
mlp(p),maxp∈P f cc

mlp(p)
])

, which relates to the Hausdorff

convergence properties of McCormick relaxations as discussed in [203]. We refer the reader to

the original work for a full discussion of the underlying theory that motivates this metric.

The use of the envelopes improves the tightness of the derived relaxations of the MLP over

naı̈ve McCormick relaxations as illustrated in Figure 4.3.5. Under each distance metric, the

relaxations of most activation functions exhibit quadratic convergence; a property required to

avoid the clustering problem in spatial B&B [83, 323]. Further, as expected, the convex and

concave envelopes of the activation functions result in a significant reduction in overestimation of

the relaxations of the MLP. This improvement is most apparent under the P(P) metric. As

previously hypothesized, despite the additional computational cost required to calculate the

envelopes, it is expected that the reduction in overestimation will significantly speed up

convergence of the B&B algorithm for deterministic global optimization of models containing

ANNs.

4.4 Global Optimization of ANNs

Optimization problems with ANN models [264] are formalized in this section. The vector of

input variables is defined as x ∈ X ⊆ Rnx , and the vector of output variables of an ANN is defined

as z ∈ Z ⊂ Rnz . h : X × Z → Rnz represents the general nonlinear network equations governed by

an ANN model. g : X × Z → Rnz represents the inequalities that constrain the feasible region.
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Figure 4.3.5: A comparison of the tightness of the envelopes of activation functions is made against
relaxations derived using the naı̈ve McCormick relaxation approach. Left: pointwise convergence behavior
is illustrated using the P(P) metric and right: the behavior under the relaxation tightness metricH(P), is

shown. Under each metric, the relaxations generated using the envelopes of the activation functions
outperform naı̈ve McCormick relaxations. This comparison is made for (top) characteristic convex,
(middle) convexoconcave, and (bottom) for the newer SiLU and GELU activation functions with

relaxations from Theorem 4.3.1.
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φ : X × Z → R represents the objective function. Generally, a full-space formulation denotes that

the equality constraints governed by a system model are directly embedded. The formulation with

ANNs embedded can be expressed as:

min
x∈X,z∈Z

φ(x, z) (4.4.1)

s.t. h(x, z) = 0

g(x, z) ≤ 0.

As introduced in Section 4.2, in a MLP, the network governing equations h(x, z) = 0 can be

calculated as an explicit input-output form: z = o(x). Thus, the equality constraints can be

eliminated and (4.4.1) can be reformulated to a reduced-space form:

min
x∈X

φ(x, o(x)) (4.4.2)

s.t. g(x, o(x)) ≤ 0.

Reduced-space methods with respect to deterministic global optimization originated in [93],

where details were introduced for a method using a B&B algorithm with only a subset of the

decision variables being branched on. This approach was further generalized for broader classes

of model structures (e.g., [48, 191, 296, 322]). The core idea of a reduced-space method is to treat

the vector of independent input variables x as the only decision variables of the optimization

problem by eliminating the equality constraints and therefore the explicit dependence of the

problem on auxiliary variables through intermediate computation and compositions.

In deterministic global optimization, a variation of the spatial B&B algorithm can be applied

to solve nonconvex problems with formulations of (4.4.1) and (4.4.2) [136, 252, 305]. The B&B
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algorithm iteratively partitions the decision space into successively smaller subdomains and

solves a sequence of upper-bounding and lower-bounding problems on each subdomain. Upper

bounds are typically determined by solving nonconvex optimization problems in subdomains to

either feasibility or local optimality. Lower bounds rely on convex and concave relaxations of the

objective and constraints. As the algorithm proceeds, the best-found bounds are saved for

comparison. By comparing the obtained upper and lower bounds, the algorithm converges to an

ε-optimal global solution in finitely-many iterations, or a certification of infeasibility.

Many global optimizers, such as BARON [253, 305] and ANTIGONE [185], may introduce

auxiliary variables to any of the formulations (4.4.1) when constructing subproblems, resulting in

excessively large dimensionality subproblems with a high time cost due to the curse of

dimensionality. This is especially true for ANN models as they include multiple layers, neurons,

and network equations that inherently results in a large-scale optimization problem. In contrast,

the EAGO [327] and MAiNGO [46] global solvers allow for the construction of relaxations

directly from (4.4.2), which has been shown to reduce the computational complexity of solving

subproblems and dramatically decreases solution time costs on several examples

[48, 93, 148, 151, 152, 264, 300].

4.5 Numerical Experiments

We now illustrate how the use of envelopes described herein leads to a reduction in CPU run

time and allows for a large variety of problems to be solved to deterministic global optimality.

This is done by comparing the methods on a randomly generated benchmark library using the

approach presented by Dolan and Moré [80]. The performance of a solver configuration s is taken

to be the solution time tp,s in CPU seconds (single-threaded) for problem p. We consider the
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performance ratio on problem p by solver s to be the ratio of solver s performance to the best

solver performance in the set:

rp,s =
tp,s

min{tp,s : s ∈ S }
.

The performance profile of solver s on a particular benchmark set depicts the distribution function

of the performance metric, ρs(τ); the probability that a performance ratio rp,s is within a factor

τ ∈ R of the best possible ratio

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ},

where P is the set of problems with np = card(P). A plot comparing rs for each solver

configuration s ∈ S will then illustrate the relative performance. For problems that terminate due

to the specified time limit, the relative gap remaining can be compared to assess solver

performance. The relative gap remaining is given by (U - L)/max(U, L) where U is the upper

bound (best feasible objective value) and L is the lower bound.

As the focus of this chapter is the development of global optimization algorithms—and to

the best of our knowledge, no benchmark library of ANN-embedded global optimization test

problems exists— we choose to utilize a randomly generated library of 100 MLPs. Since the

following analysis is motivated by a desire to compare the computational results between solvers

and relaxations methods, we may conceptualize each random MLP as an ideally-trained MLP for

some arbitrary function that serves to extricate the role of the optimization method from the

confounding effects of surrogate model structure and training methodology. Weights and bias

values are randomly assigned values sampled from a uniform distribution within [−1, 1]. The

number of decision variables participating in the MLP, the number of layers, and the number of
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Attribute Values

Number of Input Variables 2 to 5

Number of Hidden Layers 1 to 4

Number of Neurons per Layer 2 to 5

Table 4.5.1: The range of values for each metaparameter used to generate the instances in the benchmark
set are listed here.

neurons per layer for each instance are chosen randomly from a uniform distribution within the

ranges listed in Table 4.5.1. The objective function considered is simple summation (4.5.1):

φ(x, o(x)) =
∑

i

oi(x). (4.5.1)

The only constraints present in each problem are taken to be the box constraints on the decision

variables, xi, such that xi ∈ [−1, 1] for i = 1, . . . , n.

4.5.1 Implementation

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-1270 v5

3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to a virtual machine

running the Ubuntu 18.04LTS operating system and Julia v1.6.2 [36]. Absolute and relative

convergence tolerances for the B&B algorithm of 10−4 were specified for all example problems

along with a maximum CPU time limit of 15 minutes (900 seconds). The EAGO.jl v0.7.0

package [327] was used to solve each optimization problem. Relaxations based on the envelopes

of each activation function were implemented in the McCormick.jl [329] subpackage of EAGO.jl

and are openly available. Validated interval arithmetic was computed using the package
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IntervalArithmetic.jl [260]. The Intel MKL package (2019 Update 2) [95] was used to perform all

LAPACK [11, 320] and BLAS [40] routines. BARON v21.1.13 [253, 305] and SCIP 7.0.3[313]

were used for performance comparisons. The data used with and generated from the following

numerical examples are openly available in the Git repository established at

https://github.com/PSORLab/RSActivationFunctions along with the corresponding

problem formulations.

4.5.2 Benchmark Results

We now examine the impact of the envelopes on the solution times of a reduced-space global

optimizer for solving deterministic global optimization problems with ANN models. The

algebraic expressions for all activation functions considered in this study can be found in Tables

4.3.1 and 4.3.2, and Equations 4.3.3 and 4.3.4. Computational experiments were then conducted

in which global optimization problems were solved for the benchmark suite of ANNs. To

compare the performance of using the developed library of envelopes, the optimization problems

were solved using both naı̈ve McCormick relaxations (EAGO - McCormick) as well as the

envelopes (EAGO - Envelope). These configurations are then compared to a state-of-the-art

open-source solver, SCIP [313], and the state of the art commercial solver BARON [253, 305].

This comparison was made as SCIP, like EAGO, is open-source but implements the auxiliary

variable method to constructing polyhedral relaxations used to compute lower bounds and refine

the problem domain [313]. As SCIP does not support nonlinear objectives directly, a variable q

was introduced and the problem was recast via the epigraph reformulation:
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min
x∈X,q∈Q

q (4.5.2)

s.t.
∑

i

oi(x) ≤ q.

We note that EAGO performs this reformulation automatically as a preprocessing step. MLPs

corresponding to sigmoid, softplus, silu, and gelu activation were considered. As illustrated by

the performance profile plot depicted in Figure 4.5.1, EAGO generally outperforms SCIP on this

limited benchmark set and the use of the activation function envelopes developed herein further

improves computational performance, as evidenced by the the increased number of problem

solved within the 15 minute limit as detailed in Table 4.5.2. As shown in Tables 4.5.3 and 4.5.4,

the use of envelopes in EAGO categorically increases the number of problems solved within

15-minute for each activation function and further decreases the 15 minutes average relative gap

remaining for unsolved problems. Moreover, the shifted geometric mean solve times shown in

Table 4.5.5 are reduced by using the envelopes presented herein.

While EAGO outperforms BARON with the new envelope functions for sigmoid and silu,

we see significantly higher shifted geometric mean solve times for EAGO than BARON for

softplus. While BARON is not an open-source solver, we may speculate on the potential reasons.

We note that the median solve time for softplus problems is 0.2 CPU seconds, indicating that the

geometric mean solve time is highly influenced by high solution time instances. The softplus

activation function (also termed a “logistic loss” function ) is known to have an epigraph that may

be represented by the exponential cone and a disciplined convex programming approach used in

BARON’s presolve phase indicates that softplus(aTx + b) is itself convex [113, 149]. Taken

together, these two factors indicate that BARON’s presolve convexity detection may allow it to

derive tighter bounds automatically. This highlights the potential that improved automatic
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Solver Solved Unsolved

EAGO (Envelope) 280 (93.3%) 20 (6.7%)

EAGO (Naı̈ve McCormick) 260 (86.7%) 40 (13.3%)

SCIP 240 (80.0%) 60 (20.0%)

BARON 273 (91.0%) 27 (9.0%)

Table 4.5.2: The number of problems solved within 15 minutes by solver configuration in the benchmark
set, are tabulated. Only sigmoid, softplus, and silu functions are used in these calculations for fair

comparison since gelu is unsupported by both SCIP and BARON. EAGO and the developed envelopes
outperform all other configurations in total problems solved.

convexity detection may have to further mitigate the overestimation of activation function

relaxations as compared to the naı̈ve McCormick approach.

We note that for a select number of poorly scaled problems, either BARON, EAGO, or SCIP

may incorrectly terminate with a certificate of infeasibility. This may be attributed to the rounding

errors encountered when computing polyhedral relaxations from convex and concave relaxations

and their associated subgradients. EAGO currently makes use of a heuristic approach to ensure

only numerically-safe affine relaxations are added to subproblems. BARON v21.1.13 makes use

of a state-of-the-art adaptive approach to resolve numerical difficulties. In either case, neither of

these approaches are sufficient to fully resolve all numerical issues occurring in the benchmark

set. Accordingly, additional work on resolving these numerical issues remains an active area of

research. However, in spite of this observation, we can see that the use of envelopes in this

context leads to categorically improved computational performance relative to the naı̈ve

McCormick calculations.
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Activation Function EAGO (Envelope) EAGO (McCormick) SCIP BARON

sigmoid 96 (4) 94 (4) 91 (5) 94 (4)

softplus 93 (7) 88 (7) 85 (8) 92 (7)

silu 91 (0) 78 (0) 64 (1) 87 (0)

gelu 76 (0) 59 (0) N/A N/A

Table 4.5.3: The number of benchmark problems solved within the 15-minute time limit are listed by
solver configuration and activation function. The number of problems returning an infeasible result are

given in parentheses for each condition. EAGO and the developed envelopes outperform all other
configurations in total problems solved for each activation function.

EAGO (Envelope) EAGO (McCormick) SCIP BARON

sigmoid N/A 2.4 × 10−3 5.2 × 101 2.5 × 10−2

softplus N/A 1.0 × 10−1 7.3 × 101 8.9 × 101

silu 1.7 × 10−1 9.9 × 100 2.1 × 101 4.2 × 101

gelu 9.5 × 10−1 3.3 × 101 N/A N/A

Table 4.5.4: The average relative gap remaining for any problems not solved within the 15-minute time
limit are listed by solver configuration and activation function. For each activation function, EAGO with

the developed envelopes have significantly smaller relative gaps at the 15-minute limit.
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Figure 4.5.1: As illustrated by the performance profiles shown for each solver configuration, computing
relaxations using the envelopes leads to a substantial decrease in CPU solution time for a typical problem
within the benchmark set when compared to either SCIP or the naı̈ve McCormick approach implemented
in EAGO. The EAGO (envelope) calculations (blue-solid) also outperform BARON for many activation

function types, which is evident from the superior performance for τ < 5.

4.6 Concluding Remarks

In this chapter, the convex/concave envelopes were developed for a variety of activation functions

commonly used in ANN surrogate models. These included an identification of several activation

functions that have not been previously implemented in existing libraries of relaxations and lack a

general factorable form. Moreover, the McCormick arithmetic approach was shown to lead to

weak relaxations for several common activation functions that have factorable representations.

Particular attention was paid to the development of envelopes for the novel SiLU and GELU
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EAGO (Envelope) EAGO (McCormick) SCIP BARON

sigmoid 1.09 4.16 6.37 1.54

softplus 2.43 7.19 7.69 1.36

silu 5.04 36.77 43.11 9.58

gelu 19.62 82.69 N/A N/A

Table 4.5.5: The shifted geometric mean of solve times t1, t2, . . . , tn defined by (
∏n

i=1(ti + s))1/n − s are
given by solver configuration and activation function with s = 1. EAGO using the envelopes developed

herein outperforms naı̈ve McCormick and SCIP on all activation functions examined. However, BARON
outperforms all configurations examined for the Softplus function

activation functions that do not belong in standard convexity classes (convex, convexoconcave,

etc.) that have been previously addressed. Further, we demonstrated that the use of these

envelopes provides desirable Hausdorff and pointwise convergence properties for the relaxations

of the underlying activation functions.

Lastly, we generated benchmark results with respect to the performance of these relaxations

when incorporated into a reduced-space global optimization routine using the EAGO optimizer.

Using a randomly generated benchmark set of MLPs, we illustrated that the use of envelopes

leads to a substantial reduction in run time and this reduced-space approach outperforms the

full-space approach implemented in SCIP, leading to solving 13.3% more benchmark problems

solved within the specified time limit. Moreover, this approach is comparable to the performance

of the state-of-the-art commercial solver BARON. As such, the use of these envelopes provides a

unilateral improvement when computing relaxations using a reduced-space optimization

approach.
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Chapter 5

Improved Relaxation of Composite Bilinear
Form

Deterministic nonconvex optimization solvers generate convex relaxations of nonconvex

functions by making use of underlying factorable representations. One approach introduces

auxiliary variables assigned to each factor that lifts the problem into a higher-dimensional

decision space. In contrast, a generalized McCormick relaxation approach offers the significant

advantage of constructing relaxations in the lower dimensionality space of the original problem

without introducing auxiliary variables, often referred to as a “reduced-space” approach. Recent

contributions illustrated how additional nontrivial inequality constraints may be used in factorable

programming to tighten relaxations of the ubiquitous bilinear term. In this chapter, we exploit an

analogous representation of McCormick relaxations and factorable programming to formulate

tighter relaxations in the original decision space using a priori information. We develop the

underlying theory to generate necessarily tighter reduced-space McCormick relaxations when a

priori convex/concave relaxations of intermediate bilinear terms are known. We then show how

these rules can be applied in a McCormick relaxation scheme via three different approaches: the
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use of a McCormick relaxations coupled to affine arithmetic, the propagation of affine relaxations

implied by subgradients, and an enumerative approach which directly uses relaxations of each

factor. In the first example, we illustrate how these results may be applied in advanced

manufacturing context to optimize supply chain quality metrics. New approaches are then

demonstrated using the EAGO.jl optimizer on several of examples taken from the literature. We

find that each method considered leads to an improvement to CPU time used during optimizing

via the branch-and-bound algorithm.

5.1 Introduction

Deterministic global optimization is required by many routine process systems engineering (PSE)

tasks due to the nonconvexity of underlying process models. Moreover, PSE applications

routinely require the strict satisfaction of safety-critical and quality-critical constraints while

accounting for complex physical processes and equipment design specifications. As a

consequence, a certificate of global optimality is highly preferred or potentially required when

such design decisions are made. This is particularly true when the consequences of a system

failure are catastrophic as is the case of nuclear reactor design wherein the cooling apparatus

should be sized to accommodate a wide process window by accounting for a true worst-case

scenario. In this case, knowledge of worst-case performance obtained by a globally optimal

solution provides an assurance that accounting for a particularly concerning case does not.

There are two main approaches to solving global optimization problems deterministically.

The approach which is predominant in state-of-the-art commercial solvers is that of the auxilliary

variable method, which exploits a factorable representation of the underlying problem by

subsequently lifting the problem into a higher-dimensional space [136]. This higher-dimensional
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representation simplifies the construction of convex/concave relaxations required to form

subproblems, facilitates potentially tighter relaxations of mixed-integer expressions [185], and

simplifies a number of important heuristics. For some problems, the introduction of these

additional variables may be detrimental as the aforementioned advantages are counterbalanced by

the need to branch on more variables and the well-known the ”curse of dimensionality” which is

intrinsic to solving this NP-hard class of problems. An alternative to this is relaxations may be

computed in the original functional space.

The eponymous McCormick relaxation of the bilinear function was first introduced in [177].

This relaxation bounds the bilinear term using a series of affine inequalities; an approach used by

many commercially available optimizers, such as ANTIGONE [185] and BARON [254], and the

nonconvex solver options of CPLEX [66] and Gurobi [117]. In the past decade, a significant

effort has been made to further generalize this approach to arbitrary nonlinear functions. An

operator-overloading scheme was detailed by Mitsos et al. [191] for constructing

McCormick-based relaxations of functions described by a class of direct algorithms (i.e.,

algorithms with the number of steps/iterations known a priori). Variations on this manner of

constructing relaxations in the original problem space through the application of composition

rules have been termed McCormick relaxations; a convention we adopt herein to maintain

consistency with the existing body of literature.

The use of McCormick relaxations [191] potentially offer a significant advantage by

allowing for relaxations to be constructed in the reduced-dimension space of the original problem.

Recent developments have dramatically broadened the scope and performance of this approach.

Scott et al. [271] developed a generalized McCormick relaxation theory for constructing convex

and concave composite relaxations using arbitrary convex and concave functions. Tighter

composition rules for multiplication and maximum operators were presented in [207, 310].
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Methods of generating relaxations of implicit functions were developed by Stuber et al. [300].

Wechsung et al. [324] developed a method of propagating McCormick relaxations backwards on

a directed acyclic graph (DAG) representation of a problem. A method for tightening interval

bounds was described in [206]. Alternative differentiable relaxations were developed and

introduced in [151, 152].

Moreover, the theoretical underpinnings of McCormick relaxation performance have been

recently explored. These works have illustrated that under mild assumptions, these McCormick

relaxations exhibit quadratic point-wise convergence [44, 203, 205]; which may mitigate the

clustering issues common to branch-and-bound algorithms[146]. Each of these aforementioned

advances has been demonstrated to led to improved performance of global optimizers for

specialized classes of simulation-inspired problems.

The benefits of using these reduced-space McCormick relaxation method have been found to

span a number of application areas. These include the deterministic global optimization of process

flowsheets [48, 49, 50], nonconvex optimization problems with embedded surrogate models (such

as artificial neural networks and Gaussian process models) [264, 265, 266, 267, 330], dynamic

optimization [270, 328], and reachability analysis [256]. Recently, McCormick relaxations have

been implemented in two open-source global optimizers: the EAGO [327] toolkit in Julia [36],

and the MAiNGO [46] software written in C++. In each implementation, the overloading

approach taken to construct relaxations leads to the classic dependency problem inherent to

set-valued arithmetics; wherein, the progressive application of bounding rules leads to expansive

departures from convex/concave envelopes of complicated expressions.

To ameliorate the dependency problem, several efforts have been made to expand the typical

library of intrinsic functions to include envelopes for common functional forms. These efforts

include the development of relaxations of componentwise-convex functions by [208], the
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construction of novel relaxations of cost and thermodynamic functions in [209], relaxations of

activation functions appearing on artificial neural networks [330] and Gaussian processes [267],

as well as special relaxations for the logarithmic mean temperature difference (LMTD) and its

reciprocal [187, 204].

One expression of particular interest is that of the bilinear term. This term has been

examined extensively within the deterministic nonconvex optimization community. Specialized

approaches to treating these problem classes have led to numerous optimizers that initially

focused on quadratic (and polynomial) problem formulations and were often subsequently

extended to a number of preeminent optimizers including BARON [305], ANTIGONE [185],

Gurobi [117], GLOMIQO [184], MOSEK [195], and ALPINE [198, 199].

Within the McCormick relaxations literature, the treatment of the composite bilinear term

(w(z) = f (z)g(z) on z ∈ Z) has been limited to three key theoretical contributions. The first is

provided in the work of [191] that details composite relaxations derived from McCormick’s

original inequalities [177]. The second contribution lies in the analysis of multivariate composite

relaxations [207, 310] that yield potentially tighter relaxations of the bilinear term under mild

assumptions. Lastly, a differentiable relaxation of the bilinear term was detailed in [151, 152].

In the large context of full-space factorable programming, numerous approaches exist to

address the bilinear relaxation, which do not yet directly have an analog in reduced-space

factorable programming. One such notable work is that of He and Tawarmalani [127], which

details how bilinear relaxations of composite factors can be improved when a priori

over/underestimators (as well as associated bounds of said over/underestimators) of the bilinear

factors, are available. A lifting approach is necessary when this strategy is applied withing

factorable programming, which the authors resolve using a fast combinatorial algorithm to solve a

simpler separation problem.
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In this chapter, we build upon the recent work of He and Tawarmalani [127], detailing how

reduced-space McCormick relaxations may be improved when a priori knowledge of intermediate

convex/concave relaxations exists. We do this by generalizing the results of [127] for factorable

programming to composite relaxations. Our approach does not rely on knowledge of a priori

over/underestimators, rather, only relaxations of these functions (which may be simpler to obtain

for intermediate terms) are required for computation. We subsequently discuss three algorithms

used to refine convex/concave relaxations of functions for a broad class of nonlinear functions in

the original problem space. In Section 5.2, we develop composition rules for generating

convex/concave relaxations of intermediate bilinear terms when a priori relaxations are known

along with associated subgradients. Subsequently, in Section 5.3, we detail three algorithms that

employ this novel theoretical contribution to generate tight relaxations in the reduced-dimension

problem space. We then explore a case study in Section 5.5 which demonstrate how improved

composite bilinear relaxations may be applied for quality chain design. In Section 5.4, we provide

numerical examples detailing the utility of each algorithm developed herein. Lastly, we conclude

in Section 5.7 by highlighting potential areas for future research.

5.2 Tight Composite Relaxations of Bilinear Terms

We now describe two major theoretical contributions. First, we develop Theorem 5.2.1 as an

extension of Theorem 1 and Theorem 5 from [127], to compute convex and concave relaxations

of the bilinear term using convex and concave relaxations of its arguments and a priori convex

underestimators. This new result differs from the preliminary work of [127] in that the

introduction of auxiliary variables for intermediate bilinear terms, into the optimization

formulation, is not required. Secondly, a corresponding approach that makes use of a priori
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concave relaxations is detailed in Theorem 5.2.2. We combine these results in Theorem 5.2.3 to

obtain tight relaxations of bilinear terms exploiting both a priori convex and concave relaxations,

simultaneously. Finally, we develop subgradients of these relaxations in Theorem 5.2.6.

Theorem 5.2.1. Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corresponding

convex/convex relaxations xcv
1 , x

cc
1 , x

cv
2 , x

cc
2 : Z → R on Z. Let u1, u2 : Z ⊂ Rn → R be

underestimators of x1, x2 on Z, respectively, with associated (a1, a2) ∈ X1 × X2 ∈ IR
2 such that

xL
1 ≤ u1(·) ≤ min{x1(·), a1} and xL

2 ≤ u2(·) ≤ min{x2(·), a2}. Further, suppose that convex

relaxations of u1 and u2 on Z are available. Let the following intermediate factors be defined as:

α1(·) = min{a2xcv
1 (·), a2xcc

1 (·)}, β1(·) = max{xU
1 xcv

2 (·), xU
1 xcc

2 (·)},

α2(·) = min{a1xcv
2 (·), a1xcc

2 (·)}, β2(·) = max{a2xcv
2 (·), a2xcc

2 (·)},

α3(·) = min{xL
2 xcv

1 (·), xL
2 xcc

1 (·)}, β3(·) = max{a1xcv
2 (·), a1xcc

2 (·)},

α4(·) = min{xL
1 xcv

2 (·), xL
1 xcc

2 (·)}, β4(·) = max{xU
2 xcv

2 (·), xU
2 xcc

2 (·)},

ρ1 = a1a2 − a1xU
2 − a2xU

1 .

Then, the following expressions:

wcv
1 (·) = (xU

2 − a2)ucv
1 (·) + (xU

1 − a1)ucv
2 (·) + α1(·) + α2(·) + ρ1 (5.2.1)

wcv
2 (·) = (xU

2 − xL
2 )ucv

1 (·) + α2(·) + α3(·) − a1xU
2 (5.2.2)

wcv
3 (·) = (xU

1 − xL
1 )ucv

2 (·) + α1(·) + α4(·) − a2xU
1 (5.2.3)

wcv
4 (·) = (a2 − xL

2 )ucv
1 (·) + (a1 − xL

1 )ucv
2 (·) + α3(·) + α4(·) − a1a2 (5.2.4)
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are convex relaxations of w(·) = x1(·)x2(·) on Z. Moreover, the following expressions:

wcc
1 (·) = (xL

2 − a2)ucv
1 (·) + (a1 − xU

1 )ucv
2 (·) + β1(·) + β2(·) − a1xL

2 (5.2.5)

wcc
2 (·) = (xL

2 − xU
2 )ucv

1 (·) + β3(·) + β4(·) − a1xL
2 (5.2.6)

wcc
3 (·) = (xL

1 − xU
1 )ucv

2 (·) + β1(·) + β2(·) − a2xL
1 (5.2.7)

wcc
4 (·) = (a2 − xU

2 )ucv
1 (·) + (xL

1 − a1)ucv
2 (·) + β3(·) + β4(·) − a2xL

1 , (5.2.8)

are concave relaxations of w(·) = x1(·)x2(·) on Z. Lastly, the expressions

wcv
×,1(·) = max

{
wcv

1 (·), wcv
2 (·), wcv

3 (·), wcv
4 (·)

}
(5.2.9)

wcc
×,1(·) = min

{
wcc

1 (·), wcc
2 (·), wcc

3 (·), wcc
4 (·)

}
(5.2.10)

are convex and concave relaxations of w(·) = x1(·)x2(·) on Z, respectively.

Proof. He and Tawarmalani [127] define nontrival underestimators and overestimators of

w∗(ξ1, ξ2) = ξ1ξ2 on X1 × X2 derived from a priori underestimators and overestimators by the

planes ei(ξ1, ξ2) = 0 and ri(ξ1, ξ2) = 0 for i = 2, . . . 5, respectively. As we have xi : Z → Xi for

i ∈ 1, 2, we may write Ei(·) = ei(x1(·), x2(·)) = 0 and Ri(·) = ri(x1(·), x2(·)) = 0 for i = 2, . . . 5,
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respectively, which are under/overestimators of w(·) on Z. Namely,

E2(·) = (xU
2 − a2)u1(·) + (xU

1 − a1)u2(·) + a2x1(·) + a1x2(·) + ρ1 (5.2.11)

E3(·) = (xU
2 − xL

2 )u1(·) + xL
2 x1(·) + a1x2(·) − a1xU

2 (5.2.12)

E4(·) = (xU
1 − xL

1 )u2(·) + a2x1(·) + xL
1 x2(·) − a2xU

1 (5.2.13)

E5(·) = (a2 − xL
2 )u1(·) + (a1 − xL

1 )u2(·) + xL
2 x1(·) + xL

1 x2(·) − a1a2 (5.2.14)

R2(·) = (xL
2 − a2)u1(·) + (a1 − xU

1 )u2(·) + a2x1(·) + xU
1 x2(·) − a1xL

2 (5.2.15)

R3(·) = (xL
2 − xU

2 )u1(·) + a1x2(·) + xU
2 x1(·) − a1xL

2 (5.2.16)

R4(·) = (xL
1 − xU

1 )u2(·) + a2x1(·) + xU
1 x2(·) − a2xL

1 (5.2.17)

R5(·) = (a2 − xU
2 )u1(·) + (xL

1 − a1)u2(·) + xU
2 x1(·) + a1x2(·) − a2xL

1 (5.2.18)

First, we note that the terms (xU
i − ai), (xU

i − xL
i ), and (ai − xL

i ) are positive for i ∈ {1, 2}. As

such, convex relaxations of the αui(·) terms in (5.2.11)-(5.2.14) on Z are given by αucv
i (·), for

i ∈ {1, 2}. Next we note that (ai − xU
i ), (xL

i − xU
i ), and (xL

i − ai) are negative by construction for

i ∈ {1, 2}. As such, concave relaxations of the αui(·) terms in (5.2.15)-(5.2.18) on Z are given by

αucv
i (·), for i ∈ {1, 2}. The remaining coefficients of x1(·) and x2(·) may be either positive or

negative, and as such, a convex relaxation of αxi(·) on Z is given by min
{
αxcv

i (·), αxcc
i (·)

}
, whereas

a concave relaxation of αxi(·) on Z is given by max
{
αxcv

i (·), αxcc
i (·)

}
for i ∈ {1, 2}. The sum of

convex functions is convex, and the sum of concave functions is concave. The pointwise

maximum of convex underestimators is convex while the pointwise minimum of concave

overestimators is concave. Thus, the expressions (5.2.1)-(5.2.10) hold. �

The above relaxations are derived from Theorems 1 and 5 presented in [127]. This requires

knowledge of valid underestimating functions u1 and u2. When propagating relaxations through a

composite function, it is quite common to have a priori knowledge of valid overestimating
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functions as well. The following Theorem 5.2.2 is a new result that adapts the results of Theorem

5.2.1 to improve relaxations using valid overestimating functions known a priori.

