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Tumor microenvironment (TME) normalization improves ef-
ficacy by increasing anticancer nanocarrier delivery by restor-
ing transvascular pressure gradients that induce convection.
However, transport depends on TME biophysics, normal-
ization dose, and nanocarrier size. With increased under-
standing, we could use computation to personalize normal-
ization amount and nanocarrier size. Here, we use deter-
ministic global dynamic optimization with novel bounding
routines to validatemechanistic models against in vivo data.
We find that normalization with dexamethasone increases
themaximum transvascular convection rate of nanocarriers
by 48-fold, the tumor volume fraction with convection by
61%, and the total amount of convection by 360%. Nonethe-
less, 22% of the tumor still lacks convection. These findings
underscore both the effectiveness and limits of normaliza-
tion. Using artificial neural network surrogatemodeling, we
demonstrate the feasibility of rapidly determining the dex-
amethasone dose and nanocarrier size to maximize accu-
mulation. Thus, this digital testbed quantifies transport and
performs therapy design.
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1 | INTRODUCTION
Solid tumors feature pathophysiological abnormalities that are biophysical barriers to the transport of anticancer drugs.
These barriers impede the effectiveness of such therapies by limiting their accumulation and spatial distribution 1.
Ameliorating the pathophysiology such that tumor microenvironment (TME) components have a more “normalized"
phenotype increases small-molecule and nanocarrier-based therapies’ delivery and efficacy in cancer patients 2,3,4.
However, TME normalization combined with anticancer therapies has yet to lead to cures throughout a cancer patient
population. Thus, a deeper understanding of how TME normalization affects the transport of therapies within tumors
is necessary to fully bypass these spatially and temporally heterogeneous biophysical barriers. Mathematical modeling
can be used to construct a robust framework for studying how the normalized TME modulates biophysical barriers to
transport phenomena in tumors, thereby enabling the discovery of deeper insights into effective TME normalization.
In turn, such a framework may serve as the foundation for establishing a technology platform for effective therapy
design to improving therapeutic efficacy.

1.1 | Cancer Biology
Nanoscale anticancer therapies on the order of dozens of nanometers, including macromolecules such as polymeric
micelles and antibodies, benefit from longer systemic circulation due to slower clearance, selective accumulation in
tumors due to leaky tumor blood vessels, and long retention in tumor tissue due to dense fibrosis and non-functional
lymphatics in the TME1. In fact, nanoscale therapies are currently in use today with cancer patients 3. Nonetheless,
leaky blood vessels, dense fibrosis, and nonfunctional lymphatics collaborate to construct biophysical barriers that
reduce the effectiveness of cancer treatments1,3,4,5. Nanoscale therapies are affected in a size-dependent manner6,7.
In tumors, plasma from circulation excessively extravasates from leaky blood vessels to the interstitial (i.e. extravas-
cular) space, yet moves slowly because dense fibrosis limits fluid movement8. Ultimately, fluid cannot be cleared
because tumor lymphatics are non-functional9. Thus, one distinguishing feature of tumors is an elevated interstitial
fluid pressure (IFP), that eliminates transvascular convective transport of drugs in tumors by reducing the transvascular
pressure gradient to zero1,8.

Vascular normalization involves fortifying leaky tumor blood vessels by blocking angiogenesis2,10. ECM normal-
ization involves reversing dense fibrosis by reprogramming cancer-associated fibroblasts to a quiescent phenotype so
that the fibroblasts stop producing and maintaining excessive levels of extracellular matrix (ECM) 2,10,11. As a result,
the dense fibrosis, which slows intersitial fluid movement and compresses intratumor lymphatic tumor vessels such
that they are nonfunctional12, is diminished. Already, vascular normalization is used with nanomedicine in patients13,
while ECM normalization recently succeeded in a clinical trial with small-molecule chemotherapy 14.

We recently discovered that dexamethasone, which is a glucocorticoid steroid often used tomanage chemotherapy-
related toxicities, can induce vascular and ECMnormalization simultaneously if used at an appropriate dose and sched-
ule10. Yet, how dexamethasone affects blood vessel leakiness, fibrosis, and lymphatic vessel function towards alle-
viating IFP and restoring a transvascular pressure gradient is multi-factored. Each factor depends on the dose of
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dexamethasone differently. Furthermore, how the size of nanocarrier-based anticancer drugs interacts with these
factors is unclear. Therefore, enhancing the delivery of nanocarriers is a multi-faceted engineering problem, so a
model-based systems engineering approach is required to better understand the underlying physical phenomena and
complex relationships of the biological system. Throughout this work, we will use the term nanocarrier to include
nanoscale therapies, in general.

1.2 | Modeling and Simulation for Cancer
Transport of nanocarriers from the systemic circulation to cancer cells includes three steps: flow through blood vessels
to different regions of the tumor, transvascular transport, and transport through the interstitial space of the tumor.
Specifically, the capillary vasculature is a highly dynamic region for transvascular transport of medicine, nutrients, and
waste materials being exchanged between the blood vessels and the interstitial space. There are two key transvas-
cular transport mechanisms: diffusion and convection. Generally, smaller nanocarriers benefit from diffusion using
concentration gradients as an additional driving force for transvascular transport, whereas larger nanocarriers must
rely on convective transport using pressure gradients due to steric hindrances that make diffusion very slow 1,15. Pre-
vious studies have indicated that diffusion is the main mechanism of mass transport across the vessel wall in tumors,
because of the lack of transvascular pressure gradients1,9. However, dexamethasone affects blood vessel leakiness,
fibrosis, and lymphatic function, so it could restore transvascular pressure gradients. How diffusion and convection
are affected for differently sized nanocarriers is unclear. To investigate, a first-principles-based modeling approach is
required to quantify the important physiological parameters that govern transport in tumors.

The vascular and interstitial transport phenomena in tumors have been extensivelymodeled. Baxter and Jain 16,17,18,19
developed a one-dimensional spherical tumor model that describes fluid and nanocarrier transport and accounts for
transvascular transport through pores.20,21 Baish et al. 22 developed a two-dimensional fluid transport model that
considered coupling between the vessels and the interstitial space of tumors in a unified theoretical framework. Sub-
sequently, Chauhan et al. 7 applied this coupled transport system to a percolation-based tumor vasculature network
and subsequently established the solute transport model on this network. Sweeney et al. 23 further developed a
three-dimensional model to simulate vascular blood flow and interstitial fluid transport. Their model integrated the
complex vascular structure to provide a visualization of spatial heterogeneity, which can predict the response of fluid
dynamics following vascular normalization therapy. Through simulation of vascular normalization, the authors con-
cluded that therapies should “seek to develop an IFP gradient," which is consistent with the overall simulation results
and conclusions of previous computational studies of tumor vascular normalization.

In addition to first-principles mechanistic models, artificial intelligence (AI) has been gradually becoming a popular
model-based approach in pharmacokinetics/ pharmacodynamics (PKPD) studies 24,25,26. An efficient machine learn-
ing model simplifies computationally intensive simulations by creating mathematically simple regression models that
capture input-output relationships with high accuracy 27. Specifically, artificial neural networks (ANNs) are powerful
computational models that are capable of approximating and predicting the behavior of such complicated systems
with high accuracy and efficiency28.