Theorem 5.2.2. Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corresponding

convex/convex relaxations xcv
1 , x

cc
1 , x

cv
2 , x

cc
2 : Z → R on Z. Let o1, o2 : Z → R be overestimators of

x1, x2 on Z, respectively, with associated (b1, b2) ∈ X1 × X2 ∈ IR
2 such that

xU
1 ≥ o1(·) ≥ max{x1(·), b1} and xU

2 ≥ o2(·) ≥ max{x2(·), b2}. Further, suppose that concave

relaxations of o1 and o2 on Z are available. Let the following intermediate factors be defined as

δ1(·) = min{b2xcv
1 (·), b2xcc

1 (·)}, γ1(·) = max{b2xcv
1 (·), b2xcc

1 (·)},

δ2(·) = min{b1xcv
2 (·), b1xcc

2 (·)}, γ2(·) = max{xL
1 xcv

2 (·), xL
1 xcc

2 (·)},

δ3(·) = min{xU
2 xcv

1 (·), xU
2 xcc

1 (·)}, γ3(·) = max{b1xcv
2 (·), b1xcc

2 (·)},

δ4(·) = min{xU
1 xcv

2 (·), xU
1 xcc

2 (·)}, γ4(·) = max{xL
2 xcv

1 (·), xL
2 xcc

1 (·)},

ρ2 = b1b2 − b1xL
2 − b2xL

1 .

Then, the following expressions:

wcv
5 (·) = (xL

2 − b2)occ
1 (·) + (xL

1 − b1)occ
2 (·) + δ1(·) + δ2(·) + ρ2 (5.2.19)

wcv
6 (·) = (xL

2 − xU
2 )occ

1 (·) + δ2(·) + δ3(·) − b1xL
2 (5.2.20)

wcv
7 (·) = (xL

1 − xU
1 )occ

2 (·) + δ1(·) + δ4(·) − b2xL
1 (5.2.21)

wcv
8 (·) = (b2 − xU

2 )occ
1 (·) + (b1 − xU

1 )occ
2 (·) + δ3(·) + δ4(·) − b1b2 (5.2.22)
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are convex relaxations of w(·) = x1(·)x2(·) on Z. Moreover, the following expressions:

wcc
5 (·) = (xU

2 − b2)occ
1 (·) + (b1 − xL

1 )occ
2 (·) + γ1(·) + γ2(·) − b1xU

2 (5.2.23)

wcc
6 (·) = (xU

2 − xL
2 )occ

1 (·) + γ3(·) + γ4(·) − xU
2 b1 (5.2.24)

wcc
7 (·) = (xU

1 − xL
1 )occ

2 (·) + γ1(·) + γ2(·) − xU
1 b2 (5.2.25)

wcc
8 (·) = (b2 − xL

2 )occ
1 (·) + (xU

1 − b1)occ
2 (·) + γ3(·) + γ4(·) − xU

1 b2 (5.2.26)

are concave relaxations of w(·) = x1(·)x2(·) on Z. Lastly, the expressions

wcv
×,2(·) = max

{
wcv

5 (·), wcv
6 (·), wcv

7 (·), wcv
8 (·)

}
wcc
×,2(·) = min

{
wcc

5 (·), wcc
6 (·), wcc

7 (·), wcc
8 (·)

}
are convex and concave relaxations of w(·) = x1(·)x2(·) on Z, respectively.

Proof. First, we note that x1(·)x2(·) = y1(·)y2(·), with y1(·) = −x1(·) and y2(·) = −x2(·). Define

(a1, a2) ∈ Y1 × Y2, where Yi = −Xi and ai = −bi. Let u1, u2 : Z → R be underestimators of y1, y2 on

Z, respectively, defined as ui(·) = −oi(·). Then, we see that yL
1 ≤ u1(·) ≤ min{y1(·), a1}, y1(·) ≤ yU

1

and yL
2 ≤ u2(·) ≤ min{y2(·), a2}, y2(·) ≤ yU

2 . Similarly, we have yL
i ≤ ui(·) ≤ min{yi(·), ai} and

−yL
i ≥ −ui(·) ≥ −min{yi(·), ai}, and therefore

xU
i ≥ −ui(·) ≥ −min{−xi(·), ai} = max{xi(·),−ai} = max{xi(·), bi}. It remains to show that the

facets defined by Equations (5.2.19) - (5.2.26) are valid. Again inspecting the underestimators
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and overestimators of Theorems 1 and 5 of [127], we have

E2(·) = (yU
2 − a2)u1(·) + (yU

1 − a1)u2(·) + a2y1(·) + a1y2(·) + a1a2 − a1y
U
2 − y

U
1 a2

E3(·) = (yU
2 − y

L
2)u1(·) + yL

2y1(·) + a1y2(·) − a1y
U
2

E4(·) = (yU
1 − y

L
1)u2(·) + a2y1(·) + yL

1y2(·) − a2y
U
1

E5(·) = (a2 − y
L
2)u1(·) + (a1 − y

L
1)u2(·) + yL

2y1(·) + yL
1y2(·) − a1a2

R2(·) = (yL
2 − a2)u1(·) + (a1 − y

U
1 )u2(·) + a2y1(·) + yU

1 y2(·) − a1y
L
2

R3(·) = (yL
2 − y

U
2 )u1(·) + a1y2(·) + yU

2 y1(·) − a1y
L
2

R4(·) = (yL
1 − y

U
1 )u2(·) + a2y1(·) + yU

1 y2(·) − a2y
L
1

R5(·) = (a2 − y
U
2 )u1(·) + (yL

1 − a1)u2(·) + yU
2 y1(·) + a1y2(·) − a2y

L
1 .

Substituting in bi for ai, xi(·) for yi(·), and oi(·) for ui(·), we get

E2(·) = (xL
2 − b2)o1(·) + (xL

1 − b1)o2(·) + b2x1(·) + b1x2(·) + b1b2 − b1xL
2 − b2xL

1

E3(·) = (xL
2 − xU

2 )o1(·) + xU
2 x1(·) + b1x2(·) − b1xL

2

E4(·) = (xL
1 − xU

1 )o2(·) + b2x1(·) + xU
1 x2(·) − b2xL

1

E5(·) = (b2 − xU
2 )o1(·) + (b1 − xU

1 )o2(·) + xU
2 x1(·) + xU

1 x2(·) − b1b2

R2(·) = (xU
2 − b2)o1(·) + (b1 − xL

1 )o2(·) + b2x1(·) + xL
1 x2(·) − b1xU

2

R3(·) = (xU
2 − xL

2 )o1(·) + b1x2(·) + xL
2 x1(·) − b1xU

2

R4(·) = (xU
1 − xL

1 )o2(·) + b2x1(·) + xL
1 x2(·) − b2xU

1

R5(·) = (b2 − xL
2 )o1(·) + (xU

1 − b1)o2(·) + xL
2 x1(·) + b1x2(·) − b2xU

1 .

We then construct convex and concave relaxations of these expressions in a manner similar to that

for Theorem 5.2.1. �
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Theorem 5.2.3. Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corresponding

convex/convex relaxations xcv
1 , x

cc
1 , x

cv
2 , x

cc
2 : Z → R on Z. Let u1, u2 : Z ⊂ Rn → R be

underestimators and o1, o2 : Z → R be overestimators of x1, x2 on Z, respectively. Let

(a1, a2), (b1, b2) ∈ X1 × X2 ∈ IR
2 such that xL

1 ≤ u1(·) ≤ min{x1(·), a1}, max{x1(·), b1} ≤ o1(·) ≤ xU
1 ,

xL
2 ≤ u2(·) ≤ min{x2(·), a2}, and max{x2(·), b2} ≤ o2(·) ≤ xU

2 . Then, convex and concave relaxations

of w(·) = x1(·)x2(·) are, respectively, given by

wcv(·) = max
{
wcv
×,0(·), wcv

×,1(·), wcv
×,2(·), wL

}
,

wcc(·) = min
{
wcc
×,0(·), wcc

×,1(·), wcc
×,2(·), wU

}
.

Proof. This result follows directly from the application of Proposition 2.3.7, Theorem 5.2.1, and

Theorem 5.2.2, and basic convexity/concavity properties. �

As discussed in [127], the relaxations from Theorem 5.2.1 and Theorem 5.2.2 reduce to the form

given by Proposition 2.3.7 if ai, bi ∈
{
xL

i , x
U
i

}
for i ∈ {1, 2}.

Proposition 5.2.4. Define x1 : Z ⊂ Rn → X1 ⊂ R and x2 : Z ⊂ Rn → X2 ⊂ R with corresponding

convex/convex relaxations xcv
1 , x

cc
1 , x

cv
2 , x

cc
2 : Z → R on Z. Let u1, u2 : Z ⊂ Rn → R be

underestimators of x1 and x2 on Z, respectively. Let (a1, a2) ∈ X1 × X2 ∈ IR
2 such that

xL
1 ≤ ucv

1 (·) ≤ u1(·) ≤ min{x1(·), a1}, xL
2 ≤ ucv

2 (·) ≤ u2(·) ≤ min{x2(·), a2}. Further, suppose that

ai ∈
{
xL

i , x
U
i

}
for i ∈ {1, 2} then the convex relaxations presented in Theorems 5.2.1 and 5.2.2

reduce to wcv
×,0(·).

Proof. We proceed by enumeration of the possible cases to illustrate this result. For brevity, we

observe that the relaxations obtained from w(·) = x1(·)x2(·) and w(·) = x2(·)x1(·) are equivalent.

Moreover, w(·) = x1(·)x2(·) can be written as w(·) = (−x1(·))(−x2(·)) and in doing so negates and
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swaps the positions of the upper and lower interval bounds. Then without loss of generality, we

restrict our consideration to two cases: (a1, a2) = (xL
1 , x

L
2 ) and (a1, a2) = (xL

1 , x
U
2 ).

For (a1, a2) = (xL
1 , x

L
2 ), we have ucv

i = ui = xL
i which is identical to the (a1, a2) = (xL

1 , x
L
2 ) case of He

and Tawarmalani [127] (Theorem 1). For (a1, a2) = (xL
1 , x

U
2 ), we have

E2(·) = (xU
1 − xL

1 )u2(·) + xU
2 x1(·) + xL

1 x2(·) − xU
1 xU

2

E3(·) = xL
2 x1(·) + xL

1 x2(·) − xL
2 xL

1

with E4(·) = E2(·) and E5(·) = E3(·) = E1(·). Moreover, (xU
1 − xL

1 )u2(·) ≤ (xU
1 − xL

1 )x2(·) and

E2(·) ≤ xU
1 x2(·) + xU

2 x1(·) − xU
1 xU

2 = E6(·). �

Clearly, nontrivial lower and upper bounds must be available if relaxations of this form are

expected to improve on the McCormick composition approach. In the next section, we propose

three computational approaches to achieving this. In the remainder of this section, we detail

associated rules for propagating valid subgradients of the convex/concave relaxations that are

necessary when forming affine relaxations or as an input to nonsmooth convex NLP solvers.

Definition 5.2.5 (ω,Ω). Let a ∈ R, σ1,σ2 ∈ R
n. The functions ω,Ω : R × Rn × Rn → Rn are

defined as

ω(a,σ1,σ2) ≡


aσ1 a ≥ 0,

aσ2 otherwise,

Ω(a,σ1,σ2) ≡


aσ1 a ≤ 0,

aσ2 otherwise.
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Theorem 5.2.6. Let Z ⊂ Rn be a nonempty convex set and w, x1, x2 : Z → R such that

w(· ) = x1(· )x2(· ) with corresponding convex/convex relaxations xcv
1 , x

cc
1 , x

cv
2 , x

cc
2 : Z → R on Z. Let

u1, u2 : Z ⊂ Rn → R be underestimators and o1, o2 : Z → R be overestimators of x1, x2 on Z,

respectively. Let (a1, a2), (b1, b2) ∈ X1 × X2 ∈ IR
2 such that xL

1 ≤ u1(·) ≤ min{x1(·), a1},

max{x1(·), b1} ≤ o1(·) ≤ xU
1 , xL

2 ≤ u2(·) ≤ min{x2(·), a2}, and max{x2(·), b2} ≤ o2(·) ≤ xU
2 . Let wcv

i (·)

and wcc
i (·) on Z be defined as in Theorems 5.2.1 and 5.2.2. Then, subgradients scv

wi
(z̄), scc

wi
(z̄) of wcv

i

and wcc
i on Z, evaluated at z̄ ∈ Z, for i = 1, . . . , 8, are given by

scv
w1

(z̄) = (xU
2 − a2)scv

u1
(z̄) + (xU

1 − a1)scv
u2

(z̄) + ω
(
a2, scv

x1
(z̄), scc

x1
(z̄)

)
+ ω

(
a1, scv

x2
(z̄), scc

x2
(z̄)

)
,

scv
w2

(z̄) = (xU
2 − xL

2 )scv
u1

(z̄) + ω
(
xL

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ ω
(
a1, scv

x2
(z̄), scc

x2
(z̄)

)
,

scv
w3

(z̄) = (xU
1 − xL

1 )scv
u2

(z̄) + ω
(
a2, scv

x1
(z̄), scv

x1
(z̄)

)
+ ω

(
xL

1 , s
cv
x2

(z̄), scv
x2

(z̄)
)
,

scv
w4

(z̄) = (a2 − xL
2 )scv

u1
(z̄) + (a1 − xL

1 )scv
u2

(z̄) + ω
(
xL

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ ω
(
xL

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scv
w5

(z̄) = (xL
2 − b2)scc

o1
(z̄) + (xL

1 − b1)scc
o2

(z̄) + ω
(
b2, scv

x1
(z̄), scc

x1
(z̄)

)
+ ω

(
xU

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scv
w6

(z̄) = (xL
2 − xU

2 )scc
o1

(z̄) + ω
(
xU

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ ω
(
b1, scv

x2
(z̄), scc

x2
(z̄)

)
,

scv
w7

(z̄) = (xL
1 − xU

1 )scc
o2

(z̄) + ω
(
b2, scv

x1
(z̄), scc

x1
(z̄)

)
+ ω

(
xU

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scv
w8

(z̄) = (b2 − xU
2 )scc

o1
(z̄) + (b1 − xU

1 )scc
o2

(z̄) + ω
(
xU

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ ω
(
xU

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,
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and

scc
w1

(z̄) = (xL
2 − a2)scv

u1
(z̄) + (a1 − xU

1 )scv
u2

(z̄) + Ω
(
a2, xcv

1 (z̄), xcc
1 (z̄)

)
+ Ω

(
xU

1 , x
cv
2 (z̄), xcc

2 (z̄)
)
,

scc
w2

(z̄) = (xL
2 − xU

2 )scv
u1

(z̄) + Ω
(
a1, scv

x2
(z̄), scc

x2
(z̄)

)
+ Ω

(
xU

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)
,

scc
w3

(z̄) = (xL
1 − xU

1 )scv
u2

(z̄) + Ω
(
a2, scv

x1
(z̄), scc

x1
(z̄)

)
+ Ω

(
xU

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scc
w4

(z̄) = (a2 − xU
2 )scv

u1
(z̄) + (xL

1 − a1)scv
u2

(z̄) + Ω
(
xU

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ Ω
(
a1, scv

x2
(z̄), scc

x2
(z̄)

)
,

scc
w5

(z̄) = (xU
2 − b2)scc

o1
(z̄) + (b1 − xL

1 )scc
o2

(z̄) + Ω
(
b2, scv

x1
(z̄), scc

x1
(z̄)

)
+ Ω

(
xL

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scc
w6

(z̄) = (xU
2 − xL

2 )scc
o1

(z̄) + Ω
(
b1, scv

x2
(z̄), scc

x2
(z̄)

)
+ Ω

(
xL

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)
,

scc
w7

(z̄) = (xU
1 − xL

1 )scc
o2

(z̄) + Ω
(
b2, scv

x1
(z̄), scc

x1
(z̄)

)
+ Ω

(
xL

1 , s
cv
x2

(z̄), scc
x2

(z̄)
)
,

scc
w8

(z̄) = (b2 − xL
2 )scc

o1
(z̄) + (xU

1 − b1)scc
o2

(z̄) + Ω
(
xL

2 , s
cv
x1

(z̄), scc
x1

(z̄)
)

+ Ω
(
b1, scv

x2
(z̄), scc

x2
(z̄)

)
,

where scv
x1

, scc
x1

, scv
x2

, scc
x2

, scv
u1

, scc
u1

, scv
u2

, scc
u2

, scv
o1

, scc
o1

, scv
o2

, scc
o2

are, respectively, subgradients of xcv
1 , xcc

1 , xcv
2 ,

xcc
2 ,ucv

1 , ucc
1 , ucv

2 , ucc
2 , ocv

1 , occ
1 , ocv

2 , occ
2 on Z. Further, let qmax ∈ argmax

{
wcv

1 (z̄), . . . , wcv
8 (z̄), wU

}
and

qmin ∈ argmin
{
wcc

1 (z̄), . . . , wcc
8 (z̄), wL

}
, then

scv
w (z̄) =


scv
wqmin

(z̄), if 1 ≤ qmin ≤ 8,

0, otherwise,
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and

scc
w (z̄) =


scc
wqmax

(z̄), if 1 ≤ qmax ≤ 8,

0, otherwise.

Proof. The proof follows from the construction of the relaxations in Theorem 5.2.3. The

functions defined in Definition 5.2.5 select subgradients that respect the rules for scalar

multiplication of relaxations [191]. For each equation (5.2.19) - (5.2.26), the subgradients are

then summed using the standard additive relationship [133, 191]. �

5.3 Computability of Tight Composite Relaxations of Bilinear
Terms

In this section, we describe three approaches to compute the requisite a priori relaxations in a

reduced-space McCormick relaxation context.

5.3.1 Composite Convex/Concave Relaxations based on
Over/Underestimators

For low-dimensional expressions, we may exploit the properties of convex/concave functions. We

may use convex/concave relaxations of the arguments of the bilinear expression as the valid a

priori relaxations. As illustrated in a subsequent example, if the a1, a2, b1, b2 values are selected

judiciously, then this may lead to nontrivial affine relaxations and, in turn, improved relaxations of

the bilinear term in reduced-space. The constants a1 and a2 can be selected by maximizing convex

functions xcv
1 (·) and xcv

2 (·) on a convex polyhedron P = conv(ν1, ν2, . . . , νk). It is well-known that
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the extremal value will be achieved at a vertex, i.e., maxz∈P f (z) = maxi f (νi). Similarly, we may

compute b1, b2 by minimizing the concave functions xcc
1 (·) and xcc

2 (·). This is in itself a series of

nonconvex optimization problems. While specialized algorithms may exist to address this class of

problems (e.g., [30, 101]), it is reasonable to conclude that this approach is too computationally

expensive to be practical, as two nonsmooth concave optimization problems must be solved for

each intermediate bilinear term in order to evaluate relaxations of the nonlinear function.

In the case of low-dimensional expressions, we may simply compute convex/concave

relaxations at each vertex and solve each optimization problem via enumeration. In many cases,

the evaluation of relaxations is often much less time intensive than other routines, such as solving

a series of linear programs in optimization-based bounds tightening [234], or solving a nonlinear

program in order to furnish valid upper bounds within a branch-and-bound routine for

deterministic global optimization [136]. One may intuit that this method will yield a tighter

relaxation of the bilinear term than using a weaker a priori relaxation. As it turns out, this is in

fact false, and the use of a weaker a priori relaxation may lead to tighter relaxations of the

bilinear term owing to the dependence of the relaxations of Theorem 5.2.3 on a1, a2, b1, and b2. A

counterexample is provided in Example 1 and illustrated by in Figure 5.3.1. In the subsequent

section, a less computationally expensive method is developed that may provide comparably tight

bounds.

5.3.2 Improved Relaxations Using Subgradient-Based
Under/Overestimators

In addition to the composite bilinear relaxation theory outlined herein, the use of a priori

relaxations to refine the relaxations of a univariate factor can be accomplished via Proposition

5.3.1.
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Proposition 5.3.1. Let vk : Z ⊂ Rn → V be a cumulative mapping. Let vcv
k,a/v

cc
k,a be convex/concave

relaxations of vk on Z, and suppose we have additional convex/concave relaxations vcv
k,b/v

cc
k,b of vk

on Z. Then,

vcv
k (·) := max

{
vcv

k,a(·), vcv
k,b(·)

}
, (5.3.1)

vcc
k (·) := min

{
vcc

k,a(·), vcc
k,b(·)

}
, (5.3.2)

are convex and concave relaxations of vk on Z, respectively.

The subgradients associated with Proposition 5.3.1 are then simply the subgradients of the

argument returned. In Proposition 5.3.2, we note that, provided with convex/concave relaxations

of a factor at a particular point z̄ ∈ Z along with associated subgradients, then new affine

relaxations may be derived.

Proposition 5.3.2. Let vk : Z ⊂ Rn → V be a cumulative mapping. Let vcv
k /vcc

k be convex/concave

relaxations of vk on Z and their respective subgradients scv
vk

, scc
vk

computed at z = z̄ ∈ Z. The

functions ξ, ζ : Z → R are the affine relaxations of the convex and concave relaxations of vk on Z,

respectively:

ξ(z) ≡ vcv
k (z̄) + scv

vk
(z̄)T(z − z̄) (5.3.3)

ζ(z) ≡ vcc
k (z̄) + scc

vk
(z̄)T(z − z̄). (5.3.4)

As noted in [206], interval extensions of (5.3.3) and (5.3.4) can be used to derive valid upper

bounds of the factor and subsequently refine the associated interval bounds. These same interval

extensions define valid a1, a2, b1, b2 terms for the affine relaxations and allow for the direct use of

Theorem 5.2.3 to improve the convex/concave relaxations as well.
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The following numerical example is provided to illustrate the results of applying Theorems

5.2.3 and 5.2.6 using the methods of Sections 5.3.1 and 5.3.2 versus the previously established

McCormick-based approaches.

Example 1. For illustrative purposes, consider the function f : Z → R, with Z = [−0.5, 1],

defined as

f (z) =
(
z − z2

) (
z3 − exp(z)

)
. (5.3.5)

As illustrated in Figure 5.3.1, a priori affine relaxations constructed at a single reference

point z̄ = 0.25 yield similar relaxations to the direct enumeration approach. Note that in this

example, neither approach yields relaxations that are a strict improvement over the other for the

entire domain.

5.3.3 Affine Arithmetic

Affine arithmetic has been proposed as an alternative set-valued arithmetic to interval arithmetic.

In this approach, an affine representation of a function is constructed. In the case of affine

functions, this representation is exact. For nonlinear terms, the enclosure is linearized and some

overestimation necessarily occurs. Two common choices of linearization techniques include

minimizing the range of the enclosure or minimizing the maximum width of enclosure

(Chebyshev). In the original description of affine arithmetic [64] and the later introductory papers

[72, 295], computations began with an affine representation of each term and an additional noise

term was added for every nonlinear term introduced. This approach introduced significant

computational complexity. In this work, we will instead address the use of two simplified forms

of affine arithmetic that were proposed by [179]. In each of these forms, the intermediate term
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Figure 5.3.1: Relaxations of f (z) = (z − z2)(z3 − exp(z)) ( ) on Z = [−0.5, 1], are constructed using
existing approaches and compared with approaches developed in this chapter. Relaxations computed using
a priori subgradients at z̄ = 0.25 ( ) lead to tighter relaxations than the use of standard ( ), and multivariate

( ) McCormick relaxation strategies. This occurs when subgradients are (top-left) only used as a priori
relaxations, as well as when the subgradients are (top-right) used to refine the interval bounds of each

factor [206]. (bottom-left) The a priori relaxations constructed by computing the maxima and minima of
the operands’ relaxations ( ) also lead to an improvement. (bottom-right) Minimal subsequent

improvement is noted when using the subgradient method to refine interval bounds of each factor [206].
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vk(z) ∈ ṽ0 +
∑n

i=1 ṽiz + Rk is represented by a linear function such that with a small remainder Rk

that encloses truncation error [216]. The first affine form, AF1, uses a single component to

represent the Rk truncation error.

Definition 5.3.3. Affine Form of Type AF1

v̂ = v0 +

n∑
i=1

viεi + vn+1ε± (5.3.6)

where εi ∈ [−1, 1], vi ∈ R for i = 1, . . . n + 1, ε± ∈ [−1, 1], and v0 ∈ R

In addition to this form, [179] discussed the use of a second affine form, AF2, which uses

separate components to represent positive truncation error, negative truncation error, and

mixed-sign truncation error. This distinction leads to tighter enclosures of certain operators.

Definition 5.3.4. Affine Form of Type AF2

v̂ = v0 +

n∑
i=1

viεi + vn+1ε± + vn+2ε+ + vn+3ε− (5.3.7)

where vi ∈ R for i = 1, . . . n + 3, εi ∈ [−1, 1] for i = 1, . . . n, ε± ∈ [−1, 1], ε+ ∈ [0, 1], ε− ∈ [−1, 0],

and v0 ∈ R

Either of the preceding affine forms implies the existence of affine relaxations as described by

[222]. We proceed to state the corresponding relaxations in Propositions 5.3.5 (adapted from

[222, Prop. 2]) and 5.3.6 (adapted from [222, Prop. 3]). Next, note that components εi are simply

nondimensionalized decision variables and can be converted to the dimensional form using the

following equation

εi = (zi −mid(Zi))/rad(Zi) (5.3.8)
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Proposition 5.3.5 (Affine Relaxation from AF1 Form). Let v : Z → V be a factor with an affine

representation detailed in Definition 5.3.3. Then vcv
AF1, v

cc
AF1 : Z → V are affine relaxations of v at

z ∈ Z.

vcv
AF1(z) = v0 +

n∑
i=1

viεi − vn+1 (5.3.9)

vcc
AF1(z) = v0 +

n∑
i=1

viεi + vn+1 (5.3.10)

Proposition 5.3.6 (Affine Relaxation from AF2 Form). Let v : Z → V be a factor with an affine

representation detailed in 5.3.4 then vcv
AF2, v

cc
AF2 : Z → V are affine relaxations of v at z ∈ Z.

vcv
AF2(z) = v0 +

n∑
i=1

viεi − vn+1 − vn+2 − vn+3 (5.3.11)

vcc
AF2(z) = v0 +

n∑
i=1

viεi + vn+1 + vn+2 + vn+3 (5.3.12)

The extrema of (5.3.9), (5.3.10), (5.3.11), and (5.3.12) on Z can then readily be computed

via natural intervals extensions. We note that this operation is no more complicated than

converting the affine representation to an interval form. As illustrated in Example 2, the use of

apriori information propagated through affine forms may yield tighter relaxations than simply

using interval bounds calculated via affine arithmetic.

Example 2. Consider the function f : X × Y → R on the domain X × Y = [0.1, 1.9]2, defined as

z = f (x, y) = (x2 − x)(y2 − y), (5.3.13)

We compute convex and concave relaxations of this function using four distinct approaches: (1)

standard McCormick arithmetic, (2) affine arithmetic of style AF1, (3) composite relaxations
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Figure 5.3.2: The function z = (x2 − x)(y2 − y) ( ) along with the corresponding convex and concave
relaxations of ( ) on X × Y = [0.1, 1.9] are presented. The McCormick relaxations approach (top-left) is
contrasted to relaxations implied by affine arithmetic (AF1, top-right). The use of composite relaxations

formed by intersecting affine enclosures with McCormick relaxations (bottom-left) is compared the
relaxations implied by the use of apriori bounds per Theorems 5.2.1 - 5.2.3 (bottom-right).

taken by intersecting relaxations derived using (1) & (2) using standard multiplication rules, and

(4) composite relaxations generate using (3) were the relaxations of the bilinear operator are

computed using Theorems 5.2.1 - 5.2.3. The results illustrated in Figure 5.3.2. It is clear that the
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relaxations computing using (3) outperform both (1) & (2) and (4) further tightens the relaxations

obtained by (3).

5.4 Benchmark Results

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-1270 v5

3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to a virtual machine

running the Ubuntu 18.04LTS operating system and Julia v1.6 [36]. Absolute and relative

convergence tolerances for the B&B algorithm of 10−4 were specified for all example problems,

unless otherwise noted. The EAGO.jl package [327] was used to solve each optimization

problem. Relaxations of intrinsic functions have been implemented in the McCormick.jl [329]

subpackage of EAGO.jl and is openly available. BARON v21.1.13 [253, 305] was used for

performance comparisons. The Intel MKL (2019 Update 2) [95] was used to perform all

LAPACK [11, 320] and BLAS [40] routines. The data used with and generated from the

following numerical examples are openly available in the following Git repository

https://github.com/PSORLab/RSBilinear along with the corresponding problem

formulations. Let EAGO denote the use of relaxation-based a priori relaxations for nonlinear

terms, EAGO Sub denote the use of subgradient-based a priori relaxations, and EAGO Aff

denote the use of affine-arithmetic and associated a priori relaxations. A randomly generated

benchmark library adapted from Example 5 of He work[127] was used to assess the performance

of each approach. Each instances takes the form given by 5.4.1
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min
x
〈c, x〉 + Q ◦ Y

s.t. x ∈ [−1, 1]n,

y = (x2
1 − x1, x3

1 − x1, x4
1 − x1, . . . , x2

n − xn, x3
n − xn, x4

n − xn),

Y = yT y (5.4.1)

where ◦ denotes the entry-wise product, Q ∈ Rn,n is a strictly upper triangular matrix with density

of nonzero elements in the upper triangular section given by ν. The c ∈ Rn vector is in [−512,−2].