In this work, we establish a systematic in silico model-based framework using deterministic global optimization
for optimal therapy design within the context of TME-normalization processes. First, we propose using deterministic
global optimization to solve the parameter estimation problems and provide a rigorous quantitative foundation for in
silicomodel discrimination. Using this foundation, we quantify the relative contributions of convection and diffusion to
solute transport across the vessel walls. Moreover, we develop an optimal TME-normalizing therapy design approach
for dose selection that demonstrates the relationship between dexamethasone dose and the interstitial concentra-
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tion of anticancer drugs in the pharmacokinetic system. Finally, we use this tumor transport model to determine an
optimal nanomedicine size for the greatest accumulation in the tumor interstitial space. We also propose an ANN sur-
rogate modeling approach to reduce the computational cost of solving challenging deterministic global optimization
problems for model validation, dexamethasone dose selection, and anticancer nanocarrier size selection. The details
of establishing and using such machine learning models within optimization-based decision-making frameworks are
presented in this work.

Our work seeks to enhance the practicability and predictive capabilities of tumor transport models using mecha-
nistic and data-driven model validation approaches and rigorous methods in global optimization for stronger model-
based systems engineering approaches for optimal therapy design in cancer research. The information obtained
through this approach aids in the development of better models and provides deeper insight into the physical be-
havior of molecular transport during TME normalization to guide drug development and delivery.

2 | METHODS
Figure 1 illustrates the overall systematical framework proposed for model-based TME-normalizing therapy and drug
size design. To enhance the predictive capabilities of the models and provide confidence in their utility for the model-
based approach for drug and therapy development, we propose to use formal methods to estimate and quantify
the critical parameters for model validation. This approach requires solving a nonconvex nonlinear program (NLP)
constrained by themechanistic tumor transport model as an unsteady partial differential equation (PDE). A simulation-
based feasible path approach is proposed and the PDE-constrained optimization problem is reformulated as a box-
constrainedNLP. In addition, ANNmachine learningmethods are proposed to construct surrogatemodels for reducing
the time costs of solving global optimization problems. Moreover, the well-established mechanistic and ANN models
are also used in TME-normalizing therapy design for optimal neoadjuvant dose selection as well as drug size design
for anticancer nanocarriers.

2.1 | Parameter Estimation and Model Validation by Deterministic Global Optimization
The glucocorticoid steroid DEX, an agent mainly used for alleviating chemotherapy side effects, has been identified
as a pre-treatment adjunct agent for normalizing metastatic tumor vessels and ECM for enhanced efficacy of drug
delivery10. To verify the effects of DEX on nanocarrier delivery through vascular and ECM normalization processes,
we propose to determine the optimal solutions of the parameter estimation problems introduced in Martin et al. 10
by deterministic global optimization. This approach is significant because only global optimal solutions can guarantee
the most accurate fit to the obtained experimental data. The mechanistic tumor transport model used in this work is
introduced in the Supplementary Information (SI).

Martin et al. 10 conducted a series of experiments in vivo to investigate the efficacy of DEX. In these experiments,
immunocompetent mice bearing orthotopic 4T1 breast cancer were treated with 3 and 30mg/kg DEX daily for 4 days.
After which, two types of fluorescent dyes (70 kDa rhodamine-bound dextran and 500 kDa FITC-bound dextran) were
injected as tracers10. In vivo confocal laser scanning microscopy was employed to characterize the spatiotemporal
distribution of dextrans in mouse tumors treated with different doses of DEX 6. Based on the intravital microsopy
images, the effective permeability Pef f was quantified as the rate of nanoparticle fluorescent signal passing through
the vessel walls normalized to the vessel surface area and the transvascular concentration difference7. Note that the
effective permeability includes both convective and diffusive components; however, it significantly overestimates the
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F IGURE 1 A flowchart is illustrated demonstrating a systematical framework for optimal therapy design within
the context of tumor microenvironment (TME) normalization. Based on the experimental data, parameter estimation
is utilized to validate/invalidate a proposed mechanistic model or data-driven model of the tumor. Validated models
are then applied to tumor TME normalization therapy design for dose selection and anticancer drug size design.
Note that the TME normalization therapy design and drug size design in the dashed line box can be implemented
separately, sequentially or simultaneously.

diffusive part andmay not be consistentwith actual transcapillary transport 16. Then, the spatial average concentration
of the interstitial space was calculated from the conservation equation 7:

dcdataavg
d t

= Pef f
S

V

(
cv − cdataavg

)
,

where cv is the solute concentration in the vessels of a tumor (g/mL) and S
V is the vascular surface area per unit volume

(cm−1). This serves as an experimental concentration profile for subsequent parameter estimation problems used for
elucidating the physiological effects of DEX treatment.

In this work, a similar approach is taken whereby the dimensionless spatially-averaged concentration of solute
ĉdataavg (determined from the overall conservation equation) serves as an experimental concentration profile for each
Pef f measured experimentally and is used for parameter estimation of the mechanistic model of interest. Determin-
istic global optimization methods are used to validate the mechanistic model by finding the parameter values that
result in the proposed model fitting the experimental data as best as possible, and subsequently verifying the TME-
normalization process. The objective function is formulated as the sum-of-squared errors (SSE) between the average



6 Wang et al.

concentration profile predicted by the model and the measured data (from the overall conservation expression with
the experimentally measured Pef f ) at discrete time points over the entire time horizon of the experiment. Inequality
constraints are formulated for the IFP profiles based on experimentally determined values. The parameter estimation
problem is formulated as:

min
π∈Π

n∑
i=1

(
ĉavg (t i ,π, dm ) − ĉdataavg (t i )

)2 (1)
s.t. p̂per i (π) ≤ p̂per i ,max

p̂per i (π) ≥ p̂per i ,min,

where the dimensionless spatially-averaged concentration of solute ĉavg is calculated by averaging the dimensionless
concentration ĉ for all spatial nodes (discretization details are introduced in Section 2.7 from the mechanistic solute
transport model (details are introduced in the SI) and taken as the parametric model output for the parameter estima-
tion problem. The decision variables π = (Lp ,K ) ∈ Π ⊂ Ònπ is the vector of physiological parameters of the model
to be estimated, with Lp the hydraulic conductivity of the microvascular wall (cm/mm Hg-sec) and K the hydraulic
conductivity of tumor interstitium (cm2/mmHg-sec). The parameter dm is the diameter of the nanocarrier (nm) used in
the corresponding experiment. The SSE objective fits the model-predicted profile to the experimental profile at each
time node t i selected within the time horizon (5 min), with i ∈ {1, . . . , n}. For the inequality constraints, we introduce
p̂per i as the dimensionless superficial (peripheral) IFP, which is calculated by the dimensionless IFP p̂ in the superficial
region (introduced in Section 2.7, and p̂per i ,max and p̂per i ,min as the physical bounds of p̂per i , with values taken from
Martin et al. 10 and listed in Table 1.
TABLE 1 The physical bounds on the superficial (peripheral) tumor IFP for the control, 3 mg/kg, and 30 mg/kg
DEX treatment case are reported here as determined by Martin et al. 10 . These values are used in the parameter
estimation problems formulated as (1) to ensure that physically meaningful solutions are identified.

Dose Control 3 mg/kg 30 mg/kg
p̂per i ,min (mmHg) 4.87 3.02 1.95
p̂per i ,max (mmHg) 5.67 3.62 2.45

2.2 | Bounding Methods for Tumor Transport Model
Deterministic global optimization can prevent erroneously invalidating mechanistic models in cases where suboptimal
solutions obtained by local optimization algorithms result in poor fits. Methods for solving global optimization prob-
lems in this work rely on the branch-and-bound (B&B) framework29 for deterministic search. Specifically, we employ
the flexible and open-source B&B-based solver EAGO30,31. The B&B algorithm iteratively partitions the search space
into successively smaller subdomains and solves a sequence of lower- and upper-bounding subproblems on each
subdomain. The algorithm converges in finitely-many iterations to an ε-optimal global solution or terminates with a
certificate of infeasibility by comparing the obtained bounds across nodes. The upper-bounding problems typically
determine a feasible local solution (if one exists) on each subdomain. The lower-bounding problems rely on the ability
to calculate rigorous global bounds on all variables and functions involved in the optimization formulation. Calculating
valid lower bounds for a global optimization problem is the most challenging procedure. This is especially true for PDE
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systems encountered in this work, as this task amounts to constructing rigorous bounds on the spatiotemporal state
solutions over the entire domain of optimization variables (i.e., the reachable set).

In this section, we present a method for constructing global bounds enclosing the reachable sets of the tumor
transport model. Several different bounding methods are presented and analyzed in this work to determine the most
effectivemethod for usewith the tumor transportmodel. The fundamental approach is to use themethod of lineswith
finite differences for spatial discretization and then differential inequalities (DI)32,33 to construct state bounds of the
discretized large-scale ODE-IVP system. Note that apart from implementing interval arithmetic 34 (IA) for constructing
bounds, a mixed interval arithmetic/affine arithmetic35,36 (IA/AA) approach was also implemented37. In addition to
standard DI, a modified DI approach with interval refinement operators38 was also implemented for problems with
prescribed bounding information known a priori. An overview of these set-valued mapping approaches is introduced
in Section S2 of the SI. In summary, four bounding methods are considered for comparison: IA and DI, IA and DI with
interval refinement, IA/AA and DI, and IA/AA and DI with interval refinement.

Significant nonlinearity of the models poses a major challenge to efficiently constructing tight bounds. In the
tumor transport model, a problematic term that requires special consideration is the solute source term that describes
the transvascular mass transport of nanocarriers:

φs = Lp
S

V
(pv − p ) (1 − σ )cv + P

S

V
(cv − c )

P e

eP e − 1
. (2)

Here, pv is the vascular pressure (mm Hg), p is the interstitial fluid pressure (IFP) (mm Hg), σ is the solute reflection
coefficient, P is the vascular permeability of the solute through the vascular wall (cm/sec), c is the solute concentration
in the interstitial space of the tumor (g/mL), and P e = Lp (pv − p ) (1 − σ )/P is the Péclet number representing the
ratio of the rates of convection to diffusion across the vascular wall.

The solute source term suffers from the dependency problem of IA (i.e., the overestimation of interval operations
due to the same variables being treated independently). The nonlinearity caused by the exponential terms significantly
magnifies this overestimation. We overcome the dependency problem using the following strategy. Since P e appears
both in the numerator and in the denominator of the term P e

eP e −1 in (2), without special consideration, the dependencyproblem will lead to an appreciable overestimation of the bounds that will be detrimental to the B&B procedure. To
avoid this, we consider the function z (x ) = x

ex −1 , where we seek a real interval Z = [zL , zU ] such that z (x ) ∈ Z
for every x ∈ [P eL , P eU ], for known values P eL and P eU . It is easy to prove that z is a monotonically decreasing
function of x , and therefore, the exact bounds on the range of z on the domain [P eL , P eU ], can be derived as:

zL =
P eU

eP e
U − 1

,

zU =
P eL

eP e
L − 1

.

The definitions of these exact bounds are used throughout this work.
Bounds on the state variables of the tumor transport model were constructed based on four approaches. The

spatial domain was discretized into N = 100 nodes and the discrete-time DI scheme39 was used to construct the
bounds through the simulation time (5 min) with 21 time steps. The two physiological parameters are considered
as decision variables and bounded by an interval domain π = (Lp ,K ) ∈ Π = [7.5 × 10−7, 7.6 × 10−7 ] × [1.15 ×
10−6, 1.2 × 10−6 ]. The numerical solutions and bounding results are illustrated in Figure 2 for the four bounding
methods considered.

To compare the effectiveness of the different bounding procedures, the volumes between the upper and lower
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(a) (b)

F IGURE 2 Numerical solutions and bounding results for the tumor transport model are plotted. (a) The spatial
profiles of the dimensionless concentration ĉ in the tumor at t = 150 s are plotted for several values of π along with
the state bounds derived from pure IA, IA with modified DI, mixed IA/AA, and mixed IA/AA with modified DI. (b) The
trajectories of the solute concentration ĉ in the tumor at the position r̂ = 0.5 are plotted for several values of π
along with the state bounds derived from pure IA, IA with modified DI, mixed IA/AA, and mixed IA/AA with modified
DI. ĉ is approximated by corresponding numerical solutions calculated by the explicit Euler method, and the state
bounds are calculated by the discrete-time DI method.

bounds on the dimensionless concentration over the entire spatial and time domains are quantified along with the
corresponding time costs for constructing these bounds, and listed in Table 2. It is observed that the time costs for
pure IA andmixed IA/AAmethods are almost the same, but themixed IA/AAmethod can providemuch tighter bounds.
If taking the prescribed physical bounds ĉ ∈ G = [0, 5] into account with the modified DI method, both pure IA and
mixed IA/AA methods can enhance the bounding results. However, the increased computational costs are nearly two
orders-of-magnitude more than standard DI due to the curse of the dimensionality of the discretized systems. The
dramatic burden in time cost using the modified DI method overshadows any improvement of the bounding results in
this case. As indicated by the volumes in Table 2, the bounds constructed by mixed IA/AA and standard DI methods
are already relatively efficient (91.3 % tighter than the IA method, 62.4 % tighter than the IA (DI with G) method, and
only 37.6 % larger than the IA/AA (DI with G) method), and the modified DI will not contribute much to reducing the
conservatism. Therefore, in this study, we propose to use the mixed IA/AA and standard DI method as the bounding
routine for solving all global optimization problems.
TABLE 2 The achieved volumes and time costs are reported for the different bounding methods considered in
this study. The IA/AA bounds are significantly tighter than the pure IA bounds (91% reduction in volume) without
additional computational time. The IA/AA bounds are also nearly as tight as the IA/AA (DI with G) bounds (38%
increase in volume) but with almost two order-of-magnitude less computational time.