A set of 200 instances with randomly determined ν ∈ [0.3, 0.5, 0.7] and n ∈ [10, 15, 20] was then

generated and solved for each solver configuration. A 5 minute (300 second) CPU time limit was

enforced for each instance. Solver performance was assessed using the shifted geometric mean

time. A performance profile was generated for comparison using the methodology of Dolan and

Moré [80]. The performance of a solver configuration s is set to the solution time tp,s in CPU

seconds (single-threaded) for problem p. The performance ratio on problem p by solver s is then

the ratio of solver s performance to the best solver performance in the set:

rp,s =
tp,s

min{tp,s : s ∈ S }
.

This performance profile of solver s on a benchmark set depicts the distribution function of the

performance metric, ρs(τ); which is the probability that a performance ratio rp,s is within τ ∈ R of

the best possible ratio

ρs(τ) =
1
np

size{p ∈ P : rp,s ≤ τ},
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where P is the set of problems with np = card(P). A plot comparing rs for each configuration

s ∈ S then illustrates the relative performance.

First, we note that based on the performance data available in Tables 5.4.1 to 5.4.2 and

Figure 5.4.1 all versions of EAGO significantly under-perform BARON in this benchmark. This

result is to be expected as the benchmark set is a polynomial optimization problem which may be

reformulated as a higher dimensional nonconvex quadratic program. Provided that this

reformulation occurs BARON may implement a number of specialized approaches

[20, 21, 223, 224, 340] which currently have no analog for reduced-space optimization. However,

as we discussed previously these approaches cannot be readily applied to reduced-space

applications in which the problem does not have a factorable representation.

Next, we observe that the EAGO Sub reduces the shifted geometric mean run time relative

to EAGO by a factor of 3 increasing the number of problems solved within 5 minutes by 23.5%

as illustrated by the Tables 5.4.1 to 5.4.2. Interestingly, EAGO Aff actually increases the mean

solve time relative to EAGO as the increased time spent performing Affine Arithmetic

calculations offsets any potential benefit from reducing over-estimation that occurs in the relaxed

problem. As subgradients are already calculated when computing relaxations in EAGO the use of

subgradients to tighten the composite relaxation of the bilinear term in EAGO Sub does not

substantially increase calculation time.

5.5 Case Study: Process Optimization Through Sequential
Response Surface Methodology (RSM)

The response surface model (RSM) are one of the most common statistical models used in

industrial applications [73]. Models of this form consist of simple quadratic function which

157



Solver Configuration Solved Unsolved

BARON 200 (100.0%) 0 (0.0%)

EAGO 136 (68.0%) 64 (32.0%)

EAGO Aff 127 (63.5%) 73 (36.5%)

EAGO Sub 183 (91.5%) 17 (8.5%)

Table 5.4.1: The number of problems solved within 5 minutes by solver configuration in the benchmark set
are tabulated.

Figure 5.4.1: As illustrated by the performance profiles, computing relaxations using the apriori relaxation
based on subgradients leads to a substantial decrease in CPU solution time for a typical problem within the
benchmark set when compared the naı̈ve McCormick approach implemented in EAGO. The horizontal line

plot for BARON indicates that it uniformly provides substantially faster run times.
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Solver Configuration τ δrel

BARON 0.69 N/A

EAGO 40.7 3.8 × 10−2

EAGO Aff 52.4 4.6 × 10−2

EAGO Sub 13.7 1.2 × 10−2

Table 5.4.2: The shifted geometric mean, τ, of solve times t1, t2, . . . , tn defined by τ = (
∏n

i=1(ti + s))1/n − s
are given by solver configuration with s = 1 along with the average relative gap remaining for any

problems not solved within the 5-minute time limit. For problems that terminate due to the specified time
limit, the relative gap remaining can be compared to assess solver performance. The relative gap remaining
is given by δrel = (—U | −—L|)/max(—U |,—L|) where —U | is the upper bound (best feasible objective

value) and —L| is the lower bound.

approximates an underlying function:

y = a + cT x + 1
2xT Qx (5.5.1)

These models are particularly appealing when first-principle process models are highly complex

but variation in process outputs with respect to control variables behave in a predictable manner.

Applications of RSMs span a wide range with examples including machining via abrasive

waterjet turning [338], Nd:YAG laser drilling [241], electron beam welding [196] plasma spray

coating [228], and diffusion bonding of alloys [240]. While these models are ubiquitous, the use

of these models in optimal design problems readily leads to nonconvex problem formulations due

to the presence of bilinear terms. One particularly interesting area of application for RSMs lies in

the quality chain design of multistage manufacturing systems [128]. Here we revisit the

numerical example which was previously addressed in [128] using local and stochastic methods.

We will show that this model form may readily be addressed using reduced-space global

optimization and solved to a certificate of global optimality using a simplified set of RSM models
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generating from the original data provided in [128]. The manufacturing process consists of an

initial shaft machining (termed stage 1) in which the output diameter (y(1)
1 ), output roundness

(y(1)
2 ), and (y(1)

3 ) process time are determined by feed rate (x1), and cut depth (x2) and input

roundness (c1) of the shaft bought from a supplier. This step is followed by a rough machining

process (stage 2) wherein rougher rate (x3), the part diameter, and machine type (z1, z2) determine

the output diameter (y(2)
1 ) and process time (y(2)

2 ). The process concludes with finish machining

(stage 3) in which finish rate (x4) is adjusted to determine final diameter (y(3)
1 ) and process time

(y(3)
2 ). We consider the case in which a nominal input diameter of 12 is sourced from the supplier.

Machine operating parameters and a nominal roundness specification may then be varied to

specify the process. Each process step is relates inputs and operating parameters to outputs by

means of a response-surface model shown below:

ŷ(1)
1 (x) = 3.55 + 0.27c1 + 0.58c2 + 60.6x2 − 2.8c1x2 − 2.3c2x2 (5.5.2)

ŷ(2)
2 (x, z) = 126586.5 − 21466.8ŷ(1)

1 (x) + 520.43x3 + 56.29z1 + 315.95z2

− 43.72x3ŷ(1)
1 (x) + 3.74x32 + 910.1ŷ(1)

1 (x)2

− 30.6ŷ(1)
1 (x)z1 − 173.17ŷ(1)

1 (x)z2 (5.5.3)

ŷ(3)
1 (x, z) = 9.16 + 0.092x3 + 0.73x4 + 0.64x3x4 − 0.49x2

4 − 0.13x4ŷ
(2)
2 (x, z)

+ 0.0019ŷ(2)
2 (x, z)2 + 0.018ŷ(2)

2 (x, z) (5.5.4)

The original work concerned itself principally with minimizing the variation in y(3). We

instead consider the problem of identifying a nominal process in which value of y(3) which is close

to the desired value of v = 5. This is motivated by balancing a maximal process capability index

(CpK) with respect to the final diameter setpoint and the desire for just-in-time completion of the
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Figure 5.5.1: An illustration of the three stage machining process consisting of (1) initial shaft machining
process, (2) followed by one of three roughing processes, and processed in a final (3) surface finishing step.

process. As such, the design decision may be formulated as the following optimization problem:

f ∗ = min
x∈X,z∈Z

(
ŷ(3)

1 (x, z) − v
)2

s.t. z1 + z2 ≤ 1, (5.5.5)

where x ∈ X = [7, 10] × [0.1, 0.3] × [−1.078, 1.078] × [−1.078, 1.078], and C = [0.001, 0.03].

We then proceed to solve this problem in EAGO as well as using relaxation-based a priori

relaxations for nonlinear terms (EAGO + Relax), subgradient-based a priori relaxations (EAGO

+ Sub), and an affine arithmetic a priori relaxation (EAGO + Aff). A solve time of 26.3 seconds

is required for EAGO to furnish a solution that is feasible in the original problem while a longer

solver time of 47.6 seconds is required for the (EAGO + Aff) method. The relaxation-based a

priori relaxations for nonlinear terms (EAGO + Relax) leads to a slightly faster run time of 25.5

seconds while (EAGO + Sub) yields a significantly faster run time of 7.1 seconds.
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5.6 Case Study: Kinetic Parameter Estimation

The apriori relaxation methods presented here can readily be applied to dynamic optimization

problems as well. We demonstrate this using an adaption of a kinetic parameter estimation

problem [191]. The reaction mechanism is described by the initial value problem:

dxA

dt
= k1xZ xY − cO2(k2 f + k3 f )xA +

k2 f

K2
xD +

k3 f

K3
xB − k5x2

A

dxB

dt
= cO2k3 f xA −

(
k3 f

K3
+ k4

)
xB,

dxZ

dt
= −k1xZ xY

dxD

dt
= cO2k2 f xA −

k2 f

K2
xD,

dxY

dt
= −k1sxZ xY

xA(0) = 0, xB(0) = 0, xD(0) = 0, xY(0) = 0.4, xZ(0) = 140

where x j is the concentration of species j ∈ {A, B,D,Y,Z} and the constants are given by T = 273,

K2 = 46 exp(6500/T − 18), K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 = 1.2 × 10−3, and

cO2 = 2 × 10−3. A least squares fit is sought to fit available intensity and time data which exhibit a

known dependency on the concentration, that is, I = xA + 2
21 xB + 2

21 xD [283]. The reaction rate

constants k2 f ∈ [10, 1200], k3 f ∈ [10, 1200], and k4 ∈ [0.001, 40] are the decision variables

p = (k2 f , k3 f , k4).

We consider an explicit Euler discretization of the problem [191] for simplicity sake. A

semi-explicit approach is used in which the relaxations of state variables in the ODE, x, are

computed. A discretization consisting of 50 steps is sufficient for a high-degree of accuracy for

this problem on the time domain t ∈ [0, 0.5]. The discretized model becomes:
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xi+1
A = xi

A + ∆t
(
k1xi

Y xi
Z − cO2(k2 f + k3 f )xi

A +
k2 f

K2
xi

D +
k3 f

K3
xi

B − k5(xi
A)2

)
xi+1

B = xi
B + ∆t

(
k3 f cO2 xi

A −

(
k3 f

K3
+ k4

)
xi

B

)
xi+1

D = xi
D + ∆t

(
k2 f cO2 xi

A −
k2 f

K2
xi

D

)
xi+1

Y = xi
Y + ∆t

(
−k1sxi

Y xi
Z

)
xi+1

Z = xi
Z + ∆t

(
−k1sxi

Y xi
Z

)
where i = 0, . . . , 49 and ∆t = 0.01. The objective function is then given by

f (p) =

n∑
i=1

(
Ic
i (p) − Id

i

)2
(5.6.1)

where Ic
i are the calculated intensity values at time step i from the model and Id

i are experimental

data. We solve this problem in EAGO as well as using subgradient-based a priori relaxations,

EAGO Sub. The standard EAGO approach solves this problem in 450.0 seconds and 121,881

iterations whereas the EAGO Sub method solves this problem in only 94.5 seconds after 8,905

iterations as evidence from the relative gap convergence plot provided in Figure 5.6.1. This

illustrates how dynamic problems structures that introduce a large number of composite bilinear

terms may benefit substantially from the use of the a priori relaxation approach presented herein.

5.7 Concluding Remarks

A theorem was developed for computing improved relaxations of composite bilinear terms when

relaxations of a priori underestimators and overestimators are available. A corresponding result
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Figure 5.6.1: A log-log plot of relative gap remaining εr = (UBD − LBD)/max(UBD, LBD) by solver
configuration at time, t. EAGO Sub accelerates the rate convergence by a factor of 4.76.

for computing subgradient information was also detailed herein. Three distinct methods by which

this new result may be used within a generalized McCormick relaxation framework were also

described: an enumerative approach with McCormick relaxations, the use of intermediate affine

relaxations define by subgradient expansions and, the use of affine relaxations defined by an affine

arithmetic. A pair of simple examples were presented which illustrate how each method may lead

to improved relaxations. Lastly, each method was incorporated into a version of the EAGO global

optimizer and results from a small test set drawn from the global benchmark library were shown.

In this benchmark set, the subgradient expansion reduced the computational time by a factor of

three compared to the standard approach and each other method presented herein.
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Chapter 6

Global Optimization of Stiff Dynamical
Systems

6.1 Introduction

In this chapter, a deterministic global optimization method is presented, that is of special interest

for nonlinear programming formulations constrained by stiff systems of ordinary differential

equation (ODE) initial value problems (IVPs). The examples arise from dynamic optimization

problems exhibiting both fast and slow transient phenomena commonly encountered in

model-based systems engineering applications. The proposed approach utilizes

unconditionally-stable implicit integration methods to reformulate the ODE-constrained problem

into a nonconvex nonlinear program (NLP) with implicit functions embedded. This problem is

then solved to global optimality in finite time using a spatial B&B framework utilizing

convex/concave relaxations of implicit functions constructed by a method which fully exploits

problem sparsity. The algorithms were implemented in the Julia programming language within
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the EAGO.jl package and demonstrated on five illustrative examples with varying complexity

relevant in process systems engineering. The developed methods enable the guaranteed global

solution of dynamic optimization problems with stiff ODE-IVPs embedded.

Dynamic optimization problems of the form:

φ∗ = min
p∈P⊂Rnp

φ(x(p, t f ),p)

s.t. ẋ(p, t) = f(x(p, t),p, t), ∀t ∈ I = [t0, t f ] (6.1.1)

x(p, t0) = x0(p)

g(x(p, t f ),p) ≤ 0

are of extreme importance to process systems engineers and the broader model-based systems

engineering community as they can be formulated for a variety of systems whose transient

behavior is of particular interest, from optimal control to mechanistic model validation. The first

major complicating detail of the optimization formulation (6.1.1) is that it is constrained by a

system of ODE-IVPs. Therefore, simply verifying a feasible point requires the solution of a

system of ODE-IVPs. The second major complicating detail is that (6.1.1) is a nonconvex

program, in general, and therefore verifying optimality requires deterministic global optimization.

The focus of this chapter is on solving (6.1.1) to guaranteed global optimality (or declaration of

infeasibility). The methods developed in this work are of specific importance when the ODE-IVP

system is stiff.

Methods for solving (6.1.1) rigorously to global optimality rely on the spatial

branch-and-bound (B&B) framework [99, 136] or some variant. The B&B algorithm requires the

ability to calculate rigorous upper and lower bounds on the global optimal solution value. An

upper bound can be calculated by simply evaluating φ(x(· , t f ), · ) at any feasible point. However,
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calculating rigorous lower bounds poses significant challenges as this step requires that rigorous

and accurate global bounds are known or are readily calculable for all variables and functions of

(6.1.1). For standard nonconvex NLPs (i.e., without dynamical systems constraints), rigorous

lower bounds on the optimal solution value are obtained by calculating convex and concave

relaxations of the functions and solving a corresponding convex lower-bounding problem.

Applying this approach to a dynamic optimization problem (6.1.1) requires rigorous bounds and

relaxations of the solution of the parametric ODE-IVPs x(p, t) are calculable which are valid for

all parameter values p ∈ P at every instance in time t ∈ I. Bounding solutions of parametric

ODE-IVPs is still an open and active area of research.

The first rigorous methods for solving (6.1.1) to global optimality were introduced by

Papamichail and Adjiman [229] which utilized the αBB convex relaxations[3, 4], and by Singer

and Barton [282, 283] utilizing McCormick-based relaxations [177]. These approaches

summarily utilized auxiliary ODE-IVP systems based on differential inequalities whose solutions

were theoretically guaranteed to provide rigorous bounds on the set of parametric solutions (i.e.,

the reachable set) of the original ODE-IVP system. This relax-then-discretize approach has been

the basis of much of the advances that followed [269, 270, 272, 276, 278, 284, 287] which have

focused heavily on advancing theory for improving the tightness and computational efficiency of

calculating bounds and relaxations on solutions of parametric ODE-IVPs. In the differential

inequalities approach, implicit integration routines may be employed to solve the auxiliary

ODE-IVP system using either in-house (e.g., GDOC [286]) or state-of-the-art software packages

(e.g., CVODES [274]) [272, 283, 287]. Implicit integration approaches have typically been

chosen as the bounding ODE-IVP systems may themselves be stiff and stepsizes may be chosen

in an adaptive fashion to achieve the specified accuracy for these auxiliary equations. In the case

of CVODES, variable order Adams-Moulton or backward difference formula (BDF) methods are

used by default.
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Within the past 10 years, other theoretical developments have been made which enable the

calculation of rigorous bounds and relaxations of the reachable set using an alternative approach

referred to as discretize-then-relax. This method makes use of a two-step bounding approach to

construct relaxations utilizing an explicit integration scheme. First, valid interval bounds over

each timestep are determined via the application of validated interval Taylor models. In a second

step, relaxations at specific pointwise-in-time values are refined using interval bounds tightening

based on McCormick relaxations [255, 256, 257, 258]. In this approach, the fixed-point interval

inclusion tests for existence and uniqueness of solutions limit stepsizes which can be used. The

ultimate result is a method which provides valid bounds for the entire exact parametric solution

set of the ODE-IVP and at every pointwise-in-time value queried.

An alternative approach to the relax-then-discretize and discretize-then-relax methods

discussed above is the calculation of bounds and relaxations of discrete-time approximations.

Minimal work has been done on constructing rigorous bounds and relaxations of numerical

solutions of parametric ODE-IVPs. This strategy was first demonstrated using McCormick-based

relaxations on a dynamic kinetic parameter estimation problem discretized using the explicit

(forward) Euler scheme [191]. More recently, a discrete-time differential inequalities approach

was developed utilizing the explicit Euler scheme [335]. However, stiff systems present

significant computational and numerical challenges to explicit integration methods as stepsizes

need to be dramatically reduced to avoid spurious oscillations in the solution trajectories, which

in turn dramatically increases the total computational cost of the numerical integration procedure

or causes it to fail as stepsizes become infinitesimally small. Recently, a theory for calculating

relaxations of implicit functions was developed [300] which enabled the calculation of rigorous

relaxations of solutions of parametric linear and nonlinear algebraic systems of equations. These

methods were demonstrated for the first time by solving the dynamic kinetic parameter estimation

problem of Singer [283] and Mitsos et al. [191] to global optimality using the implicit (backward)
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Euler integration scheme [300].

In this work, a new method for rigorously solving nonconvex optimization problems with

stiff ODE-IVP constraints is presented, which extends the initial work of Stuber et al. [300] to

more accurate higher-order numerically-stable implicit integration schemes. The proposed

approach reformulates the dynamic optimization problem (6.1.1) into a nonconvex NLP with

equality constraints that are constructed by applying a numerically-stable implicit integration

scheme to the ODE-IVP system. Our approach differs from discretizing the dynamic problem

(6.1.1) using a chosen integration scheme and solving the resulting NLP via a global optimizer. In

the latter case, many of the resulting NLPs will contain hundreds if not hundreds of thousands of

nonlinear equality constraints with multiple nonlinear terms. Moreover, the discretized problem

must include all the discrete state variables in the decision space.

Due to the curse-of-dimensionality, even the best-in-class commercial global optimizers (e.g.

BARON [254], ANTIGONE [185]) have difficulty solving such high-dimensional problems. In

our reduced-space approach, equality constraints are subsequently eliminated from the final

formulation by utilizing the method of Stuber et al. [300] and embedding within the objective and

inequality constraint functions the state variables as an implicit function of the parameters. This

implicit function is the numerical approximation of the exact parametric solution of the ODE-IVP

system. Further, the theory of bounds and relaxations of implicit functions [300] is employed

within a B&B framework to solve the NLP with implicit functions embedded to guaranteed

global optimality. No assumption is made about the existence of an explicit closed-form solution

of the ODE-IVP system and therefore this approach can be applied to arbitrarily complex

nonlinear models.

This chapter is arranged as follows. In the next section, the mathematical preliminaries and

background are introduced. In the subsequent section, the optimization problem will be
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formulated, which is followed by the presentation of algorithms for calculating relaxations of

implicit functions that are the numerical approximations of parametric solutions of stiff

ODE-IVPs. Lastly, the proposed approach is demonstrated on five relevant numerical examples,

which is followed by a discussion and conclusion section.

6.2 Dynamic Optimization Formulation

In this section, we formalize the dynamic optimization problem within the context of the implicit

function approach detailed in this work. The dynamic optimization problem (6.1.1) is generalized

as:

φ∗ = min
p∈P⊂Rnp

φ(x(p, τ0), x(p, τ1), . . . , x(p, τq), . . . , x(p, τQ),p)

s.t. ẋ(p, t) = f(x(p, t),p, t), ∀t ∈ I = [t0, t f ] (6.2.1)

x(p, t0) = x0(p)

g(x(p, τ0), x(p, τ1), . . . , x(p, τq), . . . , x(p, τQ),p) ≤ 0

where φ : D × D × · · · × D × Π→ R and g : D × · · · × D × · · · × D × Π→ Rng are continuously

differentiable on their domains. The formulation (6.2.1) is the most practical general dynamic

optimization formulation which explicitly accounts for the objective function and inequality

constraints having dependence on specific discrete time points τq with q ∈ {0, 1, . . . ,Q}. Note, the

objective function and constraints don’t necessarily need to reference the same discrete time

points tq but are represented here as such for notational convenience and simplicity.

We consider discretizing the time domain I into K = (t f − t0)/∆t timesteps, where ∆t > 0 is

the stepsize. The differential constraint is then discretized at discrete time points tk with
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k ∈ {0, 1, . . . ,K} where tK = t f , which are potentially distinct from the discrete time points τq.

This can be viewed as a generalization of (6.1.1) to a larger number of discrete points. We assume

that a factorable mapping κ : RnxK → RnxQ exists which computes the elements of {x(p, τq)}Qq=1

from the elements of {x(p, tk)}Kk=1. In many of the cases subsequently addressed, an injective

mapping of elements of {x(p, τq)}Qq=1 into {x(p, tk)}Kk=1 exists. That is to say, the discretization

points τq used to evaluate the objective and inequality constraint functions are simply a subset of

the discretization points tk used to approximate the continuous-time system as a discrete-time

system.

When disparate indexes are desired for discretization and interpolation is used to compute

the remaining state variables. Linear interpolation may be written as a linear combination of two

state variables with nonnegative coefficients as shown in (6.2.2). As a result, the interpolated

relaxation is subject to order 2 interpolation error and the McCormick relaxation is generally

nonexpansive. For tk−1 ≤ τq ≤ tk, the interpolated state variable is given by:

λ :=
τq − tk−1

tk − tk−1
(6.2.2)

x(p, τq) := λx(p, tk) + (1 − λ)x(p, tk−1).

Note that composite relaxation of g and φ can be defined to contain any factorable interpolation

function. As such, we can assume without loss of generality that the problem may be formulated

with respect to only tk discrete time points.

Discretizing the system of ODE-IVPs and applying an implicit integration scheme

effectively reformulates the system of nx ODE-IVPs into a system of nx × K (nonlinear) algebraic

equations. Therefore, (6.2.1) is reformulated from a dynamic optimization problem to a standard
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(nonconvex) NLP as:

φ∗ = min
(ẑ,p)∈Z×P

φ(ẑ,p)

s.t. h(ẑ,p) = 0 (6.2.3)

ẑ0 = x0(p)

g(ẑ,p) ≤ 0

where ẑ ∈ Z ∈ IDk+1 with ẑ = (ẑ0, ẑ1, . . . , ẑK) as the vector of state variables for each discrete time

point tk ∈ {0, . . . ,K} with ẑ0 specified by the initial condition x0(p), and

h : D × · · · × D × P→ RnxK is the system of (nonlinear) algebraic equations formed by applying

the implicit integration scheme. Note, the exact procedure (i.e., integration scheme) employed to

formulate the discretized system h determines the accuracy of the numerical solution of the

system of ODE-IVPs versus the true solution.

Assumption 6.2.1. There exists a unique implicit function zk : P→ D for k = 0, 1, . . . ,K such

that h(z(p),p) = 0 holds for all p ∈ P with z = (x0, z1, z2, . . . , zK).

No discretization scheme can ensure that the above assumption holds for all possible

ODE-IVPs. Failure of a traditional implicit integrator may occur around singular points. Most

integrators make an adaptive choice of stepsizes to ensure that the resulting system of equations is

nonsingular. If a stepsize is selected that is near machine precision, the integrator will typically

throw an error. We will present sufficient conditions to ensure that no singular system is contained

in the domain of interest in the Relaxation Algorithm section. By making use of Assumption
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6.2.1, we can reformulate the discretized problem (6.2.3) into the implicit form as:

φ∗ = min
p∈P

φ(z(p),p)

s.t. g(z(p),p) ≤ 0. (6.2.4)

It is worth noting that the full-space equality-constrained formulation (6.2.3) has

nx × (K + 1) + np decision variables, whereas the reduced-space formulation (6.2.4) has just np.

This reduction in dimensionality does come at the cost of increased computational complexity

associated with the calculation of bounds and relaxations of implicit functions[300]. However, the

benefit of this approach is the dramatically reduced number of timesteps needed to evaluate

numerically (with potentially improved accuracy) the solution of the stiff ODE-IVP system over

explicit integration approaches requiring very small stepsizes for maintaining numerical stability.

It is worth mentioning that the reformulation (6.2.3) is very closely related to that of the

collocation approaches[38, 308]. However, since this work is motivated by solving (6.1.1) to

guaranteed global optimality, the focus moving forward is on providing rigorous bounds on the

states (and the functions that are composed with them), which will be used by the B&B algorithm

for deterministic search. Thus, the implicit formulation (6.2.4) is presented, which is also referred

to as a ”feasible-path method” since the implicit function z(p) (i.e., the discrete-time solution of

the ODE-IVPs) is a feasible point with respect to the equality constraints h evaluated at p ∈ P.

6.3 Relaxation Algorithm

In this section, the methods are developed for calculating convex and concave relaxations of

implicit functions that are numerical solutions of parametric ODE-IVPs (2.4.2). The
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conceptualization of these relaxations is illustrated in Figure 6.3.1. Specifically, in this section we

develop methods for relaxing implicit functions via the relaxation of second-order implicit

numerical integration schemes.

p
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Figure 6.3.1: The implicit function zk(p) is the approximation of the parametric solution to the initial value
problem: ẋ(p, t) = f(x(p, t),p, t) at the discrete time points tk illustrated by the curve segments on the center

surface. For s-step methods, each zk(p) approximates the actual solution x(p, tk) with O(∆ts+1) error, for
each k. The center surface is plotted using the standard approach by connecting each zk(p) using affine

interpolation between adjacent time nodes (black dots) for each p ∈ P. Convex and concave relaxations of
zk on P are illustrated as zcv

k and zcc
k , respectively. Similarly, these surfaces are plotted using affine

interpolation of each discrete-time relaxation of zk on P between adjacent time nodes.

In order to relax solutions of an IVP with high accuracy, multiple different relaxation

approaches must be used concurrently. This is because relaxations of the state variables zk at the

kth timestep depend on the relaxations of the state variables at the previous s timesteps for an

s-step (or s-order for the methods considered herein) parametric implicit linear multistep

(PILMS) method. This is implemented as follows. The state relaxations of z1 are determined by

solving the (nonlinear) algebraic equations formed by an implicit Euler integration step in which

the relaxations of the z0 states take the values of the initial condition x0 (if the initial conditions do

not depend on the parameters p), or they are set equal to the respective relaxations of x0(p) on P
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(known explicitly in a closed form). For the z2 state relaxations, a second-order implicit method is

used with the relaxations of z0 given by initial conditions and the z1 relaxations determined in the

prior step. This continues through to zs after which the defined s-step PILMS method can be used

directly. Any subsequent timestep k > s then makes use of the relaxations of the prior s states.

The analog with real vector-valued PILMS integration schemes is that the s-step implicit

integration approach requires the solution of an nx-dimensional system of algebraic equations at

each timestep. However, for timesteps k > s, we utilize the values calculated for the previous s

states. Thus, the higher-order implicit integration schemes preserve the ”sequential block-solve”

property that only a system of nx equations needs to be solved simultaneously at each timestep,

while also improving accuracy by utilizing previously calculated information.

Note that this method relies on the a priori determination of stepsizes which must be the

same for all values of p ∈ P. As such, choosing the largest stepsize (smallest K) may itself be an

NP-hard problem and the development of an adaptive stepsize selection routine for all values of

p ∈ P is left for future research. This contrasts the differential inequalities approach in which

state-of-the-art integration schemes can be used that determine stepsizes in an adaptive fashion as

a non-parametric ODE-IVP system bounds the solution set for each box Pl ⊂ P.

6.3.1 Numerical Integration of Parametric ODE-IVPs

After obtaining ẑk for k = 1, . . . , s − 1, an s-step PILMS method can be defined generally by the

following formula:

ẑk+s +

s−1∑
i=0

aiẑk+i = ∆t
s∑

j=0

b jf(ẑk+ j,p, tk+ j). (6.3.1)

where the index k + s is the current timestep we’re calculating the states with respect to. For a

fixed value of p, this discretization reduces to its non-parametric version. We will consider two
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generally applicable PILMS methods: the parametric Adams-Moulton (AM) methods and the

backward-difference formula (BDF) methods. For Adams-Moulton methods, as−1 = −1, and

as−2 = · · · = a0 = 0 and the b j coefficients are chosen such that the s-step method has order s. In

contrast, the BDF methods [70] set b j = 0 for every j and determine the remaining coefficients to

achieve an order of s. We can then write the s-step parametric Adams-Moulton method as the

following residual:

ζ s
k(ẑk+s, . . . , ẑk,p) = ẑk+s − ẑk+s−1 − ∆t

s∑
j=0

b jf(ẑk+ j,p, tk+ j) = 0 (6.3.2)

and we can write the s-step parametric BDF method as the following residual:

ξs
k(ẑk+s, . . . , ẑk,p) = ẑk+s +

s−1∑
i=0

aiẑk+i − ∆tbsf(ẑk+s,p, tk+s) = 0 (6.3.3)

where ζ s
k, ξ

s
k : D × · · · × D × P→ D. Note that in the above equations (6.3.2) and (6.3.3), the

values ẑk+i are known for i = 0, . . . , s − 1. Therefore, (6.3.2) and (6.3.3) form a system of nx

algebraic equations with nx unknowns. In order to solve each of these algebraic systems, the

Jacobian matrices of (6.3.2) and (6.3.3) with respect to the ẑk+s variables are required. The

respective Jacobian matrix of either formulation is given below by:

Js
k(ẑk+s,p) = Inx − ∆tbsJx(ẑk+s,p) (6.3.4)

where Inx ∈ R
nx×nx is the identity matrix, Jx is the Jacobian of the right-hand side system f with

respect to the state vector, and the bs values are determined by the method of choice. Note that in

either case, this Jacobian depends only on the state variables of the current block ẑk+s and the

parameter values p.