Bounding Methods IA IA/AA IA (DI with G) IA/AA (DI with G)
Volume 0.6438 0.0560 0.1489 0.0407
Time (s) 0.5342 0.5312 47.21 47.67
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2.3 | Machine Learning Model
Machine learning regression is proposed to establish a computationally efficient artificial neural network (ANN) as
a surrogate for the mechanistic tumor transport model. The established ANN models will then be used to solve the
model validation parameter estimation problems as formulated in (1). This approach is proposed to analyze the relative
performance and accuracy of ANN models to assess their applicability within the proposed framework for drug and
therapy design, as well as broader contexts of scientific machine learning in cancer research and therapy. The work in
this subsection was implemented in Julia40 1.6.1 running on an Intel XeonW-2195 (18-core/32-thread) 2.3 GHz/4.3
GHz (base/turbo) CPU with 64GB RAM running Windows 10 Pro. The inputs for the ANNs considered are the two
physiological parameters Lp andK , discussed previously. SinceDEX treatment normalizes the TMEand, in turn, affects
the transport phenomena in tumors, different ANN surrogate models were constructed to represent the control and
DEX treated tumors for greater accuracy. Furthermore, since the experimental data varied slightly across the 70 kDa
nanocarrier and 500 kDa nanocarrier experimental groups, separate ANN surrogate models were also constructed for
greater accuracy within these mouse groups. Thus, four distinct ANN surrogates are considered: 70 kDa nanocarrier
control case, 70 kDa nanocarrier 3 mg/kg and 30 mg/kg DEX treatment cases, 500 kDa nanocarrier control case, and
500 kDa nanocarrier 3mg/kg and 30 mg/kg DEX treatment cases. For each case, the tumor transport model was
parameterized by Lp and K . The discretized fluid and solute transport models were solved using the method of lines
via the stiffQNDF solver in DifferentialEquations.jl41 for data acquisition. Then, the spatially-averaged concentrations
over a discrete time horizon of 5 minutes were taken as outputs.

A Sobol sequence sampling protocol42 in Surrogates.jl43 was used to generate a data set of 106 points within
the bounds described in Table S2 of the SI. The data was then scaled using min-max normalization and randomly
divided into a training set (70%) and test set (30%). The ANN models were trained and constructed using Flux.jl 44,45.
Architectures of 2-4 hidden layers, 16-32 nodes per hidden layer, and several different activation functions (sigmoid 46,
tanh46, gelu47, and swish48) were considered. Through tuning and comparison, a two-hidden-layer model with 24
neurons each with the swish activation function was chosen for use in this work. This ANNmodel is depicted in Figure
3.

Due to the relatively small size of the ANNs, themodels were trained using a combination of batch andmini-batch
gradient descent with a mini-batch size of 10% of the training data set. The Adam optimizer was used for training with
the standard mean-squared-error (MSE) loss function. The model was trained for 50 epochs using an early stopping
criteria, with a MSE tolerance of 10−7. The learning rate was kept constant at 10−3. Following training, the MSE
and mean relative percent error were evaluated on the test set. This training protocol was found to be effective, as
indicated by the time and performance metrics listed in Table S3 of the SI.

In previous studies, recurrent neural network model architectures are utilized as a typical method to simulate
dynamical systems by directly approximating the numerical integration function as opposed to the entire numerical
integration procedure49. This method was not employed in this study as it would necessitate an iterative loop in the
objective function (due to the feedback of information of earlier-time states) to create the concentration profile for
each function evaluation. Such a process would introduce additional complexity that would negatively impact the
solution times when included in deterministic global optimization routines used in this work.

2.4 | Simplified Parameter Estimation Problem
In this section, a simplified parameter estimation problem is proposed using ANN surrogate models introduced in
Section 2.3. Similar to (1), we seek to minimize the SSE between the average concentration predicted by the ANN
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F IGURE 3 A fully connected feed-forward multilayer perceptron artificial neural network surrogate model is
illustrated and represents the model architecture used for the simplified parameter estimation problems considered
in this. The two node input layer (Layer 1) takes as input the physiological parameters Lp and K . These inputs feedto the two hidden layers using 24 nodes and the swish activation function. The outputs of the second hidden layer
(Layer 3) are then passed to the output layer (Layer 4) consisting of 21 nodes, representing the temporally
discretized accumulation profile.

surrogate model and experimental data over the entire time horizon, with inequality constraints on superficial IFP:

min
π∈Π

n∑
i=1

(
ĉANNavg,i (π) − ĉdataavg (t i )

)2 (3)
s.t. p̂per i (π) ≤ p̂per i ,max

p̂per i (π) ≥ p̂per i ,min,

where ĉANNavg,i represents the dimensionless spatial average nanocarrier concentration at discrete time node i calculated
from the ANN model. The inequality constraints on the superficial IFP may be simplified and reformulated as equiv-
alent inequalities that are linear in the optimization variables (model parameters) Lp and K utilizing the closed-form
analytical solution for the IFP profile from Baxter and Jain 16 . This simplifies the problem significantly and, in turn,
reduces the computational complexity of solving (3). The details of how this is done can be found in Section S3 of the
SI.

The optimization formulation (3) can then be reformulated as:

min
π∈Π

n∑
i=1

(
ĉANNavg,i (π) − ĉdataavg (t i )

)2 (4)
s.t. π2 ≤ ζmaxπ1

π2 ≥ ζminπ1,

where ζmax and ζmin are listed in Table 3 and are calculated based on the physical bounds on the superficial IFP listed
in Table 1. The calculation procedure is described in the SI.
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TABLE 3 The coefficients for the constraints on the superficial (peripheral) IFP are calculated for the control, 3
mg/kg, and 30 mg/kg DEX treatment cases in formulation (3) based on the IFP bounds previously reported. These
values are used to ensure physically meaningful solutions are identified.

Dose Control 3 mg/kg 30 mg/kg
ζmin (cm) 0.2855 0.7355 1.5898
ζmax (cm) 0.3967 1.0577 2.4447

2.5 | TME-Normalizing Therapy Design for Dose Selection
In this section, we propose a method for optimal TME-normalizing therapy design for dose selection with the overall
objective of improving transport and accumulation of anticancer drugs within the tumor interstitium. To do so, we
investigate the experimental effects of different doses of pretreatment DEX and utilize empirical correlations for opti-
mal decision-making. Empirical correlations are required to construct a mathematical relationship between DEX dose
and two important physiological parameters: vascular hydraulic conductivity Lp and interstitial hydraulic conductivity
K . The purpose of this study is to propose a systematical mathematical methodology for TME-normalizing therapy
design.

Based on the preclinical data obtained from Martin et al. 10 , we utilize nonlinear regression with a rational model
to establish the following relationships:

f rLp (x ) =
−7.519 × 10−8x2 + 3.355 × 10−6x + 6.944 × 10−7

x + 0.6175 , (5)
f rK (x ) =

−2.458 × 10−8x2 + 2.524 × 10−6x + 2.916 × 10−7
x + 0.7816 , (6)

where x denotes pretreatment DEX dose (mg/kg), and the functions f rLp and f rK represent the values of Lp and K ,
respectively, following treatment with DEX, as predicted by the rational regression model.

Since the data obtained from Martin et al. 10 are limited to the three pretreatment DEX doses, we also wish
to explore different dose-dependent relationships that could exist with other data sets. The purpose of this is to
demonstrate the applicability of our proposed method with fictitious experimental data exhibiting complicated dose-
dependent treatment relationships for pretreatment DEX doses between the actual data of 3 mg/kg and 30 mg/kg
with dosages set at 10 mg/kg, 15 mg/kg, 20 mg/kg, and 25 mg/kg.

The original data, fictitious data, and corresponding polynomial regression models are plotted in Figure 4. The
regression equations are given by:
f
p
Lp
(x ) = −6.23 × 10−13x5 − 5.96 × 10−11x4 + 5.61 × 10−9x3 − 1.272 × 10−7x2 + 8.797 × 10−7x + 1.131 × 10−6, (7)

f
p
K
(x ) = 1.139 × 10−11x5 − 8.389 × 10−10x4 + 2.183 × 10−8x3 − 2.421 × 10−7x2 + 1.093 × 10−6x + 3.798 × 10−7, (8)

where x is the DEX dose as before, and f p
Lp

and f p
K
represent the values of Lp and K , respectively, following treatment

with DEX, as predicted by the polynomial regression model.
The TME-normalizing therapy design problem is formulated as the following NLP:

max
x ∈X

ĉavg
(
tf ,

(
f
j
Lp
(x ), f j

K
(x )

)
, dm

)
, (9)
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(a) (b)

F IGURE 4 Experimental data and corresponding regression models for (7) and (8) are respectively plotted in (a)
Lp versus dose; (b) K versus dose of dexamethasone. Auxiliary, fictitious data are considered to demonstrate the
applicability of the proposed approach to complex dose-dependent relationships that could exist naturally.

with j ∈ {r , p }. The objective is to seek an optimal dose that maximizes the spatial average nanocarrier concentration
ĉavg in the tumor interstitium at tf = 5 min. The function ĉavg is evaluated by the numerical solution of the solute
transport model, and the correlations between hydraulic conductivities and DEX doses are established as (5) and (6)
for the existing data, and (7) and (8) for the fictitious data.

2.6 | Drug Size Design
In this section, the practicability of the tumor transport model for drug size design problems is addressed. After the
optimal dose of pretreatment DEX is determined and a patient’s response to that treatment is quantified, an anticancer
nanocarrier is designed that results in optimal delivery to the tumor interstitium. For example, a nanoparticle size can
be tuned for a patient-specific tumor pathophysiology.

After DEX pretreatment, it is desirable to determine an optimal nanocarrier size that can maximize the drug
concentration in the interstitial space of the tumor. Alteration in pharmacokinetics, such as distribution and excretion,
can have a substantial influence on achieving the desired therapeutic concentration of a particular nanocarrier. A
very high concentration may result in side effects or toxicity. A very low concentration will be ineffective. In this
situation, an optimal therapy requires a strict guarantee of some safety/performance specifications. The drug size
design problem is formulated as a PDE-constrained NLP to account for these potential requirements:

max
dm ∈Z

ĉavg (tf ,π, dm ) (10)
s.t. ĉper i (tf ,π, dm ) ≤ λ1

ĉper i (tf ,π, dm ) ≥ λ2,

where tf is the final time (tf = 5 min), ĉper i is the dimensionless nanocarrier concentration in the superficial area of
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tumor (g/mL). The mappings between physiological parameters that are directly related to the nanocarrier sizes are
established and introduced in Section S4 of the SI. For this work, we use λ1 = 4.5 as the threshold for the safety
constraint, which is double the periphery nanocarrier concentration for the 3 mg/kg DEX treatment case. Further, we
use λ2 = 3.6 as the performance constraint, which is chosen based on periphery nanocarrier concentration for the
control case. Note that these thresholds are merely chosen for demonstrating the drug size design approach and how
to deal with the situation that a design is implemented under potential performance/safety requirements.

Furthermore, we propose a therapy design strategy that simultaneously seeks an optimal dose of DEX and an
optimal nanocarrier size thatmaximizes the nanocarrier concentration accumulation inside the tumor interstitial space:

max
x ∈X ,dm ∈Z

ĉavg
(
tf ,

(
f
j
Lp
(x ), f j

K
(x )

)
, dm

) (11)
s.t. ĉper i (tf , (f jLp (x ), f jK (x )) , dm )

≤ λ1

ĉper i

(
tf ,

(
f
j
Lp
(x ), f j

K
(x )

)
, dm

)
≥ λ2,

with j ∈ {r , p }. This formulation provides an alternative methodology for neoadjuvant therapy that could identify
a possible therapy and nanocarrier size combination that leads to improved transport and accumulation over the
individual results determined by the sequential design approach.

ANN surrogate models are also proposed for the simultaneous design problem (11) to reduce the computational
burden over the PDE-constrained problem. To accomplish this, two ANNs are established each with Lp , K , and dm as
inputs. The respective ANNs each have a single output ĉANNavg and ĉANN

per i
. Note that these ANN models are different

from the one introduced in Section 2.3. To train these new ANNs, a Sobol42 sequence sampling method was used
again to create a 106 point data set on the domain (Lp,K , dm ) ∈ [5 × 10−7, 5 × 10−6 ] × [5 × 10−7, 5 × 10−6 ] × [10, 60].
Consistent with the parameter estimation of the ANNmodels, the data set was scaled using a min-max normalization
and divided randomly into training (70%) and validation (30%) sets. Training was performed using Flux.jl with the
Adam optimizer with a learning rate of 10−4. Each ANN model for ĉANNavg and ĉANN

per i
has two hidden layers with 12

neurons using the tanh activation function. The models were trained using an equivalent protocol to that described
in Section 2.3. The benchmarks for data generation, training time, and performance are shown in Table S5 of the SI.

The formulation with ANN models for the simultaneous design approach can be expressed as:
max

x ∈X ,dm ∈Z
ĉANNavg

((
f
j
Lp
(x ), f j

K
(x )

)
, dm

) (12)
s.t. ĉANNper i

((
f
j
Lp
(x ), f j

K
(x )

)
, dm

)
≤ λ1

ĉANNper i

((
f
j
Lp
(x ), f j

K
(x )

)
, dm

)
≥ λ2 .

2.7 | Settings for Solving Optimization Problems
The settings used in this study for the numerical methods and software packages are discussed in this section. For
the parameter estimation, TME-normalizing therapy design, and drug size design problems, the spatial domain for
both fluid transport and solute transport models are discretized into N = 100 nodes. The simulation time horizon
contains 21 time nodes (5 min). Based on the superficial region (around 0.07 mm from surface)50 and the average
tumor diameter (0.6 - 1.1 cm) in the DEX treatment research10, we choose n = 99 to account for the superficial
region of the tumor. The physiological parameters used in the tumor transport model are provided in Table S6 of
the SI. The parameter estimation, drug size design, and TME-normalizing therapy design problems are all solved to
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global optimality using the EAGO31 v0.6.1 solver via JuMP v0.21.451 in the Julia programming language40. Custom
bounding routines with the mixed IA/AA method and standard DI are utilized in the B&B algorithm for solving the
parameter estimation and drug size design problems. For the parameter estimation problems, the absolute global
convergence tolerance is set as 10−6, and the relative global convergence tolerance is set as 10−1 for each case. For
the drug size design and TME-normalizing therapy design problems, the absolute convergence tolerance is set as 10−6,
and the relative convergence tolerance set as 10−2. Each problem was run on a personal workstation with an Intel
Xeon E3-1270v5 4-core/8-thread CPU operating at 3.60GHz/4.00GHz (base/turbo) frequency and 32GB ECC RAM
running Windows 10 Version 2004.