The following theorem details conditions under which a unique implicit function exists
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satisfying Assumption 6.2.1.

Theorem 6.3.1. Suppose the system has been discretized using an s-step parametric BDF or AM

method. Let b := min(s, k) and θb
k−b(ẑk, ẑk−1, . . . , ẑk−b,p) = 0 for 1 ≤ k ≤ K with θ ∈ {ζ, ξ}. Let

Jvk(X, P) ∈ IRnx×nx be nonsingular (i.e., contains no singular matrices) with X ∈ ID for 1 ≤ v ≤ s

computed from (6.3.4). Suppose for k = 1, . . . ,K there exists (ẑ∗k, ẑ
∗
k−1, . . . , ẑ

∗
k−b,p

∗) ∈ Xb+1 × P

such that θb
k−b(ẑ∗k, ẑ

∗
k−1, . . . , ẑ

∗
k−b,p

∗) = 0. Further, suppose that for every ẑk ∈ X such that

ẑk < int(X), we have θb
k−b(ẑk, ẑk−1 . . . , ẑk−b,p) , 0 for every (ẑk−1 . . . , ẑk−b,p) ∈ Xb × P. Then

Assumption 6.2.1 holds with hk(zk(p),p) = θb
k−b(zk(p), zk−1(p), . . . , zk−b(p),p) = 0 for 1 ≤ k ≤ K.

Proof. This result follows directly from the semilocal implicit function theorem (Thm. 5.1.3 of

Neumaier[219]) applied sequentially to each block of equations k ∈ {1, . . . ,K}. We proceed by

strong induction. For k = 1, note that z0 is a function of p, namely z0 = x0(p), therefore

θ1
0(ẑ1, ẑ0,p) = θ1

0(ẑ1, x0(p),p). Continuous differentiability of ξ1
0 with respect to ẑ1 ∈ X is ensured

directly by the continuous differentiability of f over D × Π × T and Corollary 5.1.5 of

Neumaier[219] is satisfied. By assumption, there exists (ẑ∗1, ẑ
∗
0,p

∗) ∈ X2 × P such that

θ1
0(ẑ∗1, ẑ

∗
0,p

∗) = 0 which may be restated as θ1
0(ẑ∗1, x0(p∗),p∗) = 0. Further, for every ẑ1 ∈ X such

that ẑ1 < int(X), we have θ1
0(ẑ1, x0(p),p) , 0 for all p ∈ P since x0(P) ⊂ D. As such, Theorem

5.1.3 of Neumaier[219] is satisfied with J1
1(X, P) ensuring a unique implicit function

z1(p) ∈ X ∈ ID exists for every p ∈ P satisfying h1(z1(p),p) = θ1
0(z1(p), x0(p),p) = 0.

Now suppose that for 1 < k ≤ K, there exist unique implicit functions

z1(p), z2(p), . . . , zk−1(p) ∈ X ∈ ID for every p ∈ P. Then, we have

θb
k−b(ẑk, ẑk−1, . . . , ẑk−b,p) = θb

k−b(ẑk, zk−1(p), . . . , zk−b(p),p). Continuous differentiability of θb
k−b

with respect to ẑk ∈ X is ensured directly by the continuous differentiability of f over D × Π × T

and Corollary 5.1.5 of Neumaier[219] is satisfied. By assumption, there exists

(ẑ∗k, . . . , ẑ
∗
k−b,p

∗) ∈ Xb+1 × P such that θb
k−b(ẑ∗k, ẑ

∗
k−1, . . . , ẑ

∗
k−b,p

∗) = 0. As a result, there exists
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p∗ ∈ P such that θb
k−b(ẑ∗k, zk−1(p∗), . . . , zk−b(p∗),p∗) = 0. Additionally, for each ẑk ∈ X such that

ẑk < int(X), we have θb
k−b(ẑk, zk−1(p) . . . , zk−b(p),p) , 0 for every p ∈ P and as such Theorem 5.1.3

of Neumaier[219] is satisfied with Js
k(X, P) ensuring existence of a unique implicit function

zk(p) ∈ X ∈ ID for every p ∈ P. This implicit function satisfies

hk(zk(p),p) = θb
k−b(zk(p), zk−1(p) . . . , zk−b(p),p) = 0. This completes the proof by strong

induction. As a consequence, there exists a unique implicit function zk : P→ D for

k = 0, 1, . . . ,K such that h(z(p),p) = 0 holds for all p ∈ P with z = (x0, z1, z2, . . . , zK). �

In addition to the theorem outlined above, parametric interval iterations (e.g., interval

Newton[219], Krawcyzk[154], Hansen-Sengupta[219], etc.) have associated existence and

uniqueness conditions which may be computationally verified at each iteration. As such, these

methods can serve as a useful preprocessing step which may contract the X interval and furnish a

guarantee of existence and uniqueness of an enclosed implicit function solution branch for every

p ∈ P. Further a condition for nonsingularity satisfying Theorem 6.3.1 is given by Theorem 6.3.2

below.

Theorem 6.3.2. Let Zk+s ∈ IX and let Jc ∈ R
nx×nx be nonsingular defined as Jc ≡ mid(J s

k(Zk+s, P))

(i.e., the elementwise midpoint of the interval matrix), and ∆∗ ≡ (J s
k(Zk+s, P))U − Jc (i.e., the

elementwise radius of J s
k). Further, let A ≡ |J−1

c |∆
∗, where |J−1

c | is the elementwise absolute value

of J−1
c , and let λmax = maxi{|λi|} be the magnitude of the extremal eigenvalue(s) of A. If λmax < 1,

then J s
k(Zk+s, P) contains no singular matrices.

Proof. This directly follows from Proposition 4.1.1 in Neumaier[219]. Note that bs is a positive

constant which depends on the method of choice and ∆t > 0 by definition. �

Remark 6.3.1. Theorem 6.3.2 provides a computational test for aiding users in choosing

appropriate discretizations to avoid violating the hypotheses of Theorem 6.3.1 and ensuring
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satisfaction of Assumption 6.2.1.

Second-order PILMS methods considered herein (both the trapezoidal method, i.e., two-step

Adams-Moulton method, and the two-step BDF) exhibit A-stability (unconditional stability)

while first-order methods exhibit absolute A-stability (L-stability) [109, 119]. Higher-order

PILMS methods often exhibit better stability than explicit methods but they do not exhibit

A-stability [119]. However, these methods exhibit O(∆ts+1) local truncation error and the superior

stability of lower-order methods must be balanced against the superior numerical accuracy of

higher-order methods. When used to solve ODE-IVPs, lower-order methods are commonly used

for timesteps involving the initial condition and s-order methods are used once s − 1 preceding

points haven been calculated. Since the focus of this work is on the application to stiff systems,

numerical stability is emphasized when choosing an appropriate implicit integration form.

Therefore, in this chapter we consider only first- and second-order methods which are given by

the residual equations:

ζ2
k(ẑk+2, ẑk+1, ẑk,p) = ẑk+2 − ẑk+1 − (∆t/2) (f(ẑk+2,p, tk+2) + f(ẑk+1, tk+1)) (6.3.5)

ξ1
k(ẑk+1, ẑk,p) = ẑk+1 − ẑk − ∆tf(ẑk+1,p, tk+1) (6.3.6)

ξ2
k(ẑk+2, ẑk+1, ẑk,p) = ẑk+2 −

4
3 ẑk+1 + 1

3 ẑk −
2
3∆tf(ẑk+2,p, tk+2) (6.3.7)

where (6.3.5) is the second-order/two-step parametric Adams-Moulton method (i.e., trapezoidal

method), (6.3.6) is the first-order parametric BDF method (i.e., backward/implicit Euler), and

(6.3.7) is the second-order/two-step parametric BDF method. With respect to the equality

constraints of (6.2.3), the equations given by (6.3.5)-(6.3.7) would form the K blocks of nx
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equations of h. This is expressed formally as:

h(ẑ0, ẑ1, . . . , ẑK ,p) =



ξ1
0(ẑ1, ẑ0,p)

θ2
0(ẑ2, ẑ1, ẑ0,p)

...

θ2
K−2(ẑK , ẑK−1, ẑK−2,p)



= 0 (6.3.8)

where θ ∈ {ξ, ζ}. The reader is reminded that if the parameters p are specified, the number of

unknown variables is nxK since ẑ0 is fully-determined by the initial conditions. From a numerical

algebraic equation-solving perspective, one would not solve h = 0 (i.e., the full nxK-dimensional

system) simultaneously, but instead in a sequential block-solve fashion where the nx-dimensional

system formed by the equations h1 through hnx are solved simultaneously followed by equations

hnx+1 through h2nx , continuing sequentially all the way to the Kth system of equations hnx(K−1)+1

through hnxK .

The computational performance benefit of the sequential block-solve approach is clear as the

full-scale (dense) Newton-Raphson with Gauss-Seidel algorithm exhibits O(K2n2
xκGSκNR) time

complexity with κGS representing the number of Gauss-Seidel iterations and κNR the number of

Newton-Raphson iterations required for convergence. In the worst-case, κGS = Knx, and so a

dense solve would have O(K3n3
xκNR) time complexity. In contrast, a conventional banded solver

would exhibit O(Kn2
xκGSκNR) = O(K2n3

xκNR) time complexity (for strongly-coupled right-hand

side functions). The sequential-block approach outlined here exhibits O(Kn2
xκGSκNR) time

complexity, except κGS = nx in the worst-case. Thus, the sequential-block approach exhibits

O(Kn3
xκNR) worst-case time complexity. Example sparsity patterns of the occurrence matrices
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corresponding to the systems formed for each method with nx = 5 are shown in Figure 6.3.2. The

corresponding directed graph for the considered two-step methods is shown in Figure 6.3.3.

{ { { { { {{ { {k 1k + 2k + k 1k + 2k + k 1k + 2k +

2-Step AM Implicit Euler 2-Step BDF2( )
k

ζ 2( )
k
ξ1( )

k
ξ

Figure 6.3.2: The sparsity patterns of the occurrence matrices of the systems of equations are illustrated for
each of the three implicit integration schemes with nx = 5. The sparsity patterns exhibit the block-diagonal

structure corresponding to the timestep k which is exploited by the numerical equation solver and
relaxation algorithms.
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Figure 6.3.3: The directed graph corresponding to the occurrence matrices in Fig. 6.3.2 for the considered
2-step PILMS methods (with nx = 5, θ ∈ {ξ, ζ}) is depicted illustrating the sequential-block structure

exploited when solving numerically the discretized system and constructing bounds and relaxations of the
implicit functions zk on P.
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6.3.2 Relaxations of Parametric Implicit Linear Multistep Methods

In this section, we present the notation and results for constructing relaxations of implicit

functions via a sequential-block procedure ideal for implicit integration schemes (6.3.5)-(6.3.7),

which will also be extensible to general s-step PILMS methods as in (6.3.1). The first

construction of relaxations and subgradients of implicit functions via an implicit integration form

was demonstrated in Stuber et al.[300]. However, in that work, only the implicit (backward) Euler

scheme (6.3.6) was presented, and higher-order methods such as (6.3.5) and (6.3.7) were not

considered. Further, although that work constructed relaxations in a sequential-block procedure,

the notation was not generalized beyond the newly-developed notation for the standard relaxations

of implicit functions. We begin with the following assumption, which is analogous to Assumption

3.14 in Stuber et al.[300] for ensuring that relaxations of implicit functions are computable.

Assumption 6.3.2. We assume that the following holds:

1. There exists a function z : P→ DK+1 with h(z(p),p) = 0, and an interval X ∈ ID such that

z(P) ⊂ XK+1 and z(p) is unique in XK+1 for all p ∈ P.

2. Derivative information ∇hi, i = 1, . . . , nxK is available and is factorable, say by automatic

differentiation.

3. A matrix Yk ∈ R
nx×nx is known such that Mk = YJ s

k(X, P) satisfies 0 < Mk,ii for all

i ∈ {1, . . . , nx} and for all k, where J s
k(X, P) is an inclusion monotonic interval extension of

Js
k (given by (6.3.4)) on X × P.

Note that for consistency with (6.2.3), Assumption 6.2.1, and (6.3.8), we have defined z to

have nx(K + 1) dimensionality to account for the initial condition z0(p) = x0(p). Theorems 6.3.1

and 6.3.2 together provide a method for determining an appropriate X ∈ ID satisfying
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Assumption 6.3.2.1. Parametric interval methods may be used to automatically compute and

verify an appropriate X interval satisfying Assumption 6.3.2.1 utilizing Theorems 6.3.1 and 6.3.2.

In general, domain specific knowledge is required to furnish a valid initial guess for the interval X

such that Assumption 6.3.2.1 holds. The difficulty of this will vary between applications. In some

cases, for example, it may be sufficient to recognize that mass fractions must be nonnegative and

less than one. In other cases, more specialized knowledge of the system may be required.

To develop the relaxations of the parametric state trajectories, we rely on the construction of

relaxations of parametric solutions of nonlinear algebraic systems formed by the PILMS methods.

Therefore, the core theory relies on the construction of composite relaxations of fixed-point

iterations in a special way such that the computed relaxations are not only valid for the numerical

approximations of parametric solutions of nonlinear algebraic systems, but are valid for the true

solutions themselves. In this work, we will utilize an analog to the Newton-Raphson fixed-point

iteration with Gauss-Seidel for constructing valid relaxations of implicit function solutions of stiff

ODE-IVPs approximated using two-step PILMS methods. This approach is very closely related

to the Hansen-Sengupta interval method [219] for constructing interval bounds of solutions of

nonlinear algebraic systems. The development of this approach starts with the parametric mean

value theorem [300].

The parametric mean value theorem applied to the jth dimension of the full system of

equations results in the following equation:

∇xh j(y j(p),p)T(zk(p) − γ(p)) = −h j(γ(p),p), j = (k − 1)nx + 1, . . . , knx (6.3.9)

where γ : P→ D and y j : P→ D satisfies y j(p) = λ(p)zk(p) + (1 − λ(p))γ(p) for all p ∈ P for

some λ : P→ (0, 1). In a somewhat similar way, the construction of relaxations of implicit

functions as solutions of nonlinear algebraic systems is computed as composite relaxations of the
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system of equations formed by the application of the parametric mean value theorem to hk. To

form this system of equations, we must first define Mk (and Bk) matrix-valued functions. The Mk

(and Bk) matrix-valued functions exist by differentiability of hk and the parametric mean value

theorem for parametric multivariate vector-valued functions (see Lemma 3.15 of Stuber

et al.[300]).

Definition 6.3.3 (Mk,Bk). The matrix-valued functions Mk : P→ Mk and

Bk : X × · · · × X × P→ Mk, with k ∈ {1, . . . ,K} corresponding to each timestep, are defined as

Mk(· ) = Bk(y(k−1)nx+1(· ), y(k−1)nx+2(· ), . . . , yknx(· ), · )

≡ Yk



∇xh(k−1)nx+1(y(k−1)nx+1(· ), · )T

∇xh(k−1)nx+2(y(k−1)nx+2(· ), · )T

...

∇xhknx(yknx(· ), · )T



. (6.3.10)

Using the timestep/block indexing, the vector-valued functions are defined as

h1(ẑ,p) = (h1, h2, . . . , hnx) = ξ1
0(ẑ1, z0(p),p) and

hk(ẑk,p) = (h(k−1)nx+1, h(k−1)nx+2, . . . , hknx) = θ2
k−2(ẑk, zk−1(p), zk−2(p),p) for k ≥ 2 with θ ∈ {ζ, ξ}.

The parametric functions y j : P→ X satisfy the parametric mean value theorem (Cor. 2.5 in

Stuber et al.[300]) when applied to h j : X × P→ X, as illustrated in (6.3.9), with

j = (k − 1)nx + 1, . . . , knx for each timestep k ∈ {1, . . . ,K}. In other words, (y j(p),p) ∈ X × P are

the points at which the gradients ∇xh j(· , · ) are evaluated at. Further, the matrix Yk ∈ R
nx×nx is

chosen such that it satisfies Assumption 6.3.2.3.

Remark 6.3.4. Note that the definition of Mk (and Bk) satisfies Lemma 3.15 of Stuber et al.[300].
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We include it here for completeness and for easy reference in the following theorem. We note that

Mk cannot be very easily calculated since the y j functions are not known. Fortunately, we do not

need to calculate Mk, but we must able to calculate relaxations of Mk, which is in fact much easier

than calculating Mk itself.

These matrix-valued functions resemble the Jacobian matrix since they are matrices of

partial derivatives of hk with respect to the state variables x, for the current timestep approximated

as ẑk. However, it is worth highlighting that these are not actually the Jacobian matrix since each

transposed gradient (matrix row) is not evaluated at necessarily the same point, but at the point y j

from the kth block of equations according to the parametric mean value theorem. From (6.3.9) and

Definition 6.3.3, we can now form the nx-dimensional system of equations for the kth block as:

Mk(p)(zk(p) − γ(p)) = −Ykhk(γ(p),p) = −Ykθ
2
k−2(γ(p), zk−1(p), zk−2(p),p), ∀p ∈ P. (6.3.11)

From this mean value form, we can now define the function ψk as an analog to the

Newton-Raphson fixed-point iteration with Gauss-Seidel for approximating zk (i.e., the solution

of the nonlinear system). The form of this iteration is defined for the kth timestep of two-step

PILMS methods in the following.

Definition 6.3.5 (ψk). Let bk : X × X × X × P→ Rnx such that bk = Ykθ
s
k−2 with θ ∈ {ξ, ζ},

s ∈ {1, 2}, and 2 ≤ k ≤ K. Let Yk and Mk be defined as in Assumption 6.3.2.3. Define the function

ψk : X × Mk × X × X × X × P→ Rnx such that ∀(γ̃, M̃, z̃k, z̃k−1, z̃k−2,p) ∈ X × M × X × X × X × P,
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ψk(γ̃, M̃, z̃k, z̃k−1, z̃k−2,p) = z̃∗k, where the ith component of z̃∗k is given by the loop:

for i = 1, . . . , nx do

z̃∗k,i := γ̃i −
bk,i(γ̃, zk−1(p), zk−2(p),p) +

∑
j<i m̃i j(z̃∗k, j − γ̃ j) +

∑
j>i m̃i j(z̃k, j − γ̃ j)

m̃ii
(6.3.12)

end.

Remark 6.3.6. Note that this definition is analogous to Definition 3.17 in Stuber et al.[300] with

the modification that the b function is indexed by the timestep k and is dependent on the implicit

functions of the two previous timesteps (k − 1 and k − 2) to account for the dependence on the two

prior timesteps in two-step PILMS methods. For the first block of equations where we utilize the

implicit Euler form: h1 = ξ1
0, we will still utilize this definition of ψ1 with b1 as

b1(γ̃, z0(p), z0(p),p) = Y1ξ
1
0(γ̃, z0(p),p).

If we were somehow capable of easily calculating Mk (and thus Bk) for each k, and select

M̃ = Mk, then Definition 6.3.5 would define a semi-explicit representation of the implicit function

solution zk(· ) through its mean value form. This is important as we use this property to calculate

valid convex and concave relaxations of zk(· ) via relaxations of its mean value form

componentwise as composite relaxations of ψk. Stuber et al.[300] demonstrated exactly why

relaxing the Newton-Raphson fixed-point iteration doesn’t work as intended for general systems

when approached in a naive way. That is, even though convex/concave relaxations are calculable

by simply applying the rules for constructing McCormick relaxations and composite relaxations,

they will not converge when used within a B&B algorithm for global optimization. Rules for

circumventing this were developed for general nonlinear systems[300], which rely on relaxing zk

through the mean value form approximated using ψk. We follow this approach in this work.

With these definitions of ψk, Mk, and Bk, we can state the following theorem which provides
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the result that convex and concave relaxations of the implicit functions zk : P→ X for

k = 1, . . .K, and their subgradient information, can be calculated in a practical way. This result

follows directly from Thm. 3.25 of Stuber et al.[300] with the notational and functional

modifications made here specifically for the implicit integration forms and a corresponding

sequential-block relaxation construction procedure accounted for in the definition of ψk (Def.

6.3.5) and Mk (Def. 6.3.3).

Theorem 6.3.3. Let h1(ẑ1,p) = ξ1
0(ẑ1, z0(p),p) and let hk(ẑk,p) = θ2

k−2(ẑk, zk−1(p), zk−2(p),p) with

k ≥ 2 and θ ∈ {ζ, ξ}. Let zcv
i , z

cc
i : P→ X be known convex and concave relaxations of zi on P,

respectively, for i = 0 and i ∈ {k − 1, k − 2} for k ≥ 2 and let scv
zi
, scc

zi
: P→ Rnp×nx be known

subgradients of those relaxations on P. Let λ ∈ [0, 1] and p̄ ∈ P. Let uBk, oBk be composite

relaxations of Bk on X × X × · · · × X × P and SuBk ,SoBk be composite subgradients of uBk, oBk,

respectively. Let ūψk , ōψk be composite relaxations of ψk on X × M × X × X × X × P and Sūψk ,Sōψk

composite subgradients of ūψk , ōψk , respectively. Then, for any r ∈ N+ (r ≥ 1) the elements of the

sequences {z j,cv
k }

r
j=0 and {z j,cc

k }
r
j=0 calculated within Algorithm 2 are convex and concave

relaxations of zk on P, respectively. Further, the elements of the sequences {s j,cv
zk }

r
j=0 and {s j,cc

zk }
r
j=0

calculated in Algorithm 2 are subgradients of the elements of the sequences {z j,cv
k }

r
j=0 and {z j,cc

k }
r
j=0,

respectively. Furthermore, Algorithm 3 returns zcv and zcc, convex and concave relaxations of z on

P, respectively, along with their respective subgradients scv
z and scc

z .

Proof. The proof will proceed as follows. First, we will show that relaxations of Mk are

computable. Then, we will show that these relaxations can be used to calculate relaxations of ψk,

for which the implicit function zk is a fixed-point for every p ∈ P.

Consider an arbitrary timestep 2 ≤ k ≤ K and the corresponding block of equations

hk(ẑk,p) = θ2
k−2(ẑk, zk−1(p), zk−2(p),p) = 0.
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Since Algorithm 2 is defined consistently with Stuber et al.[300], we will show how relaxations of

ψk as defined in Definition 6.3.5 (and their subgradients) are computable. By the parametric mean

value theorem[300], we have

Mk(p)(zk(p) − γ(p)) = −Ykhk(γ(p),p) = −Ykθ
2
k−2(γ(p), zk−1(p), zk−2(p),p), ∀p ∈ P.

By definition of yi, i = (k − 1)nx + 1, . . . , knx, by the parametric mean value theorem (in the

definition of Mk(p)), any convex and concave relaxations of zk on P which are also valid for γ, are

valid for yi for i = (k − 1)nx + 1, . . . , knx (see Lemma 3.16 Stuber et al.[300] for further reading).

By construction (Line 6, Alg. 2) γ j satisfies this condition for z j,a
k and z j,A

k . Therefore, for each j,

the affine functions z j,a
k , z

j,A
k are respectively valid convex and concave relaxations of yi (from Def.

6.3.3) on P for every i = (k − 1)nx + 1, . . . , knx. As a result, relaxations of Mk on P are calculable

as:

M j,cv
k (p) :=uBk(z

j,a
k (p), z j,A

k (p), . . . , z j,a
k (p), z j,A

k (p),p)

M j,cc
k (p) :=oBk(z

j,a
k (p), z j,A

k (p), . . . , z j,a
k (p), z j,A

k (p),p).

Thus, by definition, M j,cv
k ,M j,cc

k are convex and concave relaxations of Mk on P, respectively, for

every j. The corresponding subgradient calculations follow analogously. Now, we will show that

zk is a fixed-point of ψk.

By Assumption 6.3.2.2, we have 0 < Mk,ii ⊃ mk,ii(P), ∀i. Then, for i = 1, . . . , nx, we can
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write:

z
′

k,i(p) =
∑
j<i

mk,i j(p)(zk, j(p) − γ j(p)) +
∑
j>i

mk,i j(p)(zk, j(p) − γ j(p)), (6.3.13)

zk,i(p) = γi(p) −
bk,i(γ(p), zk−1(p), zk−2(p),p) + z

′

k,i(p)

mk,ii(p)
. (6.3.14)

By Definition 6.3.5, we can write:

z∗k,1(p) = ψk,1(γ(p),Mk(p), zk(p), zk−1(p), zk−2(p),p)

= γ1(p) −
bk,1(γ(p), zk−1(p), zk−2(p),p) +

∑
j>i mk,1 j(p)(zk, j(p) − γ j(p))

mk,11(p)

= zk,1(p).

By induction, it follows that zk,i(p) = ψi(γ(p),Mk(p), zk(p), zk−1(p), zk−2(p),p) = z∗k,i for every i.

Thus, zk is a fixed-point of ψk for every p ∈ P.

By hypothesis, we have valid convex and concave relaxations zcv
k−1(p), zcv

k−2(p) and

zcc
k−1(p), zcc

k−2(p) of zk−1(p), zk−2(p) on P, respectively, for k ≥ 2 and their corresponding

subgradients. Further, by design γ : P→ X is affine (both convex and concave). As a result,

relaxations of the function bk = Ykθk−2 (as defined in Definition 6.3.5) on P are calculable as

ubk(γ(p),γ(p), zcv
k−1(p), zcc

k−1(p), zcv
k−2(p), zcc

k−2(p),p) (6.3.15)

obk(γ(p),γ(p), zcv
k−1(p), zcc

k−1(p), zcv
k−2(p), zcc

k−2(p),p) (6.3.16)

and similarly, their subgradients are calculable.
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We must also consider the k = 1 case. Then, we have the corresponding block of equations:

h1(ẑ1,p) = ξ1
0(ẑ1, z0(p),p) = 0.

By hypothesis, we have zcv
0 , z

cc
0 and scv

z0
, scc

z0
. Then, the previous results still hold with

zcv
k−1, z

cv
k−2 := zcv

0 , zcc
k−1, z

cc
k−2 := zcc

0 , scv
zk−1
, scv

zk−2
:= scv

z0
, and scc

zk−1
, scc

zk−2
:= scc

z0
in (6.3.15) and (6.3.16). It

follows immediately that if we know z j,cv
k and z j,cc

k , then

z j+1,cv
k (· ) :=ūψk(γ(· ),γ(· ),M j,cv

k (· ),M j,cc
k (· ), z j,cv

k (· ), z j,cc
k (· ), zcv

k−1(· ), zcc
k−1(· ), zcv

k−2(· ), zcc
k−2(· ), · )

z j+1,cc
k (· ) :=ōψk(γ(· ),γ(· ),M j,cv

k (· ),M j,cc
k (· ), z j,cv

k (· ), z j,cc
k (· ), zcv

k−1(· ), zcc
k−1(· ), zcv

k−2(· ), zcc
k−2(· ), · ).

are convex and concave relaxations of zk on P, respectively. The analogous result holds for their

subgradients. Since Algorithm 2 provides z j,cv
k , z j,cc

k for j = 0, by induction, we conclude that this

result (and the analogous subgradient result) holds for every j = 1, . . . , r. Thus, the elements of

{z j,cv
k }

r
j=0 and {z j,cc

k }
r
j=0 as calculated within Algorithm 2 are valid convex and concave relaxations

of zk on P, respectively, and s j,cv
zk and s j,cc

zk are their respective subgradients for j = 0, . . . , r. Since

we showed that relaxations and their subgradients are calculable by Algorithm 2 for each timestep

k = 1, . . . ,K, we conclude that Algorithm 3 returns zcv and zcc, valid convex and concave

relaxations of z on P, respectively, along with their respective subgradients scv
z and scc

z . �

6.3.3 Partition Convergence

In this section, we show that Algorithm 3 generates a relaxation which exhibits partition

convergence given that Assumption 6.3.2 is entirely satisfied. This result follows directly from

established properties of the implicit relaxation algorithm presented in Stuber et al.[300] and
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Algorithm 1 Affine Reference Function for Relaxations of Implicit Functions
1: procedure Aff(c,C, sc, sC, λ, X, P, p̄)
2: for i← 1 to nx do
3: Xa

i ← ci +
∑np

j=1(sc
T)i j(P j − p̄ j) . Interval arithmetic calculation

4: XA
i ← Ci +

∑np

j=1(sC
T)i j(P j − p̄ j) . Interval arithmetic calculation

5: Ωi ← λXa
i + (1 − λ)XA

i . Interval arithmetic calculation
6: if ωL

i < xL
i then

7: (sc)i j ← 0, ∀ j = 1, . . . , np

8: ci ← xL
i

9: end if
10: if ωU

i > xU
i then

11: (sC)i j ← 0, ∀ j = 1, . . . , np

12: Ci ← xU
i

13: end if
14: end for
15: return c,C, sc, sC
16: end procedure

Algorithm 2 Relaxation of a Single Block of a 2-Step PILMS Method
1: procedure Block(hk, X,p, p̄, P, zcv

k−1, zcc
k−1,scv

zk−1
,scc

zk−1
,zcv

k−2, zcc
k−2,scv

zk−2
,scc

zk−2
,r,λ)

2: z0,cv
k , z0,cc

k , s0,cv
zk , s0,cc

zk ← xL, xU , 0, 0
3: for j← 0 to r − 1 do
4: c,C, sc, sC ← Aff(z j,cv

k (p̄), z j,cc
k (p̄), s j,cv

zk (p̄), s j,cc
zk (p̄), λ, X, P, p̄)

5: z j,a
k ← c + sc

T(p − p̄) . Affine relaxation lower bound
6: z j,A

k ← C + sC
T(p − p̄) . Affine relaxation upper bound

7: γ j ← λz j,a
k + (1 − λ)z j,A

k

8: s j
γ ← λsc + (1 − λ)sC

9: M j,cv ← uBk(z
j,a
k , z

j,A
k , . . . , z j,a

k , z
j,A
k ,p)

10: M j,cc ← oBk(z
j,a
k , z

j,A
k , . . . , z j,a

k , z
j,A
k ,p)

11: s j,cv
M ← SuB(z j,a

k , z
j,A
k , sc, sC, . . . , z j,a

k , z
j,A
k , sc, sC,p)

12: s j,cc
M ← SoB(z j,a

k , z
j,A
k , sc, sC, . . . , z j,a

k , z
j,A
k , sc, sC,p)

13: z j+1,cv
k ← ūψ(γ j,γ j,M j,cv,M j,cc, z j,cv

k , z j,cc
k , zcv

k−1, z
cc
k−1, z

cv
k−2, z

cc
k−2,p)

14: z j+1,cc
k ← ōψ(γ j,γ j,M j,cv,M j,cc, z j,cv

k , z j,cc
k , zcv

k−1, z
cc
k−1, z

cv
k−2, z

cc
k−2,p)

15: s j+1,cv
zk ← Sūψ(γ j,γ j, s j

γ, s
j
γ,M j,cv,M j,cc, s j,cv

M , s j,cc
M , z j,cv

k , z j,cc
k , s j,cv

zk , s
j,cc
zk ,p)

16: s j+1,cc
zk ← Sōψ(γ j,γ j, s j

γ, s
j
γ,M j,cv,M j,cc, s j,cv

M , s j,cc
M , z j,cv

k , z j,cc
k , s j,cv

zk ), s j,cc
zk ,p)

17: end for
18: return zr,cv

k , zr,cc
k , sr,cv

zk , s
r,cc
zk

19: end procedure
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Algorithm 3 Relaxations of Parametric IVPs using 2-Step PILMS Methods
1: procedure IVPBound(X, p, p̄, P,h, x0, r, λ)
2: zcv

0 , z
cc
0 , s

cv
z0
, scv

z0
←McCormickRelax(X, P, x0(p)) . McCormick relaxation of x0

3: zcv
1 (p), zcc

1 (p), scv
z1

(p), scc
z1

(p)← Block(h1, X,p, p̄, P, zcv
0 , z

cc
0 , s

cv
z0
, scc

z0
, xL, xU , 0, 0, r, λ)

4: for k ← 2 to K do
5: k1, k2 ← k − 1, k − 2
6: zcv

k (p), zcc
k (p), scv

zk
(p), scc

zk
(p)←Block(hk, X,p, p̄, P, zcv

k1
, zcc

k1
, scv

zk1
, scc

zk1
, zcv

k2
, zcc

k2
, scv

zk2
, scc

zk2
, r, λ)

7: end for
8: zcv(p), scv

z (p)← (zcv
0 (p), zcv

1 (p), . . . , zcv
K (p)), (scv

z0
(p), scv

z1
(p), . . . , scv

zK
(p))

9: zcc(p), scc
z (p)← (zcc

0 (p), zcc
1 (p), . . . , zcc

K (p)), (scc
z0

(p), scc
z1

(p), . . . , scc
zK

(p))
10: return zcv(p), zcc(p), scv

z (p), scc
z (p)

11: end procedure

ensures that a B&B algorithm when used in conjunction with the relaxations developed herein

will terminate in finite time.