3 | RESULTS AND DISCUSSION
3.1 | Global Optimization Results for Model Validation
In this section, the global optimization results are discussed for the parameter estimation problems. The global optimal
solutions obtained from the parameter estimation problems for different doses of DEX treatment cases are listed in
Table 4 for each formulation with the original mechanistic tumor transport model (1) as well as the ANN surrogate
model (4). Note that the dose selection for the experiments was based on previous work, which confirmed 3 mg/kg
DEX as the lowest dose to reduce IFP. Additionally, this dose is similar to that used in the clinical trials of CDDP/m
(NCT02043288)52. The global solutions found for both the mechanistic model and ANN model are very close to
one another, with the relative error for each case being within 2.5%. This certifies the accuracy of the ANN surrogate
models and the validity of the inequality constraints simplifications. InMartin et al. 10 , we obtained local optima for the
parameter estimation problems. In that work, it was found that the estimated Lp value for 3 mg/kg DEX treatment
case with 500 kDa nanocarrier injection exhibited a decreasing trend from the control case, whereas in this study
we found an increasing trend. This does not represent a contradiction, as the parameter estimation problems differ
significantly in that they consider different simulation time horizons. Furthermore, in the case of Martin et al. 10 , no
inequality constraints on the IFP were considered.
TABLE 4 Global optima for parameter estimation problems using the mechanistic model (1) and the ANN model
(4). It is noted that the solutions obtained for the ANN surrogate model are very close to those obtained for the
mechanistic model. This is to be expected since a high-degree of accuracy of the ANN was obtained when training.
The unit for L∗p is cm/mm Hg-sec and for K ∗ is cm2/mm Hg-sec.
Dextran molecular weight 70 kDa 500 kDa

Dose Control 3 mg/kg 30 mg/kg Control 3 mg/kg 30 mg/kg
Pef f (cm/sec) 9.60 × 10−7 4.61 × 10−6 2.80 × 10−6 8.18 × 10−7 4.30 × 10−6 1.62 × 10−6

L∗p - mechanistic model 8.51 × 10−7 2.80 × 10−6 1.12 × 10−6 8.62 × 10−7 2.22 × 10−6 7.50 × 10−7

L∗p - ANN model 8.39 × 10−7 2.77 × 10−6 1.12 × 10−6 8.43 × 10−7 2.22 × 10−6 7.50 × 10−7

K ∗ - mechanistic model 3.35 × 10−7 2.03 × 10−6 1.80 × 10−6 3.34 × 10−7 2.34 × 10−6 1.21 × 10−6

K ∗ - ANN model 3.32 × 10−7 2.04 × 10−6 1.78 × 10−6 3.29 × 10−7 2.36 × 10−6 1.20 × 10−6

The time costs for each model are reported in Table 5. For DEX treatment cases, the parameter estimation prob-
lems with the mechanistic model and the proposed customized bounding routines are extremely computationally
expensive. Despite using the most efficient global bounding method considered, these problems still required hours
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or even days to solve. In contrast, the parameter estimation problems for DEX treatment cases using the ANN surro-
gate models can be solved within one minute. Even accounting for the time costs of generating data and training, the
ANN surrogate models significantly reduce the burden of solving the parameter estimation problems to global opti-
mality. Interestingly, it takes about an order-of-magnitude longer to solve the parameter estimation problems for the
control cases with ANNmodels versus the mechanistic models. In these cases, it is observed that the lower-bounding
problems solved for the ANN problems furnish weaker bounds than for the mechanistic modeling case, resulting in
slower convergence of the B&B algorithm.
TABLE 5 The computational time costs for the parameter estimation problems using the mechanistic model (1)
and the ANN model (4). Barring the control case, solving the PDE-constrained optimization problem (1) requires
significantly more time than the the problem with the ANN (4), which does not account for the ANN training time.

Dextran molecular weight 70 kDa 500 kDa
Dose Control 3 mg/kg 30 mg/kg Control 3 mg/kg 30 mg/kg

Mechanistic model (s) 8.5 169558.3 238732.2 8.1 398792.2 50368.1
ANN model (s) 97.9 7.3 25.8 23.2 17.6 18.8

3.1.1 | Interstitial Fluid Pressure and Velocity Profiles
Previous studies showed that an important barrier to drug delivery in the TME is the elevated IFP resulting in reduced
pressure gradients across the vessel wall15. This is due to the interstitial hypertension phenomenon9 caused by
leaky blood vessels and the lack of functional lymphatic vessels, which drain excess fluid from tumor tissue. TME-
normalizing therapy can repair the abnormal vasculature and reduce IFP, resulting in a higher pressure gradient for
higher transvascular and interstitial fluid flow. Thus, we quantified the IFP with different doses of DEX treatment
to characterize the TME normalization process. The dimensionless IFP profiles as functions of dimensionless radial
positionwith respect the optimal solutions (i.e., fromTable 4) are illustrated in Figure 5(a). The IFP profiles tend to reach
a steady-state pressure pss at the center of the tumor, where the IFP equals the vascular pressure pv . However, in the
periphery, the IFP rapidly decreases with increasing distance from the tumor center. This finding is consistent with
previous mathematical models16 and experimental findings15. Thus, the IFP profiles indicate that the extravasation
of fluid from blood vessels is extremely slow near the center, whereas it is highest at the periphery due to lower
IFP leading to an increased transvascular pressure gradient. In addition, the model confirms that DEX reduces the
spatially-averaged IFP and therefore establishes amore advantageous transvascular pressure gradient that contributes
to enhanced transvascular fluid flow10, that will further affect the interstitial fluid transport.