Proposition 6.3.4. Consider a nested sequence of intervals {Pq}, Pq ⊂ P, q ∈ N, such that

{Pq} → [p̄, p̄] for some p̄ ∈ P. Let zcv
q , zcc

q be relaxations of z on Pq obtained using Algorithm 3

and denote the state variable convex and concave relaxations at the kth timestep as zcv
k,q, z

cc
k,q,

respectively. Let φcv
q (·) = uφ(zcv

q (· ), zcc
q (· ), · ) be a convex relaxation of the objective function φ on

Pq. Let φ̂cv
q = minp∈Pq φ

cv
q (p). Then limq→∞ φ

cv
q = φ(z(p̄), p̄).

Proof. Consider K = 1, then h = h1(ẑ1,p) = ξ1
0(ẑ1, ẑ0,p) trivially reduces to the form considered

explicitly in the lower-bounding problem formulation (16) in Stuber et al.[300] and Lemma 4.3 in

Stuber et al.[300] with respect to the state variables ẑ1 as ẑ0 = x0(p). Now we proceed for general

K > 1 with a proof by contradiction. Suppose that for K > 1 we have limq→∞ φ
cv
q , φ(z(p̄), p̄). As

ucv
φ is constructed by generalized McCormick relaxations, it is continuous and exhibits partition

convergence [271]. This implies that there must exist a k such that limq→∞ zcv
k,q , zk,q(p̄) or

limq→∞ zcc
k,q , zk,q(p̄). However, this implies that either limq→∞ zcv

k−1,q , zk−1,q(p̄) or

limq→∞ zcc
k−1,q , zk−1,q(p̄) as continuity of zq,k and componentwise partition convergence of valid

relaxations zcv
k−1,q and zcc

k−1,q result in componentwise partition convergence of zcv
k,q and zcc

k,q.
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Continuing this reasoning by reverse induction, we see that this would imply that for k = 1 the

partition convergence is not observed, which is a direct contradiction of the K = 1 case. �

Theorem 6.3.5. Let X be defined as in Def. 4.1 of Stuber et al.[300] and suppose Assumption 4.2

of Stuber et al.[300] holds. Further, suppose the hypotheses of Proposition 6.3.4 hold. Then, after

finitely many iterations, κ, the spatial B&B algorithm of Stuber et al.[300] with relaxations

calculated by Algorithm 3 terminates either with an ε-optimal global solution such that

ακ − βκ ≤ ε, or a certificate of infeasibility.

Proof. Lemma 4.4 through 4.8 in Stuber et al.[300] hold from the pointwise convergence

property of Proposition 6.3.4 and continuity assumptions without further modification. As a

result, the finite convergence theorem (Thm. 4.9) in Stuber et al.[300] holds. �

6.3.4 Implementation

All numerical experiments in this work were run on a single thread of an Intel Xeon E3-1270 v5

3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to an Ubuntu 18.04LTS

operating system virtual machine and Julia v1.1[36]. Absolute and relative convergence

tolerances for the B& B algorithm of 10−2 and 10−5, respectively were specified for all example

problems. A solver extension to the EAGO.jl package [327] was created to implement the

algorithm detailed above and is located at

https://github.com/PSORLab/EAGODifferential.jl. The Intel MKL (2019 Update

2)[95] was used to perform all LAPACK[11, 320] and BLAS[40] routines.

An affine lower-bounding problem was constructed using the relaxations evaluated at their

midpoint and their respective subgradients[191]. Two iterations of the PILMS method developed

here were used to compute the lower bound, (i.e., r = 2). The lower-bounding problems were
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solved using CPLEX 12.8.0 [66]. In addition to the relaxations of the objective function, linear

objective cuts were used to restrict the feasibility region based on the global upper bound.

Additionally, duality-based bounds tightening (DBBT) was performed[251], using the multipliers

obtained when solving the lower-bounding problem.

Any feasible point provides a valid upper bound for the optimization problem. As no

equality constraints are left in any of the formulations addressed below, we can simply solve the

system for the state variables at a specified point in the subdomain of interest. Any inequality

constraints in the upper-bounding problem are then evaluated at this solution point and the

upper-bounding problem is feasible if this point is feasible. We use an adaptation of this approach

to furnish the upper bound. At each node in the B&B tree, the parametric ODE-IVP is

numerically integrated at the midpoint of the respective decision space, p∗ = mid(Pq), using the

fixed-stepsize integration scheme corresponding to the discretized system of equations in (6.2.3).

The DifferentialEquations.jl[239] package is used to perform each numerical integration step.

Prior to calculating the lower bound, it is often advantageous to contract the initial state

space bounds for the qth node, Xq,0 by application of a parametric interval method. We perform up

to five iterations of parametric interval-Newton or terminate if the bounds fail to further contract

within 5 iterations. These state variable bounds Xq,κ are then stored as the state variable bounds of

the resulting child nodes provided the problem is feasible. It merits noting that the PILMS

methods developed here are at least as tight as the parametric interval method for bounds

tightening. However, it requires additional calculations to determine the values of the relaxations

and their respective subgradients. As such, a decrease in overall computation time can be realized

by applying this contractor then computing the relaxation of the implicit function.
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6.4 Illustrative Examples

Example 6.4.1 (A Scalar Parametric ODE-IVP). Consider the simple scalar ODE-IVP presented

in Section 4.1 of Sahlodin and Chachuat[256] with a single parameter:

ẋ(p, t) = −x2 + p, t ∈ I = [0, 1], p ∈ P = [−1, 1] (6.4.1)

x0(p) = 9, p ∈ P.

We make use of the developed theory of relaxations of implicit functions to construct bounds of

the solution on P with initial state bounds as X = [0.1, 9]. A single iteration of the parametric

interval-Newton method yields new state bounds entirely within the interior of the prior bounds.

By Theorem 6.3.1 above and Theorem 5.1.8 in Neumaier[219], this verifies the existence of a

unique implicit function in X. Both the two-step PILMS methods (6.3.5) and (6.3.7) were used to

construct bounds with and without the use of a parametric interval contraction method.

In Figure 6.4.1, the relaxations are obtained using only the state bounds specified as X. As

illustrated in Figure 6.4.1, the bounds obtained expand as time progresses and increasing the

number of discretization points K can lead to weaker bounds due to the dependency issue

common among set-valued arithmetic [256]. However, these bounds still exhibit the pointwise

convergence property and the use of these methods in conjunction with domain reduction

techniques can alleviate these issues. This is observed by the tight bounds obtained using

K = 200 discretization points and contracting the state variables prior to each block solve of the

relaxation algorithm. Finally, we note that while the standard algorithm for nx-dimensional

systems requires an nx × nx matrix inversion to calculate Yk and precondition each block prior to

applying the iterative relaxation method (Alg. 3), the algorithm can be run in a modest amount of

time as detailed in Table 6.4.1. Furthermore, other preconditioners which may be less expensive
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to compute can be used for larger systems, if necessary. In this one-dimensional case, the

midpoint inverse of the interval derivative was used.

Figure 6.4.1: The results of Example 6.4.1 are illustrated here. Lower and upper bounds shown here are
respectively the minimum and maximum values of zcv

k (· ) and zcc
k (· ) attained on P for each k. Upper Left:

Bounds on x(p, t) of (6.4.1) obtained by using the two-step AM method for r = 3 with K = 30 (black),
K = 40 (light gray), and K = 50 (gray). Upper Right: Bounds on x(p, t) of (6.4.1) obtained by using a

two-step BDF method for r = 3 with K = 30 (black), K = 40 (light gray), and K = 50 (gray). Lower Left:
Bounds on x(p, t) of (6.4.1) obtained by using the two-step AM method for r = 3 after applying 5 iterations

of the parametric interval-Newton method using K = 200. Lower Right: Bounds on x(p, t) of (6.4.1)
obtained by using a second-order BDF method for r = 3 after applying 5 iterations of the parametric

interval-Newton method using K = 200.

In order to compare our bounding results with those of Sahlodin and Chachuat [256], we

evaluate the enclosure width, ∆ωk, at discretization point k corresponding to time tk, as the
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Timesteps K = 10 K = 20 K = 30 K = 40 K = 50

AM, PI + relax (CPU sec) 15×10−5 29×10−5 44×10−5 61×10−5 73×10−5

BDF, PI + relax (CPU sec) 14×10−5 28×10−5 43×10−5 58×10−5 73×10−5

AM, PI + relax, width at t = 1 0.703 0.806 0.841 0.8550 0.8634

AM, PI only, width at t = 1 1.812 1.906 1.938 1.955 1.955

BDF, PI + relax, width at t = 1 0.703 0.810 0.901 0.937 0.951

BDF, PI only, width at t = 1 0.713 0.822 0.916 0.954 0.969

Table 6.4.1: The CPU times required to construct parametric interval (PI) bounds and convex/concave
relaxation-based bounds (and associated subgradients) for Example 6.4.1 as well as the enclosure width at

t = 1 associated with each variant used to construct relaxations.

distance between the maximum of the concave relaxation and the minimum of the convex

relaxation. For the iterative relaxation method, Alg. 3, ∆ωk = max
p∈P

zr,cc
k (p) −min

p∈P
zr,cv

k (p). For

interval methods, this simplifies to the diameter of the bounding interval. For the AM-type

method, the parametric interval-Newton method is less effective and the relaxation method

presented here achieves a bound approximately one-third the enclosure width at t = 1. In the case

of the BDF method, the parametric interval-Newton method is far more effective resulting in

significantly tighter refinements of X and only a 1-2% improvement was achieved using the

corresponding relaxation method. The results are summarized in Table 6.4.1.

The computational performance of the presented methods were compared with the timings

presented by Sahlodin and Chachuat [256]. The results are contained in Table 6.4.1. For a fair

comparison across hardware specifications, we normalize for each CPU’s single-core IPC using

the Cinebench R15 (Maxon, Newbury Park, CA) single-core benchmark. We estimate that the

single core performance of our computer (Cinebench R15 score of 172) is approximately 1.51

times faster than the computer used by Sahlodin and Chachuat [256] (Cinebench R15 score of

114). Therefore, we compute hardware-normalized timings by dividing the results of Sahlodin
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and Chachuat [256] by the factor 1.51. For K = 100 timesteps, both the two-step AM method and

the two-step BDF method terminate in only 14×10−4 s and achieve 1.143 and 1.026 width bounds

at t = 1, respectively, for a single p point evaluation. In contrast, the method of Sahlodin and

Chachuat [256] takes a normalized time of between 93×10−4 s and 29×10−3 s to compute bounds

of width 0.914 at t = 1 using orders 5 to 20 Taylor-series expansions. While the results obtained

via the iterative relaxation (Alg. 3) are only bounds of the numerical (approximate) solution,

decreased computation time relative to the discretize-then-relax approach may be advantageous

for some problems.

Example 6.4.2 (Reversible Isomerization). Consider the simple kinetic equations that result from

a reversible isomerization reaction with k1 = 10 and k2 = 10−2 given by (6.4.2). The system

initially consists of only the isomer x0(p) = (p, 0), with p ∈ P = [0.8, 1] and the reaction is

allowed to progress for t ∈ I = [0, 1] seconds. The X bounds were chosen to be nonnegative and

below the maximum value of 1. As the uncertainty is present only in the initial condition, the

J s
k(X, P) is real valued, and the implicit function exists as J s

k(X, P) is nonsingular. This first-order

ODE-IVP system is a typical example of a stiff system as the reverse reaction occurs on a much

longer time scale than the forward reaction. Bounds were computed using both the two-step AM

method and two-step BDF method. As illustrated by the plots provided in Figure 6.4.2, tight

bounds on the characteristically-stiff system (6.4.2) can be readily obtained using either two-step

PILMS method. For each method used, less than 1ms was needed to generate each relaxation and

their respective subgradients at a given p reference value.

ẋ1(p, t) = k2x2 − k1x1 (6.4.2)

ẋ2(p, t) = k1x1 − k2x2

The sharpness of the bounds provided here can be attributed to the fact that the right-hand
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side of (6.4.2) is a parametric linear equation and uncertainty is only introduced via the initial

condition. As a result, the two-step PILMS schemes themselves result in parametric linear

algebraic equations as is each Newton-type update. As a consequence, the relaxations calculated

by Algorithm 1 become tight as do the relaxations generated by Algorithm 3.
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Figure 6.4.2: The results of Example 6.4.2 are illustrated. (Left): Bounds on x1(p, t) of (6.4.2) determined
using the two-step BDF (black) and Adams-Moulton methods (gray-plus) using K = 50 discretization

points. (Right): Bounds on x2(p, t) of (6.4.2) determined using the two-step BDF (black) and
Adams-Moulton methods (gray-plus) using K = 50 discretization points.

Example 6.4.3 (Kinetic Parameter Estimation). Consider the kinetic mechanism problem first

presented in Mitsos et al.[191] as an adaptation of the parameter estimation problem encountered

for the oxygen addition to cyclohexadienyl radicals[287, 306]. The reaction mechanism can be
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modeled as the ODE-IVP:

ẋA(p, t) = k1xZ xY − cO2(k2 f + k3 f )xA +
k2 f

K2
xD +

k3 f

K3
xB − k5x2

A

ẋB(p, t) = k3 f cO2 xA −

(
k3 f

K3
+ k4

)
xB, ẋZ(p, t) = −k1xZ xY

ẋD(p, t) = k2 f cO2 xA −
k2 f

K2
xD, ẋY(p, t) = −k1sxZ xY

xA,0 = 0, xB,0 = 0, xD,0 = 0, xY,0 = 0.4, xZ,0 = 140,

where x j is the concentration of species j ∈ {A, B,D,Y,Z}. The constants are then given by

T = 273, K2 = 46 exp(6500/T − 18), K3 = 2K2, k1 = 53, k1s = k1 × 10−6, k5 = 1.2 × 10−3, and

cO2 = 2 × 10−3. Intensity versus time data is available in Stuber[296] and exhibits a known

dependency on the species concentrations as Ic = xA + 2
21 xB + 2

21 xD originating from the

Beer-Lambert Law with a multi-species correction[283]. The unknown reaction rate constants are

k2 f ∈ [10, 1200], k3 f ∈ [10, 1200], and k4 ∈ [0.001, 40], and together form the parameter vector

p = (k2 f , k3 f , k4) for the parameter estimation problem.

In Mitsos et al.[191], the explicit Euler discretization of the problem was solved by directly

calculating bounds and relaxations on the state variables for the discretization from

explicitly-defined equations then propagating calculated bounds and relaxations to the objective

function. An implicit Euler discretization was constructed in Stuber et al.[300] and solved via the

global optimization of implicit functions approach. State variable bounds on X provided in Stuber

et al.[300] were used to bound the PILMS methods used. In that work, at least nine suboptimal

local minima were discovered and reported, motivating the need for deterministic global

optimization. The objective function for this problem is given by

φ(ẑ,p) =

n∑
i=1

(
Ic
i − Id

i

)2
(6.4.3)
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where Ic
i are the calculated intensity values at timestep i from the model and Id

i are the values

corresponding to the experimental data. The performance of the algorithm is detailed in Table

6.4.2 and illustrated in Figure 6.4.3.

For K = 100, the two-step methods both failed to reach convergence within the 7200 CPU

seconds allowed. Further degradation in the convergence rates was observed on initial trials that

used K = 50 steps to discretize the system. In principle, an upper bound could be furnished by

using a local solver to locate a feasible point of the full-space formulation. However, such a

routine will readily become the most expensive step of the solution process and the overall

solution time will depend heavily on heuristics used to limit the number of local solves. We omit

this here for the sake of simplicity. Both the two-step Adams-Moulton and the two-step BDF

method yield a superior fit (a smaller minimum SSE) at termination compared with the implicit

Euler method for each number of time steps owing to the higher numerical accuracy of the

second-order method. This is true even for the cases that failed to converge after 7200 CPU

seconds. As such, the implicit methods presented here may be chosen to achieve an optimal

trade-off between computational time spent on each block relaxation and the number of total

block relaxations. For high values of K, the number of nonlinear computations in intermediate

steps is proportional to K and complexity of the block sequential preconditioning step of the

relaxation scale linearly with K. As detailed in Table 6.4.2, no clear relationship exists between

the solution time and K. This is not entirely unexpected as each discretized model represents a

fundamentally different optimization problem that must be solved. As illustrated by the quick

convergence of the two-step AM method for K = 200, some cases exist where the decreased

truncation error can be obtained at no further cost. Note that the implicit Euler integration scheme

with K = 200 was performed in Stuber et al.[300]. An implementation of the explicit Euler

approach presented in Mitsos et al.[191] was also tested but the solver failed to converge to the
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desired tolerance within the time limit (a relative gap of 3.558 × 10−2 was achieved at

termination).

Table 6.4.2: The CPU times required to solve the kinetic parameter estimation problem (Ex. 6.4.3) using
each bounding method for various K values after applying five iterations of the parametric interval-Newton

method.

Solution Method Steps K Iterations Time per Iteration Solve Time SSE Computed

Implicit Euler 100 33987 45×10−3s 29.7min 26947.246

200 23,525 59×10−3s 23.4min 16796.038

2-Step AM 100 62024 12×10−2s >2h N/A∗

200 6068 22×10−2s 22.6min 13077.998

2-Step BDF 100 88408 81×10−3s >2h N/A∗

200 27600 26×10−2s >2h N/A∗

Explicit Euler 100 >300,000 23×10−4s >2h N/A

200 >300,000 24×10−4s >2h N/A
∗Note that while these examples failed to converge to a global minimum within the 7200-second
limit, in some cases, progressive convergence is observed and additional run time may allow for full
convergence.In the case of the 2-Step BDF with K = 200, a lower bound of 12876.763 and an upper
bound of 13336.471 was furnished on termination. In contrast, minimal convergence is observed
for either 2-Step method with K = 100. This suggests that the 2-Step PILMS method may perform
better when higher K values are used.

Example 6.4.4 (Transient Plug Flow Reactor (PFR)). In this example we consider a

single-species degradation reaction in an air-sparged PFR. Assuming that dispersion in the PFR is

negligible, and first-order degradation proceeds under isothermal conditions, the system can be

modeled by the following dimensionless partial differential equation (PDE):

∂x
∂t

= −
∂x
∂y
− Dax (6.4.4)

where x is the nondimensional spatiotemporal-varying species concentration, Da = kτ is the
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Figure 6.4.3: A convergence plot of each variation of the global optimization algorithm for timesteps
K = 100 and K = 200 as demonstrated on the kinetic parameter estimation example (Ex. 6.4.3). For each

K, the algorithm using the two-step AM method produces the tightest upper bound earlier in time.
However, in each case, the algorithm using the implicit Euler scheme exhibits faster overall convergence.
The user must consider the trade-off between accuracy of the integration method (integration error) and

solution time.

Damköhler number, τ [s] is the mean residence time, and k [s−1] is the first-order reaction rate

constant. Parameter values for the example are as follows: the reactor volume is 1.5×104 cm3,

volumetric flow rate is 1.5×103 cm3/h, and k = 0.35h−1. The dimensionless axial spatial

coordinate is taken to be y ∈ [0, 1]. This PDE is solved via the method of lines assuming an inlet

concentration fixed to x̃0 = 1 and an otherwise zero initial concentration. This yields the

following spatially-discretized system of IVPs to be solved:

dx̃
dt

(p, t) = −
∆x̃
∆y
− Dax̃ (6.4.5)
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where ∆x̃i = x̃i − x̃i−1 is the backwards finite difference of the states, and x̃ ∈ RN is the vector of

state variables at each discrete spatial grid point (of which there are N). The backwards difference

scheme was chosen for spatial discretization as convection dominates the axial transport under

operating conditions and central differencing schemes lead to instability unless stepsizes are

extremely restricted when using explicit methods. For comparison and visualization, the system

of ODE-IVPs given in (6.4.5) was numerically integrated using both implicit-Euler and an explicit

fourth-order Runge-Kutta (RK4). As seen in Figure 6.4.4, the solution obtained using the RK4

method exhibits oscillations throughout the concentration profiles, while the solution obtained

using the implicit Euler method does not yield oscillatory behavior. This stiff behavior results

from the step change in the concentration profile specified at the initial condition. This motivates

the use of implicit methods that exhibit superior numerical stability at higher temporal stepsizes

and the use of the methods developed in the Relaxation Algorithm section to construct relaxations

used in the optimization formulation. In fact, a higher accuracy model could be obtained by using

central differencing spatial discretization in conjunction with the implicit relaxation method

detailed in that section. We abstained from doing this in the implicit formulation to provide a

more direct comparison with the formulation used with explicit integration schemes.

The PFR model describes a step change in the inlet concentration, which may result from

feedstock variability or as part of start-up operations following a shut-down. We mandate that

effluent concentration must stay below λ = 0.08. This limitation is somewhat contrived as actual

conversion specifications are both process- and location-dependent. In the case of wastewater

treatment, inlet ammonia concentrations may vary by multiple orders of magnitude between some

residential and industrial sources. Since, the PFR model is known to possess monotonic

concentration profiles with respect to both space and time, only a constraint on the last spatial

discretization variable is required (i.e., the outlet). However, the sequential-block solution
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structure of the algorithm and additional constraints may benefit the B& B algorithm in quickly

fathoming nonviable solutions. The implicit optimization problem formulation is given as:

φ∗ = min
p∈P

p

s.t. zK,exit(p) − λ ≤ 0 (6.4.6)

where zK,exit is simply the concentration at the exit of the PFR at the final time. Lastly, we assume

that the reaction is mass-transport limited and the Damköhler number by changing the flow rate of

sparging air, which modulates the local mixing rate. We assume that Da = 0.1 + 0.3p where p is

normalized to a value between one and zero.

We initially endeavored to solve this problem using the state bounds X = [0, 1]N , using

K = 200 fixed timesteps and N = 20 spatial discretization points. However, no convergence was

observed. Additionally, the desired accuracy of the bounded model in concentration dictates an

extremely small stepsize must be used even in conjunction with an implicit method. In order to

achieve an absolute tolerance of the integrator of 10−3, an initial stepsize of 8 × 10−8 is needed

using implicit Euler while a stepsize of 2 × 10−4 is acceptable for either two-step AM or BDF

methods. In this case, the prescribed absolute tolerance represents a significantly more restrictive

limit than stability (as these are A-stable) or the stepsize limitation introduced to ensure that

Assumption 6.3.2.3 is met. While the use of two-step implicit methods achieves four

orders-of-magnitude improvement over the implicit Euler method with respect to accuracy of the

bounded ODE-IVP system, the resulting 4000 state variable formulation is still intractable. We

resolve these issues by resorting to a variable timestep scheme. The timesteps to be used are

determined as follows: first, we note that the concentration profile is monotonic in time, spatial

dimension, and that the concentration at a given point in time and space exhibits a monotonic

dependence on p.
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A variable stepsize temporal discretization scheme was determined by integrating the

ODE-IVP over a span of values of p. The timesteps corresponding to the finest resolution

discretization scheme was then used to formulate the optimization problem. This allows for a

mere K = 30 temporal discretization points to be used in order to achieve the desired accuracy.

As such, the model can then be solved in the single control variable as opposed to the 601

variables (600 state variables occurring the discretization of the ODE-IVP and 1 control variable).

Interestingly, the two-step BDF method dramatically outperforms the two-step AM method on

this problem. Only 347 iterations are required to achieve convergence of the BDF method which

was achieved in 382 seconds of CPU time when the original bounds on X were used. The

convergence profile is illustrated in Figure 6.4.5. For the first 260 seconds, minimal improvement

on the lower and upper bounds occurs while the B&B routine naively partitions the decision space

P, followed by a speedy convergence to an ε-optimal solution. In contrast, the two-step AM

method never achieved convergence in the full 24 h run time nor, in fact, any improvement on the

initial bounds in this time. As such the results were omitted from Figure 6.4.5 for the sake of

clarity. One explanation for this stark contrast between methods may be due to the fact that BDF

methods are known to integrate extremely stiff ODE-IVPs more efficiently than competing

PILMS methods and this problem exhibits an extreme degree of stiffness about the inlet at the

initial time value whereas the system addressed in Example 6.4.3 (for which the two-step BDF

method had worse performance than the two-step AM method) is significantly less stiff.

Example 6.4.5 (Bounding State Trajectories of Denitrification in Biological Nutrient Removal).

Currently, most wastewater treatment plants operate at one-third efficiency, and aeration accounts

for 45-75% of plant-wide energy consumption[249]. By utilizing highly-predictive modeling of a

wastewater treatment system, control methods can be developed to optimize aeration operations

and reduce these inefficiencies. Henze and Gradys[131] first activated sludge model (ASM1)
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Figure 6.4.4: The one-species PFR model of Example 6.4.4 is simulated using (Left) the explicit
fourth-order Runge-Kutta method and (Right) implicit (backward) Euler. The explicit method results in

spurious oscillatory behavior of the concentration profiles which is not present using the implicit method.
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Figure 6.4.5: In this convergence plot, we see that the improvement of the bounds of (6.4.6) generated
using the two-step BDF method in Example 6.4.4 remains stagnant until around 250 seconds when the

these bounds begin to converge and the absolute convergence tolerance of 10−2 is satisfied for this example.
At convergence, the relative gap is approximately LBD/UBD = 0.99.
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provides a suitable foundation for dynamic model development. The ASM1[131] model has

proved to be an excellent tool for modeling nitrification-denitrification processes. This model

includes a system of 9 ODE-IVPs (nx = 9) and the respective rate equations for state variables

ranging from autotrophic and heterotrophic bacteria to substrate, ammonium, nitrogen, and

dissolved oxygen. Here, the focus is on dissolved oxygen for optimizing aeration operations due

to its interactions in the biological system model [162]. A sparged CSTR model of biological

nutrient removal is detailed below which makes use of this ASM1 model. For typical processing

parameters chosen for this case study, the system of equations in (6.4.7) describes the kinetics of

the nine species of interest:

ẋ1(p, t) = τ(xin,1 − x1) + 3.93(10 − x1) + r11

ẋ2(p, t) = τ(xin,2 − x2) + 0.484x2 + r6

ẋ3(p, t) = τ(xin,3 − x3) + 0.484x3 + r5

ẋ4(p, t) = τ(xin,4 − x4) + r2

ẋ5(p, t) = τ(xin,5 − x5) + r7

ẋ6(p, t) = τ(xin,6 − x6) + r8

ẋ7(p, t) = τ(xin,7 − x7) + r9

ẋ8(p, t) = τ(xin,8 − x8) + 0.484x8 + r4

ẋ9(p, t) = τ(xin,9 − x9) + 0.484x9 + r10 (6.4.7)

where the initial condition is taken to be x0 = (0.0, 91, 1075, 2.62, 33.31, 0.41, 0.93, 29.46, 2.54)

[g/m3] and the reaction rates ri, i ∈ {2, 4, 5, 6, 7, 8, 9, 10, 11} are given in (6.4.8). The

half-saturation coefficients are given by, Ks = 10 [g/m3], KX = 1 [g/m3], KNO = 0.5 [g/m3],

KO = 0.3 [g/m3], KNHA = 1 [g/m3], the decay rates are bH = 0.039 [day−1] and bA = 0.002
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[day−1]. The residence time in the reactor is τ = 1.85 [day−1]. The maximum specific hydrolysis

rate is taken to be kH = 0.125 [day−1] and the ammonification rate is kA = 0.05 [m3/(g·day)] [131].

The biomass yield is taken to be yA = 0.24. An inlet composition of

xin = (0, 0.001, 96, 64, 1, 12.5, 10.1, 160, 18.28) [g/m3] is assumed.

r2 = −
µH

yH

x3x4

Ks + x4

(
x1

KO + x1
+

0.8KO

KO + x1

x5

KNO + x5

)
+ kH x3

x8/x3

KX + x8/x3

(
x1

KO + x1

)
. . . +

0.8KO

KO + x1

(
x5

KNO + x1

)
r4 = 0.92(bH x3 + bAx2) − kH x3

x8/x3

KX + x8/x3

(
x1

KO + x1

)
+

0.8KO

KO + x1

(
x5

KNO + x5

)
r5 = µH

x3x4

Ks + x4

(
x1

KO + x1
+ 0.8

KO

KO + x1

x5

KNO + x5

)
− bH x3

r6 = µA
x2x6

KNHA + x6

(
x1

KO + x1

)
− bAx2

r7 = −0.088µH
x3x4

Ks + x4

KO

KO + x1

(
x5

KNO + x5

)
+
µA

yA

x2x6

KNHA + x6

(
x1

KO + x1

)
r8 = −0.068µH

x3x4

Ks + x4

(
x1

KO + x1
+

KO

KO + x1

0.8x5

KNO + x5

)
− µA

4.23x6

KNHA + x6

(
x1x2

KO + x1

)
+ kAx7x3

r9 = −kAx7x3 + kH x3
x9/x3

KX + x8/x3

(
x1

KO + x1

)
+

0.8KO

KO + x1

(
x5

KNO + x5

)
r10 = 0.063(bH x3 + bAx2) − kH

(x9/x3)
KX + x8/x3

(
x1x3

KO + x1

)
+

0.8KO

(KO + x1)

(
x5

(KNO + x5)

)
r11 = −

(
0.32µH

x4x3

Ks + x4
+ 18.04µA

x6x2

KNHA + x6

)
x1

KO + x1
(6.4.8)

This system consists of several reactions that operate on significantly different time scales, and as

a result is characterized by a large degree of stiffness [9]. In practice, exact kinetics may depend

on the exact bacterial ecology of the process unit. Both the maximum specific growth rate for

heterotrophs, µH, and for autotrophs, µA potentially depend on such ecological considerations. We
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make use of the two-step AM method to generate bounds on the parametric ODE-IVP defined by,

(6.4.7), and (6.4.8) with µH ∈ [0.14, 0.16] and µA ∈ [0.019, 0.021]. Plots of the bounds generated

using the two-step AM method are included in Figure 6.4.6 along with select trajectories from

numerically integrating these equations at typical values of µA and µH in this range. No

parametric interval method was used to contract the bounds prior to generating these plots. The

system was then numerically integrated over an 8-hour time interval to simulate the resulting

transients. The bounds on the states are given by xL = (0, 90, 900, 0.25, 25, 0.2, 0.01, 25, 2.5) and

xU = (8, 94, 1100, 2.75, 40, 2.0, 0.93, 400, 50). Applying parametric interval-Newton yields state

variable bounds that have been contracted into the interior of the initial bounds confirming that a

unique implicit function exists on this domain.

Valid bounds can also be generated using the two-step BDF method. However, for the initial

µH, µA intervals considered these bounds are not significantly tighter than the original bounds

provided by xL and xU while the two-step AM method yield significant refinement to the initial

bounds. Again, this is likely due to competing sources of wrapping effects present in either

method: whether the additional function evaluation results in a more expansive relaxation than the

inclusion of additional subtraction operators, or vice versa.

6.5 Concluding Remarks

In this work, the guaranteed global solution of dynamic optimization problems was addressed,

with specific interest in the application to stiff parametric ODE-IVP systems. This interest was

motivated by process systems engineering applications of model-based design, rigorous model

validation, optimal control, and robust control.

In the developed approach, the dynamic optimization problem was reformulated as an
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Figure 6.4.6: The results from Example 6.4.5 are illustrated. (Top): Bounds on x4(p, t) determined using
the two-step Adams-Moulton method using K = 200 discretization points. (Bottom): Bounds on x5(p, t)

determined using the two-step Adams-Moulton method using K = 200 discretization points.

equality-constrained NLP by discretizing the time horizon and applying an unconditionally-stable

implicit integration scheme to form the equality constraint equations. Specifically, two

second-order implicit linear multistep integration methods were considered: the two-step

Adams-Moulton and the two-step backward-difference formula methods. The equality constraints

were subsequently eliminated from the nonlinear programming formulation with the introduction

of an implicit function as the (parametric) solution of the equality constraints taken as a large
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system of parametric nonlinear algebraic equations. The algebraic systems formed from this

approach exhibit a sparse block-diagonal occurrence matrix which can be exploited for numerical

efficiency in numerical equation solving as well as in the construction of rigorous bounds and

convex/concave relaxations of implicit function solutions. The theory of convex and concave

relaxations of implicit functions [300] was extended to cover this class of problems with this

special structure to provide the necessary bounds required for deterministic global optimization

using the spatial B&B framework. The methods were demonstrated on five examples relevant in

process systems engineering to illustrate the calculation of rigorous bounds and the solution of the

nonconvex dynamic optimization problem to guaranteed global optimality. Overall, this approach

yields tight, accurate, and fast bounds on numerical approximations of the state trajectories of stiff

systems enabling the efficient solution of a class of deterministic global optimization problems

with stiff dynamical systems embedded.

This work serves as the foundation for future work on robust design (including robust

control) problems for rigorous worst-case performance and safety verification under transients as

well as rigorous dynamic flexibility analysis for general nonconvex dynamical systems models.
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Chapter 7

Validated Convex and Concave Relaxations
of Parametric Solutions of Ordinary
Differential Equations Via Implicit
Integration Methods

Two novel methods for computing convex and concave relaxations of the solutions of parametric

nonlinear ordinary differential equations (pODEs) are described herein. Convex/concave

relaxations are necessary for deterministic global optimization algorithms of problems with

embedded pODEs, a common class of problems that arise from dynamic simulations. Namely,

these relaxations allow for construction of relaxed subproblems repeatedly solved within spatial

branch and bound algorithm. The methods developed are based on recent work relating to

discretize-then-relax methods, parametric implicit linear methods, and Interval

Hermite-Obreschkoff methods for bounding solution sets of pODEs. In each discretize-then-relax

algorithm, a two-stage procedure is performed in which valid convex/concave relaxations of the

state variables are formed over the entire time-step and then pointwise-in-time convex/concave
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relaxations are subsequently refined. The novel methods described in this chapter are applicable

to the later step. Two case studies are examined which illustrate the potential advantages of using

these novel approaches; namely, computational efficiency and tightness of the underlying

relaxations.

7.1 Introduction

This chapter presents novel methods for computing state relaxations and interval bounds of the

solutions of nonlinear parametric ordinary differential equations (pODEs) of the form given by:

ẋ(p, t) =
dx
dt

(p, t) = f(x(p, t),p), t ∈ I = [t0, t f ], p ∈ P (7.1.1)

x(p, t0) = x0(p), p ∈ P,

with mappings f : D × Π→ Rnx and x0 : P→ D, D ⊂ Rnx and Π ⊂ Rnp open sets, P ∈ IΠ, and

I ∈ IR. This information is essential for global stability and controllability analysis [41, 137].

Furthermore, the bounds and relaxations of solutions of pODEs are fundamental to deterministic

global dynamic optimization methods [161, 229, 284], which are themselves relevant to a breadth

of applications such as parameter estimation with dynamic models [287], drug scheduling

[56, 175, 319], safety verification [140], and fault detection [232]. Unfortunately, the use of

deterministic global optimization methods remains limited, as existing methods for computing

sufficiently tight bounds on the parametric solution sets of pODEs (i.e., the reachable set) are

computationally expensive.

Overestimation of the reachable set is an intrinsic feature of set-valued approaches for

bounding solution trajectories of pODEs on a given parameter space [164]. This overestimation
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occurs when set-valued approaches use convex approximations such as interval bounds,

polyhedrals, or relaxations to enclose a nonconvex surface, since these representations are

necessarily inexact. Additionally, these representations do not fully capture the dependence of

intermediate terms on any shared parameters, leading to the well-known “dependency problem”

[193, 255]. Accordingly, the preponderance of research in this area has focused on developing

methods by which tight bounds may be efficiently computed, in the hopes of reducing

overestimation at minimal computational cost. These methods can generally be divided into two

broad families: continuous-time methods, in which relaxations are themselves represented by

auxiliary ODEs; and discrete-time approaches, in which pODEs are discretized into a series of

time points, and then relaxations are computed at each time point.

The first attempts at discrete-time methods were made as part of a simple existence and

uniqueness test based on interval arithmetic [192]. Since then, this approach has been generalized

to a family of two-stage methods that find their basis in Taylor series representations of functions

[33, 214]. The first stage determines a stepsize (h : ti+1 = ti + h) and a priori enclosure of the

solution set of the pODEs system along the entire step (t ∈ [ti, ti+1]). In the second stage, a

tightened enclosure is determined at the end of the step, ti+1. The two stages are then repeated

over the entire time domain or until the determined stepsize diminishes below user-specified

tolerances. Subsequently, several modifications have been introduced to improve the calculated

bounds, including the use of mean-value representations of the integration set [246], the

introduction of a shrink-wrapping algorithm [35, 52], and adaptations regarding the

preconditioning algorithms used in each step [168]. Interval methods have been extended to

develop analogous convex and concave relaxations approaches which rely on characterizing the

truncation error associated with each step by reduced-space convex and convex relaxations

(McCormick relaxations) of the remainder terms [256] and McCormick-Taylor models [255].

Alternative approaches have also been described as Taylor models were constructed with
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ellipsoidal enclosures of the remainders [314]. Houska et al. [138] then presented a set-stable

integrator based on Taylor Model arithmetic along with an extensive analysis of its local

asymptotic stability. Moreover, it has been noted that these discrete-time relaxations can be

related to the analogous continuous-time approaches [315].

One such continuous-time relaxation method, established by Scott and Barton [270], is that

of differential inequalities. As with all continuous-time approaches, this method represents state

relaxations using an auxiliary system of ODEs that can then be integrated using state-of-the-art

software, such as CVODES [274], which makes use of implicit integration schemes, adaptive

time-stepping, and event detection protocols. However, the number of integration variables in the

auxiliary ODEs with nx state variables and np parameters are 4nx, or 4nx + 2nxnp provided that

sensitivity information is required. Additionally, the use of an event detection scheme is required

to fully define the algorithm which may lead to numerical issues. Shen and Scott [276] have

proposed methods to further tighten state relaxations by exploiting model redundancy using

invariants. Subsequently, an affine relaxation-based method was detailed in which interval and

affine relaxations are used concurrently to refine each other [123].

While continuous-time methods benefit from the use of implicit integration schemes,

minimal attention has been paid to the use of implicit methods for constructing discrete-time

relaxations. This has been limited to a preliminary evaluation by Rihm [247], in which the

authors disregard the applicability of implicit Taylor series methods since the interval extension of

the Jacobian of the underlying equation may not exist; a necessary condition for employing an

interval-Newton method. However, they also noted that, in a simple nonstiff example, the implicit

method may produce enclosures with widths that are thirteen orders of magnitude smaller than

the corresponding explicit method, suggesting that a substantial benefit may be achieved provided

that nonsingularity conditions for the Jacobian are met. Implicit linear multistep interval methods
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were addressed by Marciniak et al. [174], but explicit consideration of pODEs was omitted. In

addition, the authors used a fixed-point iteration method to solve these problems. The

convergence of such methods and, in turn, the refinement of state bounds are only guaranteed in

the limit [296]. Furthermore, Marciniak et al. [174] sought to directly adapt implicit linear

multistep methods without consideration for potential improvements that may result from the

consideration of analogous mean value representations. This, coupled with a detailed evaluation

of a potential preconditioning method, may be expected to yield tighter relaxations without

greatly increasing the computational burden.

In our previous work, Wilhelm et al. [328] developed methods to compute relaxations of

discretized systems of equations derived by applying an implicit linear multistep integration

scheme to pODEs. These relaxations provided rigorous bounds in the original decision of the

nonlinear equations present at each discrete-time point. However, this approach omitted any

explicit treatment of the discretization error. The principal contributions of this chapter build on

these results in the following manner:

1. We extend the theory of interval implicit linear multistep methods used in a series of

previous works to allow for rigorously bounding the solution sets of pODEs. We then build

on this to generate convex/concave state relaxations using generalized McCormick

relaxation theory.

2. We investigate implicit approaches by generalizing the interval Hermite-Obreschkoff

method to apply to pODEs and then further develop this into methods for generating

convex/concave state relaxations.

3. We present two case studies taken from the existing literature and compare the

computational efficiency and tightness of the relaxations of the proposed methods.
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This chapter is arranged as follows. In Section 7.2, we establish conventions for

mathematical notation and provide a review of the relevant mathematical background. Section 7.3

details the construction of state relaxations and bounds of pODEs using implicit linear multistep

methods, beginning with fixed stepsize interval methods and concluding with variable stepsize

methods for computing state relaxations. Next, in Section 7.4, we examine the alternative interval

Hermite-Obreschkoff methods. This is followed by two numerical case studies in Section 7.5.

Lastly, we provide our concluding remarks and future research directions in Section 7.6.

7.2 Background

7.2.1 Parametric Ordinary Differential Equations

We adopt the following notation with respect to discrete time points for the pODEs problem

(7.1.1). Let a series of discretization points be denoted t0 ≤ t1 ≤ . . . ≤ tm = T . The stepsize

between t j and t j+1 is given by h j = t j+1 − t j. The solution of (7.1.1) for a parameter value p ∈ P at

time t is denoted x(p, t). State bounds of (7.1.1) evaluated at t = t j are denoted as X j and the

solution of (7.1.1) for a particular p ∈ P evaluated at t = t j is denoted x j : P→ Rnx . Throughout

this chapter, it will be necessary to distinguish between initially known a priori state bounds from

state bounds computed over the course of an algorithm. Therefore, we denote a priori state

bounds as X̃ j,0. Let the set of solutions of (7.1.1) from time t0 = t j to t f = tv with x0(p) = x j(p) be

denoted by x̌(x j,p, t j, tv).

For the remainder of the chapter, we make the following Assumption 7.2.1 which ensures

that the pODEs problem (7.1.1), and relaxations of the right-hand side function f and initial value

function x0, are all well-posed.
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Assumption 7.2.1. The system of pODEs (7.1.1) satisfies the following conditions:

1. x0 : P→ D is locally Lipschitz continuous on P, and

2. f is continuously differentiable on D × Π,

A solution of (7.1.1) is any continuous x : P × I → D such that, for every p ∈ P, x(p, · ) : I → D

is continuously differentiable and satisfies (7.1.1) on I. Furthermore, it is assumed that a unique

solution exists over the time domain I for every p ∈ P. Note that there is no loss of generality

when restricting the analysis to the autonomous case, as the independent variable t may be treated

as an additional dependent variable xnx+1(p, t) = t appended to the solution vector x(p, t) of (7.1.1)

with ẋnx+1(p, t) = 1 and xnx+1(p, 0) = t0. The i-th Taylor coefficient of the solution of (7.1.1) with

respect to t, denoted f[i], is defined by the sequence of functions

f[0](x(p, t),p) = x(p, t)

f[i](x(p, t),p) =
1
i
f(x(p, t),p)

∂f[i−1]

∂x
(x(p, t),p), i ≥ 1

for which

x(p, t + h) =

k−1∑
i=0

hif[i](x(p, t),p) + hkf[k](x(p, t + τ),p), τ ∈ [0, h]

holds. Moreover, we note that the i-th Taylor coefficient of f and (i + 1)-th Taylor coefficient of

x(p, t) are related by the simple formula

x[i](p, t) = f[i−1](x(p, t),p).

The focus of this chapter is on computing rigorous under/overestimators of solutions of the
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pODEs system, referred to as state bounds and state relaxations formalized in Definitions 7.2.1

and 7.2.2.

Definition 7.2.1 (State Bounds [270]). Continuous functions v,w : I → Rnx are called state

bounds for (7.1.1) on P × I if v(t) ≤ x(p, t) ≤ w(t), ∀(p, t) ∈ P × I.

Definition 7.2.2 (State Relaxations). Continuous functions xcv, xcc : I → Rnx are called state

relaxations for (7.1.1) on P × I if xcv(p, t) ≤ x(p, t) ≤ xcc(p, t), ∀(p, t) ∈ P × I provided that xcv, xcc

are convex and concave on p ∈ P, ∀t ∈ I, respectively. For compactness, state relaxations may be

represented as the tuple {xcv, xcc}(p, t).

7.2.2 Existence and Uniqueness

Discretize-then-relax methods for computing interval bounds and relaxations of the solutions of

(7.1.1) are predicated on first computing a stepsize h j and an a priori enclosure X̃ j that contains

all solutions of (7.1.1) for all p ∈ P ∈ IRnp over the time interval [t j, t j + h j]. We denote the range

of the solution {x(p, t) | t j ≤ t ≤ t j+1} for a particular p ∈ P as x(p, t j) These enclosures are

typically computed by adaptively applying an existence and uniqueness test to establish an

adequate stepsize over which an a priori enclosure of the parametric solution of (7.1.1) can be

guaranteed for all p ∈ P. In this subsection, we trace the existing developments of methods for

generating these a priori enclosures. These begin with the computation of an a priori enclosure

through the application of (7.2.2), as a direct result of the following Theorem 7.2.3.

Theorem 7.2.3. (Corollary 2 [256]) Let X̃0
j ∈ ID, and let x̂ j ∈ int(X̃0

j ) with P ∈ IRnp . If

{ k−1∑
i=0

(t − t j)if[i](x̂ j,p) + (t − t j)kF[k](X̃0
j ,p) : t j ≤ t ≤ t j+1,p ∈ P

}
⊂ X̃0

j , (7.2.1)
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then

x̌(x j(p),p, t j, t j+1) ∈
k−1∑
i=0

(t − t j)if[i](x̂ j,p) + (t − t j)kF[k](X̃0
j ,p), (7.2.2)

for all t ∈ [t j, t j+1] and p ∈ P.

Accordingly, an a priori enclosure may then be computed as follows:

X̃ j =

k−1∑
i=0

[0, h j]iF[i](X j, P) + [0, h j]kF[k](X̃0
j , P),

provided that X̃0
j and h j = t j+1 − t j satisfy (7.2.1) for each x̂ j ∈ X j. In the context of enclosing

parametric solutions of (7.1.1), satisfaction of this condition is determined iteratively by

progressively evaluating potential step sizes.

Theorem 7.2.4. (Adapted from Theorem 4 and Corollary 5 of [256]) Let X̃0
j = [x̃L,0

j , x̃U,0
j ] ⊂ D, let

X j ⊂ int(X̃0
j ), and let the functions xcv

j , x
cc
j : P→ X j be, respectively, convex and concave

relaxations of x j on P. Suppose that functions f[i],cv, f[i],cc : D × D × P→ Rnx , i = 0, . . . , k − 1, are

available such that f[i],cv(xcv
j (·), xcc

j (·), ·) and f[i],cc(xcv
j (·), xcc

j (·), ·), are respectively, convex and

concave on P and

f[i],cv(xcv
j (p), xcc

j (p),p) ≤ f[i](x j(p),p) ≤ f[i],cc(xcv
j (p), xcc

j (p),p),

∀x j ∈ [xcv
j , x

cc
j ](p),∀p ∈ P.

Furthermore, suppose that interval bounds of f[i] on X j × P are denoted by F[i] = [f[i],L, f[i],U] for

i = 1, . . . , k and are available. Lastly, suppose that F̃[k] = [f̃[k],L, f̃[k],U] ⊃ F(X̃0
j , P) are also
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available. If

{ k−1∑
i=0

(t − t j)iF[i] + (t − t j)kF̃[k] : t j ≤ t ≤ t j+1

}
⊂ X̃0

j , (7.2.3)

then

1. x̃cv,1
j (p, t) ≤ x j(p, t) ≤ x̃cc,1

j (p, t) for all x j ∈ [xcv
j , x

cc
j ](p), all p ∈ P and all t ∈ [t j, t j+1]

2. the functions x̃cv,1
j (·, t) and x̃cc,1

j (·, t), are, respectively, convex and concave relaxations of

x j(·, t) on P for each t ∈ [t j, t j+1],

with x̃cv,1
j (p, t) and x̃cc,1

j (p, t) defined on [t j, t j+1] × P by:

x̃cv,1
j (p, t) =

k−1∑
i=0

(t − t j)i max {f[i],cv(xcv
j (p), xcc

j (p),p), f[i],L} + (t − t j)k f̃[k],L,

x̃cc,1
j (p, t) =

k−1∑
i=0

(t − t j)i min {f[i],cc(xcv
j (p), xcc

j (p),p), f[i],U} + (t − t j)k f̃[k],U .

State relaxations {x̃cv
j , x̃

cc
j }(p) at time t j can then be computed as

{x̃cv
j , x̃

cc
j }(p) =

k−1∑
i=0

[0, h]i × {f[i],cv, f[i],cc}(xcv
j (p), xcc

j (p),p)

+ [0, h]kF[k](X̃0
j , P). (7.2.4)

In this chapter, a local excess-per-unit-step (LEPUS) approach is used that determines a

stepsize based on user-specified error tolerances [215]. After this step, the interval bounds or

relaxations may be tightened using a second stage. We leave a thorough discussion of this second

stage for later sections, as it is the primary focus of this chapter.
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7.2.3 Affine Refinement of Interval Bounds

It should be noted that when relaxations are computed, their associated subgradients can be used

to construct interval bounds that are tighter than those computed by means of interval arithmetic

[257]. These tighter interval bounds, in turn, may lead to less conservative relaxations computed

through a generalized McCormick relaxation framework. This is achieved by taking a natural

interval extension of the implied affine relaxations, an approach used in several applications

[206, 257, 300]. This approach is summarized in Proposition 7.2.5.

Proposition 7.2.5. Let Z ∈ IRn be nonempty and let f cv, f cc : Z → R be convex and concave

relaxations of f : Z → R, respectively. Let scv
f , s

cc
f : Z → Rn be subgradients of f cv and f cc at

z̄ ∈ Z, respectively. The lower/upper affine relaxations of f , denoted f a,l, f a,u : Z → R,

respectively, are given by:

f a,l(z) = f a,l(z̄) + scv
f (z̄)T (z − z̄),

f a,u(z) = f a,l(z̄) + scc
f (z̄)T (z − z̄).

Furthermore, the extrema of the affine relaxations bounding f over Z are given by

min{ f a,l(θ) : θ ∈ Z} ≤ f (z) ≤ max{ f a,u(θ) : θ ∈ Z}.

The values of the extrema can be computed by direct application of interval arithmetic.

Furthermore, the functions f a,l and f a,u attain their minima and maxima on Z, at za,l and za,u,

given by:

za,l
i =


zL

i if scv
f ,i(z̄) ≥ 0,

zU
i otherwise,

za,u
i =


zL

i if scc
f ,i(z̄) ≤ 0,

zU
i otherwise,
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for i = 1, . . . , n.

7.3 Parametric Implicit Linear Multistep Methods

In this section, we build on two distinct groups of recent research contributions. We generalize the

recent work of Marciniak et al [173, 174], which details the direct application to parametric

interval methods to address parametric forms of the Adams-Moulton linear multistep method.

Moreover, we build on the work of [328] which details a methodology by which convex and

convex relaxation of the numerical solutions of pODEs obtained using implicit linear multistep

methods may be constructed. Parametric interval methods are developed to bound these forms for

all p ∈ P. In order to construct these methods, two key pieces of information are required: the

bounds on the approximate solution by the underlying numerical method and the remainder on

the solution. The approximate solution is specified by evaluating the system of algebraic

equations arising from the base numerical method. In general, this remainder bound can be

formed by computing bounds of the higher-order term in the series approximation used to derive

the corresponding numerical method.

We proceed by introducing a parametric interval version of the Adams-Moulton method and

derive a corresponding mean-valued representation of this method. Next, we will use this

mean-valued form to outline both fixed-point and semi-explicit approaches. Lastly, we will

generalize this to compute convex/concave relaxations of x(· , t) on P for each t ∈ I.
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7.3.1 Mean-Value Form of Parametric Adams-Moulton Methods

Parametric implicit linear multistep methods of order n—also referred to as n-step

methods—require that the values x(p, t j−1), . . ., x(p, t j−n) are known (numerically approximated)

at the jth time step, and these values are used to compute x(p, t j). Interval methods require that

enclosures of x(p, t j), x(p, t j−1), . . ., x(p, t j−n) are known during each step j, denoted as X j,

X j−1, . . . X j−n, respectively. The most natural way to attain bounds X j lies in the use of a priori

bounds computed using a Picard existence and uniqueness test [87] or by making use of the

higher-order existence (HOE) test [65, 214, 256] originating from Theorem 7.2.3, while

X j−1, . . . , X j−n are the values computed during previous time steps. Alternatively, a different Phase

2 contractor, such as Lohner’s method [163], or the Interval Hermite-Obreschkoff method [212],

can be applied first to refine a priori bounds of X j.

The parametric interval Adams-Moulton method only requires derivative information,

namely, the Jacobian of the right-hand side function f, whereas Lohner’s method [163] at t = t j

and the Interval Hermite-Obreschkoff method [212] require derivatives of Taylor coefficients.

This can substantially reduce the CPU time spent computing the Jacobian of f with respect to x.

For an expression that involves N floating point operations per component of f, the computational

complexity of evaluating the Jacobian of f with respect to x is O(Nn2
x). This contrasts the time

complexity associated with computing the Jacobian of the qth Taylor series coefficient, which has

a complexity between O(qNn2
x) and O(q(q + 1)Nn2

x) due to the recursive nature of the calculation

[214]. We begin by detailing the fixed stepsize Adams-Moulton method.
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Definition 7.3.1 (Fixed Stepsize Parametric Adams-Moulton Method [173]). Let n ∈ Z+. The

n-step fixed stepsize parametric Adams-Moulton method is

x(p, t j) = x(p, t j−1) + h
n∑

k=0

β̄kf(x(p, t j−k),p),

where t j−n, . . . , t j ∈ [t j−n, t j] such that ti − ti−1 = h for i = ( j − n + 1), . . . , j and

β̄k = (−1)k
n∑

m=k

(
m
k

)
γ̄m (7.3.1)

such that

γ̄0 = 1, γ̄i =
1
i!

∫ 0

−1

n+1∏
i=1

(w + i − 1)dw

The truncation error τn associated with this n-step method is then given by

τn :=hn+2γ̄n+1f[n+1](x(p, ν̄),p)

=hn+2γ̄n+1x[n+2](p, ν̄),

where ν̄ ∈ [t j−n, t j].

A parametric interval version of the Adams-Moulton method can then be expressed as follows.

Let X j be interval bounds of x(p, t j) on P. Then

X j := X j−1 + h
n∑

k=0

β̄kF(X j, P) + hn+2γ̄n+1F[n+1](X̃ j−k, P) (7.3.2)

defines an update. However, this version is necessarily expansive with w(X j) ≥ w(X j−1). To

mitigate this, we subsequently develop potentially contractive methods based on a mean-value
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expansion of form (7.3.2). Let (x̂ j, . . . , x̂ j−n,p) ∈ X j × . . . × X j−n × P, and µ j : P→ X j and

ρ : P→ P are given by (7.3.3) and (7.3.4), respectively with η ∈ [0, 1].

µ j(p) = η(x j(p) − x̂ j) + x̂ j, (7.3.3)

ρ(p) = η(p − p̂) + p̂. (7.3.4)

Furthermore, let x(p, ν̄) where ν̄ ∈ [t j−n, t j] be a point in X j such that

x(p, t j) = x(p, t j−1) + h
n∑

k=0

β̄kf(x(p, t j−k),p) + hn+2γ̄n+1ψ̄(x(p, ν̄),p), (7.3.5)

holds exactly, satisfying the intermediate value theorem. Further, we define the terms

Jx
j(x j(p),p) = hβ̄ j

∂f
∂x

(µ j(p), ρ(p))

Jp
j (x j(p),p) = h

j−n∑
k= j

β̄k
∂f
∂p

(µk(p), ρ(p))

r j(x j(p),p) = hn+2γ̄n+1f[n+1](x j(p),p)

d j(p) = x̂ j−1 + h
n∑

k=0

β̄kf(x̂ j−k, p̂) + r j(x(p, ν̄),p).

The mean-value form of (7.3.5) is then given by:

x j(p) = d j(p) + Jp
j (x j(p),p)(p − p̂)

+ (I + Jx
j−1(x j−1(p),p))(x j−1(p) − x̂ j−1)

+

n∑
k=0
k,1

Jx
j−k(x j−k(p),p)(x j−k(p) − x̂ j−k). (7.3.6)

Before we proceed, we illustrate how the development of a variable stepsize method closely
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parallels the fixed stepsize method.

Definition 7.3.2 (Variable-Step Parametric Adams-Moulton Method [173]). The n-step variable

stepsize implicit Adams-Moulton method is given by

x(p, t j) = x(p, t j−1) + h j

n∑
k=0

β̂k jf(x(p, t j−k),p),

where t j−n, . . . , t j ∈ [t j−n, t j] such that hi = ti − ti−1 for i = ( j − n + 1), . . . , j, and

n∑
k=0

β̂k jf(x(p, t j−k),p) =

n∑
k=0

gk( j)φk( j) (7.3.7)

where gk( j) and φk( j) are terms defined by a sequence of calculations discussed below, and the

truncation error associated with this n-step method is then given by

hn+2
j β̂n jψ̄(x(p, ν̄),p) = hn+2

j β̂n jf[n+1](x(p, ν̄),p)

= hn+2
j β̂n jx[n+2](p, ν̄),

where ν̄ ∈ [t j−n, t j].