The interstitial fluid velocity (IFV) is generated from the interior IFP gradient by Darcy’s law (introduced in Sec-
tion S1.1 of the SI). To investigate the effects of TME normalization on interstitial fluid transport, we quantified the
normalized IFV (û = uR/(K (pss − p∞ ) )) profiles for different doses of DEX. A positive value of IFV indicates that the
interstitial fluid flow is from the center to the periphery of the tumor. As illustrated in Figure 5(b), we observed that
the normalized IFV is very low around the center and increases towards the periphery where there is the highest flow
rate. The dimensionless parameter α = R√

LpS/KV (introduced in S1.1 of the SI), which is a measure of the ratio of
interstitial to vascular resistances of fluid flow, represents the gradient of increase of normalized IFV. Summarily, a
larger value for α indicates a steeper increase in the normalized IFV profile with increasing distance from tumor center.
The model-predicted α values for the control, 3 mg/kg DEX treatment, and 30 mg/kg DEX treatment cases from the
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F IGURE 5 Radial dose-dependent interstitial fluid pressure and velocity profiles. (a) Mathematical
model-generated profiles of dimensionless interstitial fluid pressure (IFP) p̂ = (p − p∞ )/(pss − p∞ ) versus thedimensionless tumor radial position r̂ from vessel permeability data collected using fluorescently-labelled 500 kDa
dextran in control tumors and tumors in mice treated with 3 mg/kg and 30 mg/kg dexamethasone (DEX) daily for
four days are presented. Spatially-averaged IFP is reduced with DEX treatment. The interior bar graph illustrates the
fraction of tumor volume that has a favorable transvascular pressure gradient (i.e. p̂ ≤ 0.9933). This IFP threshold is
determined by the region with r̂ ≥ 0.6 for the 3 mg/kg DEX treatment case, which is taken as the volume with
favorable transvascular pressure gradient. (b) Normalized interstitial fluid velocities (IFV) û = uR/(K (pss − p∞ ) ) areplotted versus dimensionless tumor radial position r̂ . Greater IFVs are achieved deeper in the tumor interstitium
following DEX treatment with a reduction in velocity nearest the tumor periphery. This results in increased
interstitial transport of nanocarriers.

500 kDa dextran experimental data are 22.521, 13.756 and 11.219, respectively. Thus, compared to the control, the
treated cases have smaller values of α that indicate a gradual increase in normalized IFV from the center tumor over a
larger fraction of tumor volume. Note that the normalized IFV neglects the influence of interstitial hydraulic conduc-
tivity K . However, K is larger by an order of magnitude for DEX treated cases than the control case (Table 4). Thus,
the actual IFV for DEX treated cases is always higher than the control case. Although, we reported in Martin et al. 10
that DEX treatment increases the perfused vascular density, we assumed in the current study that the tumor radius
R and vascular density S/V do not vary significantly between each case. Thus, a reduction in the ratio of the vascular
hydraulic conductivity to the interstitial hydraulic conductivity (i.e., Lp/K ) is the major reason for a reduction in α . A
smaller value of Lp/K indicates a larger proportion of interstitial fluid transport. Therefore, a less steep normalized
IFV profile resulting from a smaller α caused by a reduction of Lp/K implies enhanced interstitial fluid transport by
vascular and ECM normalization.

3.1.2 | Solute Concentration Profiles
We next sought to determine the drug distribution within tumors by obtaining solute concentration profiles from the
IFP and IFV profiles. The IFP gradient induces transvascular convective transport, the IFV profiles reflect interstitial
convective transport, and the solute concentration gradient induces interstitial diffusive transport. Figure 6 illustrates
the model-predicted solute concentration profiles with respect to dimensionless tumor radial position r̂ for the 500
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kDa dextran experimental data, with the vascular concentration following an exponential decay post-administration.
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F IGURE 6 Radial and temporal dose-dependent solute concentration profiles. Interstitial concentrations ĉ of
500 kDa dextran are plotted versus dimensionless tumor radial position r̂ for a vascular concentration with a
half-life of around 21 h for the control, 3 mg/kg DEX treatment, and 30 mg/kg DEX treatment cases at (a) 1 h; (b) 24
h; (c) 72 h post-administration. (d) Spatially-averaged interstitial concentrations ĉavg are plotted versus time. After
DEX treatment, the overall solute concentration accumulation is increased inside the tumor. The 3 mg/kg DEX
treatment case results in the highest overall concentration accumulation.

As illustrated in Figure 6(a), the interstitial concentration at 1 h post-administration of the dextran is equal to the
normal tissue concentration (equals 0 in dimensionless form) at the periphery and quickly increases to a peak in the
peripheral region where there is a higher transvascular pressure gradient, which significantly enhances transcapillary
convective solute transfer. The fraction of tumor volume that has a higher transvascular pressure gradient is graphed
for each treatment group in the inset of Figure 5(a). Simultaneously, the higher IFV in the peripheral region causes
a higher interstitial fluid flux that carries the solute outwards to the periphery. As a result, the solutes accumulate
and reach peak concentration near the periphery, then decrease to zero at around r̂ = 0.8 for the control case and
r̂ = 0.6 for the 3 mg/kg and 30 mg/kg DEX treatment cases. Indeed, the region with favorable transvascular pressure
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gradient for DEX treated cases is larger than the control case (Figure 5(a)). This pressure gradient leads to a enhanced
convective transvascular transport that carries solutes into the interstitial space of a larger proportion of the tumor.
In other words, the region with higher solute accumulation occurs over a longer fraction of tumor radius for the DEX
treatment cases compared to control.

As presented in Figure 6(b), the interstitial concentration profiles for all treatment cases have higher peaks at 24
h than 1 h. The concentration peaks for all cases at 72 h (Figure 6(c)) are lower than 24 h but higher than 1 h. This
is because the vascular concentration decays at 72 h compared with 24 h so that there are fewer nanocarriers to
be carried by transvascular flow into the interstitial space. In addition, we found that the interstitial concentration
profiles at 72 h become flatter than 24 h with a higher concentration retained towards the middle of the tumors,
such as at r̂ = 0.5. This is caused by the slower interstitial diffusion generated from the concentration gradient that
gradually transfers nanocarriers from the concentration peak in the periphery towards the tumor center, where the
concentration of nanocarriers is near zero. The transvascular flow is limited at 72 h due to the systemic clearance
of circulating nanocarriers, but the diffusion caused by concentration gradient becomes more evident in the flatter
concentration profiles.

As illustrated in Figure 6(d), the spatially-averaged interstitial concentration rises to a peak and stays steady after
that. Although the vascular concentration of nanocarriers decays exponentially, the spatially-averaged interstitial
concentrations decrease slowly after reaching the peak. The concentration profiles at the time with respect to the
highest spatially-averaged concentration accumulation are illustrated in Figure S2 of the SI. We observed that the
highest spatially-averaged concentration occurs at 38.8 h, 34.2 h and 53.9 h for the control, 3 mg/kg and 30 mg/kg
DEX treatment cases, respectively. In general, the nanocarriers accumulate to a peak concentration in the first dozens
of hours and then decrease with a slow rate.

The spatially-averaged concentrations at 72 h are 84%, 92% and 99% of their highest concentrations for the
control, 3 mg/kg and 30 mg/kg DEX treatment cases, respectively (illustrated in Figure S3 of the SI). We found that
the spatially-averaged concentrations of the 500 kDa dextran in control tumors only decrease by 16% in 33.2 h
after reaching highest concentration, indicating a retention effect. The 3 mg/kg and 30 mg/kg DEX treatments both
enhance this retention effect (92% and 99% are higher than the control case). Though the 3 mg/kg DEX treatment
does not result in the highest percentage of retention at 72 h (92% < 99%), it has the highest spatially-averaged
concentration throughout the whole time horizon. In contrast, the control case has the lowest percentage and also
the lowest spatially-averaged concentration. Thus, these findings demonstrate that DEX treatment not only increases
permeability10 but also retention towards promoting the EPR effect.