The coefficients β̂k j could then be computed by the method of divided differences given by

Krogh [157]. However, we wish to avoid including prior evaluations of f and the introduction of

subtraction in the computation, which may yield potentially expansive forms. We implement a

symbolic computation of (7.3.7) by associating each f(x(p, t j−1),p) for j = 1, . . . , n with a distinct

unit vector. The addition is performed in a vector fashion, and multiplication is interpreted as

scalar multiplication of a vector. The resulting vectors are summed according to (7.3.7) resulting

in the vector of coefficients β̂k j for k = 0, 1, . . . , n. The following relationships define the recursive

formulas needed to compute the β̂k j terms using this approach. The values gk( j) and φk( j) for
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k = 0, 1, . . . , n − 1 are computed from

φ0( j) = φ̄0( j) = f(x(p, t j−1),p)

φ̄k( j) = φ̄k−1( j) − φk−1( j − 1)

φk( j) = βk( j)φ̄k( j), k = 1, . . . , n − 1.

The coefficients βk( j) are determined by

βk( j) =

k−1∏
i=0

t j − t j−i−1

t j−1 − t j−i−2
.

Furthermore, the calculations of gk( j) are performed in the following fashion

gk( j) = ck,1(t j), j = 1, 2, . . . , n − 1

where ck,q(t j) is defined recursively as follows:

c0,q(t j) =
1
q
, c1,q(t j) =

1
q(q + 1)

,

ck,q(t j) = ck−1,q(t j) − ck−1,q+1(t j)
h j

t j − t j−k
.

Note that this derivation of the variable stepsize parametric implicit linear multistep method

finds its theoretical foundation in Newton-type interpolation of a polynomial and, as a

consequence, is quite similar to the full-space collocation approach employed in dynamic

optimization [16].

Remark 7.3.3. Note that when applying the variable stepsize Adams-Moulton method, the

coefficients β̂k j for k = 1, . . . , n depend only on the time values t j, . . . , t j−n. Thus, the fixed stepsize
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and variable stepsize versions vary only with respect to the value of these constants. As such, we

subsequently use β̄k for all k = 1, . . . , n to denote the coefficients throughout this chapter for

simplicity, noting that they can easily be replaced with the coefficients β̂k j to implement the

variable stepsize method.

7.3.2 Interval Parametric Implicit Linear Multistep Methods

First, we note that x j−k for k = 1, . . . , n are simply functions of p ∈ P, and as a result, we may

apply a parametric interval method to these functions on X j × P in a block sequential manner

similar to the approach used in [328]. Noting that x j−1 and r j can be considered strictly functions

of p (and not x j), (7.3.8) can define the implicit function x j : P→ X j. Assuming that x(p, ν̄) is

determined a priori, then r j(p) is only a function of p. The residual, r j, is defined as:

r j(x j(p),p) =Jp
j (x j(p),p)(p − p̂) + d j(p)

+ (I + Jx
j−1(x j−1(p),p))(x j−1(p) − x̂ j−1)

+

n∑
k=0
k,1

Jx
j−k(x j−k(p),p)(x j−k(p) − x̂ j−k) − x j(p), (7.3.8)

Equation (7.3.8) may be used directly with a parametric interval method [296] such that

x̃(p, ν̄) ∈ X̃(t j−n; t j) :=
⋃n

i=0 X̃ j−n+i. However, this may lead to expansiveness. An interval

extension of r j is computed according to

R j(P) = hn+2
j γ̄n+1

n⋃
i=0

F[n+1](X̃ j−n+i, P), (7.3.9)

which is at least as tight as hn+2
j γ̄n+1F[n+1](X̃(t j−n; t j), P). Note that the term F[n+1](X̃k−n+i, P) is

computed during the first phase of the algorithm. Provided that this value is saved after each time
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step, only a single evaluation of F is required and is therefore efficient. Moreover, interval bounds

may be computed via a parametric interval method. However, Jx
j(x j(p),p)(x j(p) − x̂ j) can

contribute significantly to overestimation and result in weaker bounds. As an alternative, we can

propagate the uncertainty set as a parallelepiped in the manner of Lohner [164]. That is, we

assume that there exists a real-valued matrix A j ∈ R
nx×nx and δ j(p) ∈ ∆ j and x j(p) − x̂ j = A jδ j(p)

form an alternative representation of (7.3.8):

r j(x j(p),p) =Jp
j (x j(p),p)(p − p̂) + (I + Jx

j−1)(x j−1(p),p)A j−1δ j−1(p)

+ D j(p) +

n∑
k=2

Jx
j−k(x j−k(p),p)A j−kδ j−k(p)

+ Jx
j(x j(p),p)(x j(p) − x̂ j) − x j(p). (7.3.10)

Alternatively, we can make use of a semi-explicit update:

X j :=
(
Jp

j (X j, P)(P − p̂) + (I + Jx
j−1(X j−1, P))A j−1∆ j−1

+ D j(P) +

n∑
k=2

Jx
j−k(X j−k, P)A j−k∆ j−k

+ Jx
j (X

0
j , P)(X0

j − x̂0
j)
)
∩ X0

j , (7.3.11)

where X0
j is an a priori interval bound of x(p, t j) on P that may be available as the result of the

Phase 1 method and x0
j ∈ X0

j . The approach is initialized with ∆0 = X0 − x̂0 and A0 = I. The

matrix A j is subsequently determined by taking the orthogonal matrix Q obtained from the QR
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decomposition of m(Jx
jA j−1) and ∆ j is determined by the following update

∆ j =A−1
j

(
Jp

j (X j, P)(P − p̂) + (I + Jx
j−1(X j−1, P))A j−1∆ j−1

+ d j(P) +

n∑
k=2

Jx
j−k(X j−k, P)A j−k∆ j−k

+ Jx
j (X

0
j , P)(X j − x̂ j) − x̂ j

)
,

which simplifies to

∆ j =A−1
j Jp

j (P)(P − p̂) + A−1
j (I + Jx

j−1(X j−1, P))A j−1∆ j−1

+ A−1
j (d j(P) − x̂ j) +

n∑
k=2

A−1
j Jx

j−k(X j−k, P)A j−k∆ j−k

+ A−1
j Jx

j (X
0
j , P)(X j − x̂ j)

Example 7.3.4 (A Scalar Parametric ODE-IVP). Consider the simple scalar ODE-IVP presented

in [256] with a single parameter:

ẋ(p, t) = −x2 + p, t ∈ I = [0, 1], p ∈ P = [−1, 1] (7.3.12)

x0(p) = 9, p ∈ P.

with initial state bounds specified as xL(t) = 0.1 and xU(t) = 9.

The primary challenges that arise from the method presented by Wilhelm et al. [328] relate

to the detection of an appropriate stepsize over which a unique solution is assured for the

nonlinear system corresponding to the implicit linear multistep discretization. While parametric

interval methods may be used to confirm that a unique solution exists, these rely on prior

knowledge of state bounds, and an initial overestimation of the state bounds supplied to the
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k-Step

2 3 4

Interval enclosure width at t = 1 2.72 4.54 5.20

CPU time (s) for interval bounds 0.002 0.0029 0.0035

Table 7.3.1: A comparison of the width of the intervals at final time and the CPU run time (s) required to
calculate the state bounds for Example 7.3.4 using a k-step interval parametric implicit linear multistep

(PILMS) method.

algorithm may lead to nonconvergence of the parametric interval method. For instance, using

state bounds of xL(t) = −100 and xU(t) = 100 for t ∈ I results in nonconvergence. While the

method of Wilhelm et al. [328] yields less conservative bounds for Example 7.3.4, as illustrated in

Figure 7.3.1 (left panel), the PILMS method presented in this chapter automatically and

rigorously accounts for the truncation error, as well as existence and uniqueness concerns at each

time step. When less conservative a priori state bounds are specified, as is the case for the the

initial state bounds of [0.1, 9] in (7.3.12), the explicit accounting of truncation error is the primary

source of overestimation leading to more expansive, but rigorous interval bounds on the true

solution set, not just the numerical solution set.

As seen in the right panel of Figure 7.3.1, the use of a higher-order implicit PILMS which

correspond to increasingly accurate discretization schemes does not necessarily give rise to

tighter interval bounds. As the truncation error term is computed on a larger time interval this

may counter-balance the higher-order power that occurs in the highest order Taylor coefficient.

Additionally, the presence of additional terms naturally leads to overestimation due to the

classical dependency issue associated with interval arithmetic.
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Figure 7.3.1: Local solution trajectories of (7.3.12) of Example 7.3.4 for several p ∈ P are depicted in both
plots for reference (dashed-cyan curves). State bounds are illustrated in each plot for k-step interval

parametric implicit linear multistep (PILMS) methods along with the previous non-validated solution
bounding method presented in [328]. Left: A 2-step PILMS method (red-diamond) is compared to the

non-validated solution bounding method of [328] (green-circle). Right: A 2-step PILMS method
(red-diamond) is compared with 3-step PILMS (blue-square) and a 4-step PILMS methods (green-circle).
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7.3.3 Convex/Concave Relaxations of Implicit Linear Multistep Methods

In this subsection, we present a similar development for the construction of state relaxations and

their corresponding subgradients. We begin by defining the following:

{Jx,cv
j , Jx,cc

j }(p) = h jβ̄ j
∂f
∂x

({µcv
j ,µ

cc
j }(p), {ρcv, ρcc}(p))

{Jp,cv
j , Jp,cc

j }(p) = h j

j−n∑
k= j

β̄k
∂f
∂p

({µcv
k ,µ

cc
k }(p), {ρcv, ρcc}(p))

{rcv
j , r

cc
j }(p) = {f[n],cv

∪ , f[n],cc
∪ }(p)

{dcv
j ,d

cc
j }(p) = hn+2

j γ̄n+1{rcv
j , r

cc
j }(p).

In an analogous fashion, relaxations may be computed from the following sequence of updates:

{xcv
j , x

cc
j }(p) =

(
{Jp,cv

j , Jp,cc
j }(p)(p − p̂)

+ (I + Jx
j−1(p))A j−1{∆

cv
j−1,∆

cc
j−1}(p)

+

n∑
k=2

{Jx,cv
j−k , J

x,cc
j−k }(p)A j−k{∆

cv
j−k,∆

cc
j−k}(p)

+ {Jx,cv
j , Jx,cc

j }(p)({x0,cv
j , x0,cc

j }(p) − x̂0
j)

+ {dcv
j ,d

cc
j }(p)

)
∩ {x0,cv

j , x0,cc
j }(p), (7.3.13)
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using x̂ j and x̂0
j as defined by the interval update given by (7.3.11), and the update used to

compute the values of ∆cv
j (·),∆cc

j (·) are performed as follows:

{∆cv
j ,∆

cc
j }(p) = (A−1

j {J
p,cv
j , Jp,cc

j }(p))(p − p̂)

+ (A−1
j (I + {Jx,cv

j−1, J
x,cc
j−1}(p))A j−1){∆cv

j−1,∆
cc
j−1}(p)

+

n∑
k=2

A−1
j (({Jx,cv

j−k , J
x,cc
j−k }(p)A j−k)){∆cv

j−k,∆
cc
j−k}(p)

+ A−1
j ({dcv

j ,d
cc
j }(p) − x̂ j)

+ (A−1
j {J

x,cv
j , Jx,cc

j }(p))({xcv
j , x

cc
j }(p) − x̂ j). (7.3.14)

Theorem 7.3.1. Let x̃cv,0
j−i , x̃

cc,0
j−i : P→ D be convex and concave relaxations of x(p, t) on

t ∈ [t j−i−1, t j−i] for i = 0, . . . , n − 1. Suppose that functions f[n],cv, f[n],cc : D × D × P→ Rnx , are

available such that f[n],cv(x̃cv,0
j (·), x̃cc,0

j (·), ·) and f[n],cc(x̃cv,0
j (·), x̃cc,0

j (·), ·) are convex and concave on P,

respectively, and

f[n],cv(x̃cv,0
j−i (p), x̃cc,0

j−i (p),p) ≤ f[n](x j−i,p) ≤ f[n],cc(x̃cv,0
j−i (p), x̃cc,0

j−i (p),p) (7.3.15)

for all x j−i ∈ [x̃cv,0
j−i , x̃

cc,0
j−i ](p), for i = 0, . . . , n − 1, and for all p ∈ P. Let

f[n]
∪,u(x j−n, . . . , x j,p) = min

{
f[n](x j−n,p), . . . , f[n](x j,p)

}
, (7.3.16)

f[n]
∪,o(x j−n, . . . , x j,p) = max

{
f[n](x j−n,p), . . . , f[n](x j,p)

}
, (7.3.17)
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then

f[n],cv
∪ (p) = f[n],cv

∪,u ({x̃cv,0
j−n, x̃

cc,0
j−n}(p), . . . , {x̃cv,0

j , x̃cc,0
j }(p),p)

f[n],cc
∪ (p) = f[n],cc

∪,o ({x̃cv,0
j−n, x̃

cc,0
j−n}(p), . . . , {x̃cv,0

j , x̃cc,0
j }(p),p)

where f[n],cv
∪ , f[n],cc

∪ are convex/concave relaxations of f[n](x(p, t)) at p ∈ P for all t ∈ [t j−n, t j].

Remark 7.3.5. Theorem 7.3.1 provides a generalization of the union of interval bounds used in

(7.3.9) to convex and concave relaxations f[n]
∪ at p ∈ P.

Remark 7.3.6. In practice, the terms (7.3.16) and (7.3.17) can be evaluated using the relation:

f[n]
∪,u(p) = min

{
f[n](x j−n,p),min

{
. . . ,min

{
f[n](x j−1,p), f[n](x j,p)

}
. . .

}}
,

f[n]
∪,o(p) = max

{
f[n](x j−n,p),max

{
. . . ,max

{
f[n](x j−1,p), f[n](x j,p)

}
. . .

}}
,

where relaxations of the binary min and max operators can be computed using the rules presented

in [191, 310].

7.4 Parametric Hermite-Obreschkoff Method

An alternative implicit relaxation method finds its roots in the Hermite-Obreschkoff method

[71, 132]. We now recount the derivation of the Hermite-Obreschkoff method attributed to

Darboux [71] and Hermite and Borchardt [132] and extend the interval Hermite-Obreschkoff
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method [212] to parametric analogs. First, we define the following quantities:

Vr,q(w) =
wq(s − 1)r

(r + q)!
,

cr,q
i =

q!(q + r − i)!
(r + q)!(q − i)!

,

gi(p, w) =
1
i!

dig
dwi (p, w),

where r ≥ 0, q ≥ 0, 0 ≤ i ≤ q, and further suppose that g(p, w) is r + q + 1 times differentiable

with respect to w for all p ∈ P. The polynomial

∫ 1

0
Vr,q(w)

dr+q+1g
dwr+q+1 (p, w)dw

is integrated by parts repeatedly until we arrive at the following relation:

(−1)r+q
∫ 1

0
Vr,q(w)

dr+q+1g
dwr+q+1 (p, w)dw

=

q∑
i=0

(−1)icq,r
i gi(p, 1) −

r∑
i=0

cr,q
i gi(p, 0).

Suppose that x(p, t) is a solution of (7.1.1) and set g(p, w) = x(p, t + wh j). Accordingly, for

h j = t j+1 − t j we have

dr+q+1g
dwr+q+1 (p, w) = hr+q+1

j
dr+q+1x
dtr+q+1 (p, t j + wh j)

gi(p, 0) =
1
i!

dig
dwi (p, 0) = hi

j
1
i!

dix
dti (p, t j) = hi

jf
[i](x(p, t j),p, t j)

gi(p, 1) =
1
i!

dig
dwi (p, 1) = hi

j
1
i!

dix
dti (p, t j + h j)

= hi
jf

[i](x(p, t j + h j),p, t j + h j).
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Provided that ν̄ ∈ [t j−1, t j] is selected such that it satisfies the nonlinear system of equations

0 =

q∑
i=0

(−1)icq,r
i hi

jf
[i](x(p, t j+1),p, t j+1)

−

r∑
i=0

cr,q
i hi

jf
[i](x(p, t j),p, t j)

+ (−1)q q!r!
(r + q)!

hr+q+1
j

dr+q+1x
dtr+q+1 (p, ν̄), (7.4.1)

then (7.4.1) may be solved to determine x(p, t j+1) as a single step of a Hermite-Obreschkoff

method of order q − r with an approximation of the local error as O(hr+q+1
j ) [212]. Note that this is

a generalization of Taylor series methods, which for q = 0, we obtain an explicit Taylor series,

and for r = 0, an implicit Taylor series is recovered.

7.4.1 Parametric Interval Hermite-Obreschkoff Method

Provided that a priori bounds are known and that the regularity conditions are satisfied pertaining

to the interval extension of the Jacobian of (7.4.1), state bounds and relaxations can be evaluated

using parametric interval contractor methods or via the implicit function theory of Stuber et al.

[300] as applied to the nonlinear equation (7.4.1). In either approach, the nonlinear form is

iteratively linearized using the mean value theorem, and new relaxations are constructed by

relaxing Newton-like iterations. In the following section, an explicit treatment of the

Hermite-Obreschkoff form (7.4.1) will be derived. This development parallels that of the

relaxation-based method in Sahlodin and Chachuat [255]. This contrasts with the original

Lohner’s method in that terms originating from an implicit Taylor series expansion are also

included in the calculation. Accordingly, this begins by expanding this about the point

(x̂ j, x̂ j+1,p) ∈ X × X × P using the mean value theorem. For ν̄ ∈ [t j−1, t j], let x(p, ν̄) be a point such

239



that

q∑
i=0

(−1)icq,r
i hi

jf
[i](x̂ j+1, p̂)︸                         ︷︷                         ︸

v j+1

+

( q∑
i=0

(−1)icq,r
i hi

jJ
[i]
x (x j+1(p), x̂ j+1, p̂)

)
︸                                        ︷︷                                        ︸

Jx
j+1(p)

(x j+1(p) − x̂ j+1)

+

( q∑
i=0

(−1)icq,r
i hi

jJ
[i]
p (x̂ j+1,p, p̂)

)
︸                                ︷︷                                ︸

Jp
j+1(p)

(p − p̂)

=

r∑
i=0

cr,q
i hi

jf
[i](x̂ j, p̂)︸                ︷︷                ︸

v j

+

( q∑
i=0

cr,q
i hi

jJ
[i]
x (x j(p), x̂ j, p̂)

)
︸                            ︷︷                            ︸

Jx
j (p)

(x j(p) − x̂ j)

+

( q∑
i=0

cr,q
i hi

jJ
[i]
p (x̂ j,p, p̂)

)
︸                       ︷︷                       ︸

Jp
j (p)

(p − p̂)

+ (−1)q q!r!
(r + q)!

hr+q+1
j

dr+q+1x
dtr+q+1 (p, ν̄)︸                                    ︷︷                                    ︸

R j+1(p)

, (7.4.2)

where J[i]
x (w, ŵ, y) is the Jacobian of f[i] with respect to x with its l-th row evaluated at

w + θil(ŵ − w) for some θil ∈ [0, 1]. Furthermore, J[i]
p (y, w, ŵ) is the Jacobian of f[i] with respect to

p with its lth row evaluated at w + ηil(ŵ − w) for some ηil ∈ [0, 1]. We now detail the development

of a computational scheme that mirrors that of Lohner’s method.

For notational simplicity, let d j+1(p) = v j − v j+1 + r j+1(p). Furthermore, assume that

Y ∈ Rnx×nx is a preconditioning matrix. A particularly common choice for this preconditioning

matrix is m(Jx
j+1(X j+1, P)), the element-wise midpoint of the interval extension of the Jacobian.

Once again, we assume that the parallelepiped enclosure of the state variable is available, that is,
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there exists δ j(p) ∈ ∆ j(p) such that x j(p) − x̂ j = A jδ j(p) which is substituted into (7.4.2) to yield

Jx
j+1(p)(x j+1(p) − x̂ j+1) =d j+1(p) + Jx

j(p)A jδ j(p)

+ (Jp
j (p) − Jp

j+1(p))(p − p̂).

Next, this equation is multiplied by the preconditioner and rearranged to yield an expression for

x j+1(p) of the following form:

x j+1(p) =x̂ j+1 + Y−1d j+1(p) + (Y−1(Jx
jA j))δ j(p)

+ (Y−1(Jp
j − Jp

j+1))(p − p̂) − (Y−1(Jx
j+1 − Y))(x j+1(p) − x̂ j+1).

The parallelepiped enclosure is then updated by computing A j+1 as the Q matrix from

QR-factorization of m(B j+1(P)), where

B j+1(P) = m(Jx
j+1(X j+1, P))−1(Jx

j (X j, P)A j),

and ∆ j+1(P) is then updated via the identity ∆ j+1(P) = A−1
j+1(X j+1 − x̂ j+1) after taking an interval

extension. This yields the expression:

∆ j+1(P) =(A−1
j+1B j+1(P))∆ j(P) + (A−1

j+1C j+1(P))(X0
j+1 − x̂0

j+1)

+ (A−1
j+1(Jp

j (P) − Jp
j+1(P))(P − p̂) + (A−1

j+1Y−1)D j+1(P).

Making use of interval bounds P ∈ IRnp and X0
j+1 ∈ IR

nx such that p ∈ P and x j+1 ∈ X0
j+1, we
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obtain the parametric interval version of the Hermite-Obreschkoff method:

D j+1(P) = v j − v j+1 + R j+1(P) (7.4.3)

B j+1(P) = Y−1(Jx
j (P)A j) (7.4.4)

C j+1(P) = Y−1Jx
j+1(P) (7.4.5)

X j+1 = (x̂0
j+1 + B j+1(P)∆ j(P) + C j+1(P)(X0

j+1 − x̂0
j+1)

+ Y−1D j+1(P)Y−1(Jp
j (P) − Jp

j+1(P))(P − p̂) ∩ X0
j+1 (7.4.6)

x j+1 = m(X j+1) (7.4.7)

∆ j+1(P) = (A−1
j+1B j+1(P))∆ j(P) + (A−1

j+1C j+1(P))(X0
j+1 − x̂0

j+1)

+ (A−1
j+1(Jp

j (P) − Jp
j+1(P)))(P − p̂) + (A−1

j+1Y−1)D j+1(P), (7.4.8)

where A j+1 is again the orthogonal matrix Q from the QR-factorization of m(B j+1(P)). An

interval bound X0
j+1 can be obtained via the a priori enclosure obtained using the higher-order

enclosure tests [215] or, alternatively, the parametric interval version of the Lohner’s method may

be applied to first refine these bounds, as discussed by Nedialkov and Jackson [212]. We make

use of the latter approach in this chapter, where the order of the Taylor series used in Lohner’s

method is fixed to r as suggested by Sahlodin and Chachuat [256] to minimize additional

computational time. This may serve to minimize redundant calculations, since when a Lohner’s

method of order r is used, the Jacobian of each Taylor coefficient computed may be stored and

reused in the corrector step outlined by (7.4.3)-(7.4.8).
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7.4.2 Convex/Concave State Relaxations via Parametric
Hermite-Obreschkoff method

We now follow a similar line of development to derive a method to generate convex/concave

relaxations of (7.1.1) via a parametric Hermite-Obreschkoff method. We follow the convention

introduced in Section 7.3.3, in which f : P→ Z, we denote the convex and concave relaxations of

f at a p ∈ P as {fcv, fcc}(p). Accordingly, convex/concave relaxations computed using the

parametric Hermite-Obreschkoff method are given by the following:

{dcv
j+1,d

cc
j+1}(p) = v j − v j+1 + {rcv

j , r
cc
j }(p) (7.4.9)

{bcv
j+1,b

cc
j+1}(p) = Y−1({Jx,cv

j , Jx,cc
j }(p)A j) (7.4.10)

{ccv
j+1, c

cc
j+1}(p) = Y−1{Jx,cv

j+1, J
x,cc
j+1}(p) (7.4.11)

{xcv
j+1, x

cc
j+1}(p) = (x̂0

j+1 + {bcv
j+1,b

cc
j+1}(p){∆cu

j ,∆
cc
j }(p)

+ {ccv
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j , Jp,cc

j }(p)

− {Jp,cv
j+1 , J

p,cc
j+1 }(p))(p − p̂)) ∩ x0

j+1(p) (7.4.12)

x j+1 = m(X j+1) (7.4.13)
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j }(p) − {Jp,cv

j+1 , J
p,cc
j+1 }(p)))(p − p̂)

+ (A−1
j+1Y−1){dcv

j+1,d
cc
j+1}(p). (7.4.14)
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By construction, relaxations calculated from (7.4.3)-(7.4.8) are necessarily tighter than

interval bounds computed according to (7.4.9)-(7.4.14). Moreover, relaxations {∆cv
j+1,∆

cc
j+1}(p) and

{xcv
j+1, x

cc
j+1}(p) and their associated subgradients may be used to refine natural interval bounds that

are used in the standard McCormick arithmetic according to Proposition (7.2.5). This may serve

to further improve relaxations of these values computed at the subsequent time steps

j + 2, j + 3, . . ., and so on.

We now revisit Example 7.3.4 using the Hermite-Obreschkoff parametric interval method

described above. A detailed analysis of the relaxation approach will be reserved for Section 7.5.

All Hermite-Obreschkoff parametric interval methods yield less conservative relaxations than the

previously considered methods. As illustrated in the right panel of Figure 7.4.1, the order 1-1,

2-2, and 3-3 methods all yield similar bounds when a stepsize of h j = 0.01 is specified. The

distinction between these methods becomes more evident when a stepsize of h j = 0.025 is

specified, and a monotonic trend in interval widths at time t = 1 is readily apparent from the left

panel of Figure 7.4.1. This results in a higher-order method that effectively reduces the number of

necessary steps. It is also worth noting that when 40 steps (h j = 0.025) are taken instead of 100

steps (h j = 0.01), the Hermite-Obreschkoff methods result in less overestimation of the final

interval width when compared to the previously considered methods.

7.5 Case Studies

The utility of the two novel approaches introduced herein is assessed on two case studies. All

numerical experiments in this work were run on a single thread of an Intel Xeon E3-1270 v5

3.60/4.00GHz (base/turbo) processor with 16GB ECC RAM allocated to an Ubuntu 18.04LTS

operating system virtual machine and Julia v1.7.1 [36]. The Intel MKL 2022.1 [96] was used to
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Figure 7.4.1: The local solution trajectories of (7.3.12) of Ex. 7.3.4 for several p ∈ P are depicted in both
plots for reference (dashed-cyan). Left: An illustration of state bounds for interval Hermite-Obreschkoff

methods of r − q order: 1-1 (red-diamond), 2-2 (blue-rectangle), and 3-3 (green-circle). The bounds are
compared to those obtained using a 2-step PILMS method (purple-diamond) and the previous

non-validated solution bounding method presented [328] (orange-circle). Each method is applied to
Example 7.3.4 assuming a stepsize of h j = 0.01. Right: The state bounds associated with interval

Hermite-Obreschkoff methods of r − q order: obtained when the step-size of h j = 0.025: 1-1
(red-diamond), 2-2 (blue-rectangle), and 3-3 (green-circle).
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r − q Order

1-1 2-2 3-3

Interval enclosure width, 100 steps 0.9346 0.9146 0.9138

Interval enclosure width, 25 steps 1.2079 1.0863 0.9600

CPU time (s) interval bounds, 100 steps 0.0049 0.0060 0.0079

CPU time (s) interval bounds, 25 steps 0.0010 0.0015 0.0020

Table 7.4.1: Comparison of the width of the interval at final time to the the CPU run time (s) per step
required to calculate the state bounds and state relaxations for Example 7.3.4 using a Hermite-Obreschkoff

method of order r − q.

perform all LAPACK [11, 320] and BLAS [40] routines. All ∂f/∂x and ∂f/∂p functions were

symbolically derived, manually simplified, and provided to the integrator as user-defined

functions. In principle, an automatic differentiation tool such as ForwardDiff.jl [245] could be

used for this step. However, the use of overloading automatic differentiation tools can lead to

significant expansiveness in the enclosures due to dependency effects. As such, user-defined

functions are often preferred, as these implementation-dependent effects may be avoided. Interval

arithmetic was performed using the IntervalArithmetic.jl library [260] and McCormick

relaxations were computed using the library present in McCormick.jl [329]. Each example

presented in this chapter is openly available on a Github repository,

https://github.com/PSORLab/RSImplicitIntegrators. The DifferentialEquations.jl

package was used to integrate ODEs [239].

Two case studies are considered that are common to the dynamical systems literature: the

Van der Pol Oscillator and the Lotka-Volterra Predator-Prey Model. Each of the methods

discussed in this work was applied to each case study and analyzed.
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7.5.1 Van der Pol Oscillator

Consider the pODE system that represents the Van der Pol Oscillator:

ẋ1(p, t) = x2, (7.5.1)

ẋ2(p, t) = p(1 − x2
1)x2 − x1,

over the time domain I = [0, 3], with the initial condition x0(p) = (1.4, 2.3), and parameter

p ∈ [1.3, 1.4]. The initial state bounds of X = [−3, 3] × [−6, 4] are set based on a preliminary

exploratory analysis, as these are required by the non-validated 2-step Adams-Moulton method

[328]. The following methods for computing state bounds are compared: (i) a fixed stepsize

non-validated 2-step Adams-Moulton method [327], (ii) a fixed stepsize validated 2-step

Adams-Moulton method presented in Section 7.3.3, and (iii) a Hermite-Obreschkoff method of

order 3-3 presented in Section 7.4.2. In each case, 200 steps are used, (i.e., h = 200/3). The

resulting trajectories are shown in Figure 7.5.1. The validated 2-step Adam-Moulton method

detailed in this chapter results in tighter state bounds than the previous non-validated 2-step

Adam-Moulton method. Method (iii) results in equivalent state bounds to Method (ii) for x1 at

early times, but begins to diverge at later times, while for x2 the state bounds computed by Method

(ii) are initially weaker until the bounds computed using Method (iii) begin to rapidly diverge.

Methods (i), (ii), and (iii) ran in 0.0032, 0.0065, and 0.436 CPU seconds, respectively.

Clearly, a significant reduction in run time is achieved by using the lower-order Method (ii) as

opposed to Method (iii). The greater CPU run time of Method (ii) relative to Method (i) is

expected due to the inclusion of existence and uniqueness tests in Stage 1 as well as the

underlying mean-value expansion. As such, the PILMs method developed herein may present an

attractive alternative to existing interval Hermite-Obreschkoff and the non-validated implicit

247



PILMs method. We now proceed to examine a second example and the potential of adaptive

stepsize and relaxation-based approaches in conjunction with these methods.

Figure 7.5.1: Plots of the state bounds for x1(p) and x2(p) of the Van der Pol oscillator example (Sec.
7.5.1) computed using Method (i) a fixed stepsize non-validated 2-step Adams-Moulton method [327]

(red-diamond), Method (ii) a fixed stepsize validated 2-step Adams-Moulton method presented in Section
7.3.3 (blue-rectangle), and Method (iii) a Hermite-Obreschkoff method of order 3-3 presented in Section

7.4.2 (green-circle), along with some solution trajectories of (7.5.1) (teal-dash).

7.5.2 Lotka-Volterra System

A Lotka-Volterra system consists of a two-dimensional ODE system used to model predator-prey

interactions. A common variation of the Lotka-Volterra system encountered in reachability

analysis and state relaxation research [122, 256, 276], consists of the differential equations

ẋ1(p, t) = p1x1(1 − x2), (7.5.2)

ẋ2(p, t) = p2x2(x1 − 1).
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We consider the time domain I = [0, 4], which was chosen to help visualize differences among the

methods considered. The initial condition is taken to be the constant values x0(p) = (1.2, 1.1),

with the parameters p ∈ P = [2.99, 3.01] × [0.99, 1.01]. Since the non-validated 2-step

Adams-Moulton method [328] requires an initial state bounds be provided and after initial

exploratory analysis we assume constant state bounds of X = [0.1, 2]2. However, we note that

there are several methods to furnish these state bounds for general systems, including classical

parametric interval methods [154, 218].

Five distinct state relaxation methods are compared, allowing for contrasting analyses of

both fixed stepsize and adaptive stepsize methods along with both of the implicit methods

presented herein. The methods are: (i) a fixed stepsize non-validated 2-step Adams-Moulton

method with h = 0.04 [327], (ii) a fixed stepsize validated 2-step Adams-Moulton method with

h = 0.04 presented in Section 7.3.3, (iii) a Hermite-Obreschkoff method of order 3-3 with

h = 0.04 presented in Section 7.4.2, (iv) the adaptive version of the validated 2-step

Adams-Moulton method presented in Section 7.3.3, and (v) the adaptive version of the

Hermite-Obreschkoff method of order 3-3 presented in Section 7.4.2. Plots of the state bounds

calculated by applying the relaxation methods with subgradient-based interval refinement at the

reference point p = (3.0, 1.0) are shown in Figure 7.5.2. An existence-and-uniqueness test of

order 3 was used for Methods (ii) and (iv), while a test of order 7 was used for Methods (iii) and

(v). The absolute and relative tolerances for LEPUS control of the adaptive methods were set to

10−5 based on the local truncation error. We note that this LEPUS control scheme cannot ensure

error below tolerance values due to inherent overestimation, also associated with parametric

uncertainty.

We observe that each of the validated methods (ii) - (v), which rigorously account for

truncation error and do not require prior knowledge of existing state bounds, provide tighter state
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Method i ii iii iv v

Steps 100 100 100 56 45

CPU time (ms) 1.5 4.3 33.1 4.4 15.1

CPU time per step (ms) 0.015 0.043 0.331 0.079 0.336

Table 7.5.1: A comparison of the CPU run time (ms) and steps taken for each method used for the
Lotka-Volterra example presented in Section 7.5.2. The methods compared are as follows: (i) a fixed

stepsize non-validated 2-step Adams-Moulton method with h = 0.04 [327], (ii) a fixed stepsize validated
2-step Adams-Moulton method with h = 0.04 presented in Section 7.3.3, (iii) a Hermite-Obreschkoff

method of order 3-3 with h = 0.04 presented in Section 7.4.2, (iv) the adaptive stepsize validated 2-step
Adams-Moulton method presented in Section 7.3.3, and (v) the adaptive stepsize Hermite-Obreschkoff

method of order 3-3 presented in Section 7.4.2.

bounds than Method (i). The adaptive methods (iv) and (v) use fewer time steps than the fixed

stepsize approaches. However, additional calculations are required for the LEPUS control

approach. As a consequence, the CPU run time used by each algorithm for the adaptive approach

may not improve for algorithms which construct second-stage bounds quickly and efficiently. We

observe this when comparing methods (ii) and (iv). Although the adaptive method takes 56 steps

to furnish wider bounds than the 100-step method, the overall time per step taken increases from

0.043 ms to 0.079 ms fully offsetting any potential improvement to overall CPU time. For the

more computationally expensive methods (iii) and (v), the CPU time spent per step was relatively

unchanged from 0.331 to 0.336 and as a result the adaptive method resulted in a reduction of

overall CPU time from 33.1 ms to 15.1 ms.
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7.6 Conclusion

In this work, we introduced two novel implicit discretize-then-relax methods for calculating

convex/concave relaxations of the solutions of pODEs. The first method was developed by

analyzing mean-value forms of interval PILMs methods and subsequently extending these

methods to enable the computation of associated relaxations. A variable stepsize form of the

PILMs methods was described that integrates into the LEPUS framework, allowing the number of

time steps evaluated to be dictated by user-specified tolerances. A second method by which state

relaxations are computed was developed based on an adaptation of the interval

Hermite-Obreschkoff approach.

We also addressed two case studies and contrasted our newly developed approaches with the

previous fixed stepsize PILMs approach [328]. In each case, the PILMs approaches introduced

herein provided tighter bounds and relaxations in slightly more computational time when used

with the same number of steps as the fixed stepsize approach while bounding the true solution of

the pODEs rather than a numerical approximation thereof. Moreover, when an adaptive stepsize

approach was enabled, the novel method provided weaker bounds and relaxations in comparable

computational time, illustrating the inherent performance of the simpler method. Additionally, we

illustrated that the Hermite-Obreschkoff methods for computing relaxations did not necessarily

improve the overestimation of the bounds and relaxations for either fixed or adaptive stepsize

routines relative to the PILMs method despite significantly longer run times.

One avenue of future research that merits study lies in the use of our novel methods in

conjunction with a discrete-time differential inequality method [336]. The current state-of-the-art

method makes use of an explicit Euler discretization; as such, our methods may be integrated as

an additional corrector step resulting in further refinement of state bounds. This should reduce

overly-conservative state bounds and state relaxation calculations allowing for larger step sizes.
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Figure 7.5.2: State bounds for the Lotka-Volterra system example (Sec. 7.5.2) are determined using a
subgradient refinement procedure with Method (i) a fixed stepsize non-validated 2-step Adams-Moulton

method with h = 0.04 [327], (red-diamond), Method (ii) a fixed stepsize validated 2-step Adams-Moulton
method with h = 0.04 presented in Section 7.3.3 (blue-rectangle), and Method (iii) a Hermite-Obreschkoff

method of order 3-3 with h = 0.04 presented in Section 7.4.2 (green-circle) in the left panels (left) and are
compared to Method (i) (red-diamond), Method (iv) the adaptive version of the validated 2-step

Adams-Moulton method presented in Section 7.3.3 (blue-rectangle), and Method (v) the adaptive version
of the Hermite-Obreschkoff method of order 3-3 presented in Section 7.4.2 (green-circle) (right) for state
variables x1(p) (top) and x2(p) (bottom). Local trajectories for p ∈ P are given for reference (teal-dash).
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Chapter 8

Robust Optimization of Surrogate Models
with Validity Constraints

In Stuber et al. [299], the worst-case design of a subsea oil production facility (illustrated in

Figure 8.1.1) was formulated as an operation under uncertainty feasibility problem and solved

using several novel methodologies. Namely, the problem was reformulated as an SIP with

implicit functions embedded. The subsea separator model uses transcendental functions with

definitions on narrow domains that result in numerical difficulties when simulating and optimizing

the system. For the purposes of this chapter, the interest is not in the application itself, but in the

model as representative of a broader class of industrially-relevant examples plagued by numerical

simulation and convergence issues caused by domain violations. Within this context, it is of

interest to explore how hybrid modeling approaches might be used to improve the robustness of

an first-principles model and solvers (i.e., improve the reliable convergence to accurate solutions).

Domain violations are ubiquitous across process systems engineering applications and pose

major challenges to researchers and practitioners of simulation and optimization [17, 102, 321].

Within the broader context of numerical simulation, domain violations are encountered when a
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solver attempts to evaluate an expression at a point outside of its defined domain (e.g., divide by

zero or square-root a negative number). Hybrid models may pose additional challenges as they

may also suffer from violations of their domains of validity. That is, a solver may attempt to

evaluate a DDM at a point outside of the domain of inputs for which the DDM is considered to be

“valid” (i.e., accurately represents reality). When considering the optimization of hybrid models,

domain violations may be frequently encountered when such domains are not explicitly known

and accounted for with appropriate constraints.

In Stuber et al. [299], a method of forward-backward interval constraint propagation on the

DAG [262, 296], interval contractor methods [219], a novel convex/concave relaxation algorithm

[300], and a novel algorithm for solving SIPs [298] were all necessary to solve this problem.

While these methods adequately address the problem in question, the broad and robust

applicability of this approach to more generalized SIPs is wanting. We should note, however, that

this approach reduces the problem in question from a generalized semi-infinite program to that of

a standard SIP. This, combined with a desire to generalize the prior results to allow for the

incorporation of more complex physical phenomena, further motivates our interest in this

example.

8.1 Hybrid Model Formulation

In this study, the focus is on a modification of the gas-liquid/liquid-liquid separation train problem

presented in Case 3 of Stuber et al. [299]. To model the performance of gas separation in each

separator, simple exponential decay models based on mean gas bubble sizes were assumed [299].

The relationship between inlet and outlet gas quantities may be expected to change in meaningful

ways when a population-based model of bubble sizes is incorporated along with information
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Figure 8.1.1: The process flow diagram for the subsea separator (adapted from Stuber et al. [299]), is
presented in this figure. This system is considered in the subsea separator case study for the use of hybrid

models to overcome numerical domain violation issues. A mixture of gas, oil, and water is fed to the
system in S1. Gas is separated from the oil-water mixture in the gas-liquid separator and oil is separated

from water in the liquid-liquid separator.

about the equipment’s geometry. Moreover, for bubbly mixtures, overflow can occur in volumes

less than those considered by solely taking into account liquid levels, provided a large gas

concentration is present in the inlet. In practice, this type of problem is typically characterized

using a mixture of computational fluid dynamics software and empirical investigation.

We propose simplifying the published model by using an ANN surrogate model to relate the

input variables to the gas-liquid separator and the control variable for the second valve (V-2) to

the system outputs. This serves to eliminate the domain violation issue inherent in the model, as

the activation functions considered lack domain restrictions, and allow the system-level model to

be readily generalized to incorporate information from computational experiments generated by

CFD models, or elsewhere. The inputs, outputs, and expected ranges of each variable in each

ANN are summarized in Table 8.1.1. As the development of CFD models is often time

consuming, equipment specific, and not the central focus of this work, we will forgo this and

instead illustrate how this approach works at the system level. We use the prior mass balances and

process specifications for the gas-liquid separator (GLS) and the liquid-liquid separator (LLS).

The governing equations for the first valve (V-1), and the gas mixer will be left unaltered. The
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equations governing V-1 lead to the following simplified relationships:

ξW,1 = 1 − ξG,1 − ξO,1, (8.1.1)

S G−1
mix =

ξG,1

S GG
+

ξW,1

S GW
+
ξO,1

S GO
,

ṁ2 = u1Cv1

√
S G−1

mix(Pwell − PGLS ) + εd

ξ2 = ξ1.

These equations specify that the mass fractions in the input stream (ξW,1, ξG,1, ξO,1) sum to one,

provide a formula relating specific gravity of the mixture S Gmix to the specific gravity of

individual components (S GG, S GW , S GO), and relate the mass flow rate through the valve ṁ2 to

valve position (u1), valve coefficient (Cv1) and a specified pressure difference (Pwell − PGLS )

between the GLS and the wellhead. A small number εd = 10−6 is added to the argument of the
√
·

function to avoid the introduction of numerically ill-posed gradients that present computational

issues for local NLP subproblems encountered during global optimization.

Simple algebraic substitutions of the equations governing V-2 and the LLS behavior lead to

the following algebraic expression:

ξG,7 = ξG,4 exp
(
−ṁ4kLLS

VLLS

ρ4 + εd

)
. (8.1.2)

While additional expressions are required to fully determine all stream characteristics in the

flowsheet, the LLS performance specification (8.1.2) is sufficient to construct the SIP constraint.

This specification relates the inlet gas mass fraction ξG,4, density ρ4, and mass flow rate ṁ4 to the

oil product stream gas mass fraction ξG,7 by means of a performance constant kLLS . Due to

downstream equipment specifications, the oil product stream gas mass fraction may not exceed

the value Gmax = 0.05. The full model can be found in Stuber et al. [299] with the analysis of the
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Variable Lower Upper Unit Layer

ṁ2 8.228 19.517 kg/s Input

u2 0.35 0.8 - Input

ξG,2 0.35 0.5 - Input

ξW,2 0.1 0.25 - Input

ṁ4 541.364 845.881 kg/s Output

HGLS 0.462165 0.7992 m Output

ξG,4 9.463053 × 10−3 0.36 - Output

P4 4.00264 × 106 4.01079 × 106 Pa Output

ρ4 584.6 1376.6 kg/m3 Output

Table 8.1.1: The state variables for the subsea separator case study are listed in this table along with their
corresponding bounds, units, and identification of whether they are classified as inputs or outputs for the
hybrid model. Bounds directly specified by Stuber et al. [299] were used if available. Otherwise, natural

interval extensions of known quantities were used to compute necessary values. The parameters Cv1, S GG,
S GW , S GO, ga, Pwell PLLS , PGLS , kGLS , LGLS , and RGLS take the values specified in Stuber et al. [299].

DAG in Stuber [296, Sec. 8.1].
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8.2 Data-Driven Model Construction

Training data was generated by repeatedly solving a feasibility problem equivalent to the

nonlinear system:

(ξG,2 − 1)ṁ2 − (ξG,4 − 1)ṁ4 = 0 (8.2.1)

u2
2C

2
v2ρ

o
W(P4 − PLLS ) − ρ4ṁ2

4 = 0

(P4 − PGLS ) − ρ4gaHGLS = 0

ξG,2 exp
(
−kGLSρ4

(ξG,4 − 1)VGLS (HGLS )
(ξG,2 − 1)ṁ2

)
− ξG,4 = 0

ρ4
ξG,4

S GG
+ ρ4

ξG,2(ξG,4 − 1)
S GW(ξG,2 − 1)

+ ρ4
ξG,2(ξG,4 − 1)(1 + ξW,2 − ξG,2)

S GO(ξG,2 − 1)
− ρo

W = 0

VGLS − LGLS

(
(HGLS − RGLS )

√
(2RGLS HGLS − H2

GLS ) + R2
GLS cos−1

[
1 −

HGLS

RGLS

])
= 0

that is parameterized by w = (ṁ2, u2, ξG,2, ξW,2) ∈ W. Ipopt [317] was used to solve (8.2.1) with a

multistart approach using 16 initial guesses chosen via an LHC sampling procedure for each set

of parameters considered. An LHC sampling procedure was then performed over a range of valid

values given in Table 8.1.1 to generate 105 data points used to train the DDM. As noted in Stuber

et al. [299], the implicit function characterized by (8.2.1) may not exist for some realization of

uncertainty and control variables. Values that yielded a locally-infeasible result were labelled

accordingly, while the solutions of the feasible problems were saved. Of the 105 points generated,

6,742 infeasible points were evaluated.

The approach to training the ANNs for this problem, parallel the previous examples. The

data set was scaled using a min-max normalization and divided randomly into training (70%),

validation (15%), and test (15%) sets. Training was performed using the Keras [61] module in the

nightly version of Tensorflow [1] with the Adam optimizer. The surrogate ANN consisted of four
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inputs, two dense layers, twelve neurons per layer, and utilized the SiLU activation function. A

sigmoid output layer was used to ensure that the output results remained within the range of the

training data. The surrogate model had min-max-scaled mean-squared-error (MSE) values of

7.74 × 10−5 and 2.2506 × 10−4 on the training and test sets, respectively. The validity constraint

consists of an ANN with four inputs, two hidden layers, two neurons per layer, and utilizes the

SiLU activation functions with a single hyperbolic tangent output layer that is trained using a

binary cross-entropy loss function. This achieved a binary accuracy greater than 99.0% on both

the test and training sets. Weights and offsets for both the surrogate model and the validity

constraint can be found in the Git repository. Both the surrogate and classifier ANNs used a

learning rate schedule that began with a value of 0.1 and was decreased by a factor of 0.5 every

100 epochs. We note here that, due to the nature of the application, no classifier can be expected

to be exactly accurate as the valid and invalid regions adjoin one another.

8.3 SIP Formulation and Results

Any ANN can only be expected to provide valid results when interpolating and special

consideration must be given to exclude invalid operating parameters. In general, two distinct

outcomes must be considered: either a domain violation arises from a purely numerical

consideration (e.g., instability) or one that corresponds to a nonphysical operating condition (e.g.,

negative density). In the former case, the accuracy of the hybrid model should be verified to

guarantee the results for the corresponding robust operation problem. In the latter case, restricting

the model to a domain of validity is sufficient to ensure a guarantee of robustness.

Ensuring validity regions for surrogate models remains an active area of research within the

optimization community. Some approaches include restricting the function evaluations to be
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within the convex hull of a finite number of sampled points [18, 145] or categorizing the data

using a support vector machine [236, 268]. In either case, this restriction can be framed as a

potentially nonconvex constraint gc : Z ×Π×U → {−1, 1} where gc(ẑ,π,u) = −1 indicates a valid

model for (ẑ,π,u) ∈ Z × Π × U. We note that the forms addressed pertain to standard

optimization formulations and the extension of these approaches to multilevel programs has yet to

be developed. In keeping with surrogate modeling frameworks adopted in this chapter, we choose

to make use of a second ANN, f ANN
c : Z × Π × U → R, in addition to the surrogate model, to

perform a binary classification task via logistic regression.

The binary classification task is performed as follows. Provided that f ANN
c (ẑ,π,u) ≤ 0, the

input features is classified as gc(ẑ,π,u) = −1 (valid classification). In a corresponding manner,

the classification ANN predicts that the the input features will be classified as gc(ẑ,π,u) = +1

(invalid classification) due to a domain violation f ANN
c (ẑ,π,u) > 0. With this validity constraint,

the robust feasibility constraint takes the logical form:

∀π ∈ Π,∃u ∈ U : g(ẑ,π,u) ≤ 0 ∧ gc(ẑ,π,u) ≤ 0 ∧ h(ẑ,π,u) = 0. (8.3.1)

For this problem, the state variables ẑ can be calculated as an explicit function

z : Π × U → Z such that h(z(π,u),π,u) = 0 for every (π,u) ∈ Π × U. The robust operation

problem can then be formulated as an SIP with a nonsmooth semi-infinite constraint:

η∗ = max
π∈Π,η∈H

η (8.3.2)

s.t. η ≤ max {g(z(π,u),π,u), gc(z(π,u),π,u)},∀u ∈ U.

Alternatively, (8.3.2) may be reformulated as an SIP with a disjunctive constraint or as a

mixed-integer SIP. Note that this form is identical to the structure encountered when relaxing a

260



generalized semi-infinite program and the reader is directed to Mitsos and Tsoukalas [189] for a

discussion of the numerical eccentricities associated with solving that problem class. The robust

design problem for the subsea separator may then be formally stated as:

η∗ = max
π∈Π,η∈H

η (8.3.3)

s.t. η ≤ max
{
ξG,7(π,u) −Gmax, gc(z(π,u),π,u)

}
, ∀u ∈ U

U = [0.35, 0.8]2

Π = [0.35, 0.5].

We note that the valid region of the developed binary classifier is bounded by a 0-sublevel

set, which is potentially a disconnected and nonconvex set, and therefore the following

equivalence can be established:

{(π,u) ∈ Π × U : gc(z(π,u),π,u) = −1} ⇔ {(π,u) ∈ Π × U : gt(z(π,u),π,u) ≤ 0},

with gt(· , · , · ) ≡ f ANN
c (· , · , · ). By construction, gt is continuous on its domain, and so this

reformulation ensures that the semi-infinite constraint is continuous, and in turn, ensures that the

convex/concave relaxations used in the subproblem of the SIPres algorithm [188] exhibit

desirable convergence properties [203]. Under this equivalence, the SIP (8.3.3) is reformulated as:

η∗ = max
π∈Π,η∈H

η (8.3.4)

s.t. η −max
{
ξG,7(π,u) −Gmax, gt(z(π,u),π,u)

}
≤ 0, ∀u ∈ U

U = [0.35, 0.8]2

Π = [0.35, 0.5].
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We first solved this hybrid model using the SIPres [188] routine provided in EAGO v0.6.1

[326, 327] and using the convex/concave envelope of SiLU described in Chapter 4 [331]. The SIP

was solved to an absolute tolerance of 10−3. The algorithm terminated in 3 iterations, taking 2.9

CPU seconds when using the envelope of SiLU when computing relaxations. The SIPres

algorithm terminated after an optimal value was found in the lower-bounding problem and the

maximal value of the corresponding lower-level problem was found to be nonpositive with a

value of η∗ = −6.6 × 10−4. In contrast, the original method in Stuber et al. [299] provided a

solution value of −5.77 × 10−3 for this case study. However, it is worth noting that the method

proposed by Stuber et al. [299] has an early-termination criterion whereby the algorithm

terminates with a feasible suboptimal solution as soon as robustness is verified. Thus, the solution

value obtained by Stuber et al. [299] is an upper bound on the global solution. Despite this, we

notice that η∗ > −5.77 × 10−3, seemingly in violation of the upper bound for the full mechanistic

model [299].

Since the hybrid model utilizes an ANN to approximate the original equations exhibiting

numerical issues (i.e., domain violations), such discrepancies are anticipated. The level of

confidence in the solution lies in the accuracy of the trained model versus the constraint

satisfaction and algorithm convergence tolerances. In practice, it may be possible verify SIP

feasibility of an optimal solution with respect to the full mechanistic model. However, this

depends entirely on the existence and complexity of such a model. For this case, the results verify

that both models ensure the robust feasibility of this operation. A performance normalization was

used based on CPU single-core IPC using the Cinebench R15 (Maxon, Newbury Park, CA)

single-core benchmark to enable a fair comparison of the performance of the approach in this

work versus Stuber et al. [299]. The normalized results indicate a 70-fold performance

improvement over the original solution time of 549.3 CPU seconds reported by Stuber et al.

[299]. In this particular case, we expect this improvement to be genuine as prior comparisons of
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Julia/EAGO to C++/MC++ implementations differed only by at most a factor of three [326].

However, the degree of computational performance improvement for the surrogate modeling

approach relative to the original work of Stuber et al. [299] will undoubtedly be model-specific.

As such, we make no broad claim of superior performance for this method. However, this

example does illustrate that the use of surrogate modeling represents a viable approach to

eliminate the need to apply specialized parametric interval analysis [219, 296], constraint

propagation techniques [299], and implicit relaxation [300] methods when addressing bilevel

optimization problems with coupling equality constraints, by replacing these models with a

formulation that can be readily addressed with standard global optimization solvers.
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Chapter 9

Future Opportunities

9.1 Edge-Convex and Edge-Concave Relaxations of
Algorithms

The software methods developed in Chapter 3 and subsequent approaches developed in Chapters

6 and 7 fundamentally rely upon methods by which convex/concave relaxations of general

nonlinear functions may be computed. Recent work by Hasan and coworkers [19, 124] detailed a

novel method by which a polyhedral convex envelope is derived from edge-concave

underestimators. These estimators may be composed with other convex and concave relaxations

in order to generate polyhedral edge convex envelopes of general algorithms. Two preliminary

theorems are given by 9.1.1 and 9.1.2 that establish rules for composition and addition.

Theorem 9.1.1 (Edge-Concave Underestimators and Edge-Convex Overestimators of Sums). Let

D = {d1, . . . , dm} be the set of vectors such that for each edge E of a polyhedron P, D contains a

vector parallel to E. Let Z ⊂ Rn be a nonempty convex set such that P ∩ Z is nonempty and
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g, gu, go : Z → R such that g(z) = g1(z) + g2(z). Let gu
1, g

o
1 be edge-concave underestimators and

overestimators of g1 on P ∩ Z. Similarly, suppose that gu
2, g

o
2 be edge-concave underestimators and

overestimators of g2 on P ∩ Z. Then, wu, wo : Z → R, such that

gu(z) = gu
1(z) + gu

2(z), wo(z) = go
1(z) + go

2(z), (9.1.1)

are, respectively, an edge-concave underestimator and an edge-concave overestimator of w on

P ∩ Z.

Proof. On the restriction of Z to all segments in P that are parallel to an edge of P, the

edge-concave underestimators gu
1 and gu

2 are concave and concavity is closed under addition.

Further, gu is trivially an underestimator of g on Z. An analogous argument holds for

edge-concave underestimators. �

Proposition 9.1.2 (Edge-Concave Underestimators and Edge-Convex Overestimators of

Univariate Composition). Let P be a polyhedron, let Z ⊂ Rn and X ⊂ R be convex sets such that

Z ∩ P and X are nonempty. Consider the composite function w = φ ◦ q where w : Z → R is

continuous, φ : X → R, let q(Z) ⊂ X. Let qu : Z → R and qo : Z → R be edge-concave

underestimators and edge-convex overestimators of q on Z, respectively with qu(Z) ⊂ X and

qo(Z) ⊂ X. Let φu : X → R and φo : X → R be convex and concave relaxations of φ on X,

respectively. Let ξ∗min be a point at which φu attains its minimum on X and let ξ∗max be a point at

which φo attains its maximum on X. Then the convex and concave relaxations are, respectively,

given by

wu : Z → R : z 7→ φu(mid(qu(z), qo(z), ξ∗max)) (9.1.2)

wo : Z → R : z 7→ φo(mid(qu(z), qo(z), ξ∗min)). (9.1.3)
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Proof. We clearly have Qu(z) ≤ Qo(z) for all z ∈ Z. We proceed with proof for each of the three

cases in (9.1.3). Suppose that φ(qu(z), qo(z), ξ∗min) = ξ∗min ∈ X, then φo(ξ∗min) is trivially convex.

Next suppose that φ(qu(z), qo(z), ξ∗min) = qo(z), ξ∗min ≤ qu(z) ≤ g(z) ≤ qo(z). Since φo is convex it is

non-decreasing where x ≥ ξ∗min, and qo(z) ∈ X by assumption then φo ◦ qo is convex. Moreover,

suppose that φ(qu(z), qo(z), ξ∗min) = qu(z) then qu(z) ≤ q(z) ≤ qo(z) ≤ ξ∗min and φo is convex

therefore it is non-increasing on x ≤ ξ∗min,and qu(z) ∈ X by assumption then accordingly φo ◦ qu is

convex. An analogous proof which holds for (9.1.2) is left to the reader. �

Additional results would be required to establish composition rules for multiplication and further

extend edge-convex and edge-concave to factorable programs and general functions defined by

algorithms in the manner that exists for McCormick relaxations.

9.2 Composite Relaxations of Functional Forms

In Chapter 4, improved relaxations of common activation functions are detailed, while in Chapter

5 improved relaxations of the composite bilinear term are described. Further analysis of the

specific functional forms represents a significant avenue for future research.

Two key functional forms that have yet to be addressed in this manner include the trilinear

form and multilinear monomials. These are common to important pooling and chemical kinetic

problems, as evidenced by the large body of work devoted to these forms. Crama [67] examined

situations in which a standard linearization process yielded the convex envelope of the multilinear

function on a unit hypercube. Shereli derived the convex envelope for a series of other classes of

0-1 multilinear functions over the unit hypercube as well as a number of special discrete sets

[280]. Additional classes of bounds for multilinear terms have been detailed [68, 74, 75]. Bao

et al. [22] detailed an explicit treatment of multilinear intermediates in BARON global optimizer
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and provided an exhaustive summary of decomposition schemes used to recognize multilinear

terms. Most recently, an adaptive partitioning scheme is detailed along with formulations for the

hull of mixed-integer multilinear functions [199, 200].

One particularly interesting class of multilinear terms is that of the monomial. Monomials

are known to have convex/concave envelopes that may be represented by a series of facet

inducing inequalities [248]. In the case of the trilinear monomial, known expressions exist for the

polyhedral convex and concave envelopes over rectangular domains [180, 181]. As such, a tight

composite envelope could be developed for the polyhedral envelopes of trilinear terms in a

manner that directly mirrors our work on the composite bilinear relaxations. Moreover, the

theoretical work of Rikun [248] indicates that a priori relaxations of trilinear terms could be

developed for both full-space and reduced-space approaches. Moreover, the a priori relaxations

may be incorporated into the reverse McCormick relaxation framework to tighten relaxations of

expressions involving the division operator. Direct extensions to the relaxations of multilinear

terms may also be made by expanding products encountered in derivations of the envelope, and

then deriving relaxations of the resulting under/overestimators in a manner that parallels the

derivation detailed in Theorems 5.2.1 through 5.2.3. Alternatively, a recursive method for

generating tighter relaxations of the multilinear term could be implemented using the improved

bilinear relaxation defined herein.

9.3 Reduced-Space Relaxations Methods for ANNs

In Chapter 4, methods for improving relaxations of activation functions were considered.

Two principal avenues for future work lie in the extension of these methods to continuous-time

neural networks and deep ANNs with implicit representations. Continuous-time neural networks,
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such as continuous-time recurrent neural networks, may be incorporated into global optimization

formulations using modern dynamic relaxation methods [270, 272, 293, 328]. Deep ANNs with

an implicit representation [88] may be addressed using fixed-point relaxation methods [300].

Particular attention should be paid to deep residual networks as the overestimation of affine

relaxations computed via McCormick rules is minimal with respect to linear combinations. In any

case, the further development of improved methods for constructing reduced-space relaxations of

activation functions and standard layer structures that participate in ANNs is expected to lead to

improved computational performance and remain an intriguing area for future research.
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