We further investigated the relation between the solute concentration distribution over time and dose of DEX
treatment. The concentration profile for the 30 mg/kg DEX treatment case is closer to the control case at 1 h post-
administration, whereas it is closer to the 3 mg/kg DEX treatment case at 72 h post-administration. At 1 h post-
administration, there are many nanocarriers in perfused vessels and they are carried into the tumor tissue by transvas-
cular flow. A larger vascular hydraulic conductivity Lp indicates higher transvascular flow rate. However, Lp for 30
mg/kg DEX treatment case is closer to the control case (Table 4). Although the vessels are normalized after 30 mg/kg
DEX treatment, there is too much pericyte coverage that reduces the vessel wall pore size 10 thereby limiting nanocar-
rier extravasation at 1 h post-administration. In contrast, the extravasation of nanocarriers is trivial at 72 h due to the
decay of its concentration in the vasculature and the interstitial concentration profile has already reached a peak and
decreased. Thus, the interstitial diffusive transport becomes more prominent. Since both 3 mg/kg and 30 mg/kg DEX
treatment similarly reduce hyaluronan levels and tissue stiffness10, resulting in much larger interstitial hydraulic con-
ductivity K than the control case (Table 4), the enhanced interstitial diffusive transport results in the observed profiles.
In addition, we found that the 3 mg/kg DEX treatment case results in a much higher overall nanocarrier concentration
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accumulation in the tumor tissue than that of the control and the 30 mg/kg cases at all time nodes (1 h, 24 h, and
72 h), indicating increased delivery of anticancer nanocarriers leading to improved efficacy as demonstrated in Martin
et al. 10 . Given that the 3 mg/kg DEX treatment lead to the highest nanocarrier accumulation, we next investigated
the convective and diffusive transvascular fluxes separately to understand how DEX increased accumulation.

3.2 | Dexamethasone Increases Convective Transvascular Flux in Tumors

After finding the interstitial concentration profiles that dictate enhanced nanocarrier distribution and accumulation
with DEX treatment, we hypothesized that the difference in concentrations between the control and DEX treatment
cases depends on the relative contributions of convective and diffusive transvascular flux. Previous studies indi-
cated that the main mechanism of transvascular transport is diffusion because elevated IFP in the TME abrogated
the transvascular pressure gradient1. We reasoned that, because DEX reduces IFP, it could enhance convective flux,
which leads to more rapid transport than diffusive flux. However, the relative contributions from convection and
diffusion throughout the entire volume of a tumor have never been studied before.

Based on the optimal hydraulic conductivity values determined by global optimization, we first quantified the
model-predicted transvascular convective and diffusive fluxes. As described in (2), the convective flux is calculated
by Lp SV (pv − p ) (1 − σ )cv and the diffusive flux is calculated by P S

V (cv − c )
P e

eP e −1 . The relative contributions from
convective and diffusive flux to the spatially-averaged concentration profile with time are illustrated in Figure S4. We
found that the convective flux contribution for the DEX treatment case is dominant throughout the time horizon
compared with the control case. This indicates that the normalized TME after DEX treatment is advantageous for
convective transport.

To better understand the effects of TME normalization on transvascular transport, we sought to determine the
spatial dependence of model-predicted diffusive and convective fluxes in tumors. In Martin et al. 10 , we performed
continuous intravital microscopy on mice for one hour post-administration and investigated nanocarrier microdistri-
bution. Here, we quantified the spatial convective and diffusive fluxes at one hour post-administration to study their
distribution in tumors. As shown in Figure 7(a), in the region with r̂ < 0.8, the convective flux is near zero while
diffusion is the main mode of transport. This is because the IFP is close to the microvascular pressure (Figure 5 (a)),
indicating that there is no driving force for convection. Diffusion, although dominant, is small, and so there is not
much transvascular flux in the tumor center. In contrast, in the region with r̂ > 0.8, there is more convective than
diffusive flux, with the latter being near zero. This convective flux at the periphery is 22-fold greater than the diffusive
flux at the center. The reason for this is that the IFP in the convection-dominated region is low (Figure 5 (a)), which
induces a high transvascular convective flux driven by a large pressure gradient. Accordingly, the convective transport
increases the interstitial concentration, thereby lessening the concentration gradient and reducing the driving force
for diffusion. In addition, the P e number, which represents the ratio between transvascular convection and diffusion
rates, is very large in the periphery, reflecting the extremely small diffusive flux as observed in Figure 7(a). As a result,
we found that there is a convection-dominated region and a diffusion-dominated region and the maximum rate of
convective flux is an order-of-magnitude greater than the maximum diffusive flux.
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F IGURE 7 Dose-dependant transvascular convective and diffusive flux profiles. The transvascular flux profiles
of 500 kDa dextran over the dimensionless tumor radial position r̂ one-hour post-administration are plotted for the
(a) control; (b) 3 mg/kg dexamethasone (DEX) treatment; and (c) 30 mg/kg DEX treatment cases. (d) The
spatially-averaged convective and diffusive fluxes at one-hour post-administration for different doses of DEX are
presented in this bar plot. General trends show greatest convective flux at the tumor periphery and greatest
diffusive flux deeper at the tumor center. Following DEX treatment, convection accounts for a greater proportion of
the spatially-averaged transvascular fluxes, demonstrating how TME normalization induces a larger transvascular
pressure gradient that is advantageous for improving nanocarrier delivery in tumors. The 3 mg/kg DEX treatment
induces highest convective flux, indicating that a moderate dose of DEX is more advantageous for enhancing
convective transport.

Next, we investigated the effect of TME normalization on the spatial distribution of these fluxes. As illustrated
in Figure 7(b), the maximum convective flux at the periphery for 3 mg/kg DEX is 48-fold greater than the maximum
diffusive flux, which occurs in the tumor center. Since the maximum diffusive flux is close to the control case, this
indicates that convection is greatly enhanced and responsible for a larger proportion of total transvascular transport
in the normalized TME after treatment with 3 mg/kg DEX. In contrast, in Figure 7(c), the maximum convective flux for
30 mg/kg DEX is 22-fold greater than the maximum diffusive flux, which is comparable to that of the control case. In
fact, by comparing the values of maximum convective flux at the periphery, we found that the flux for 30 mg/kg DEX
is 14.3% less than the control case. The reason is that the vascular hydraulic conductivity Lp for with 30 mg/kg DEX
treatment is 13% less than the control case (Table 4). This is because DEX normalizes the vessels, increases vessel
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maturity, and thereby reduces vessel leakiness. As a result, the vascular hydraulic conductivity reduces, leading to the
lower maximum convective flux at the tumor periphery. However, these findings do not indicate that the convective
flux for 30 mg/kg DEX reduces throughout the entire tumor compared to the control. This is because we also found
that the volume of the convection-dominated region is much larger for DEX treatment cases.

As illustrated in Figure 7(b) and Figure 7(c), the convective flux for both 3 and 30 mg/kg DEX treatment cases
begins to increase around r̂ = 0.6 versus r̂ = 0.8 for the control case, indicating a larger convection-dominated
region. These findings are illustrated in Figure 8, which shows a schematic of tumor cross sections for the control
case and 3 mg/kg DEX treatment case. Note that the 30 mg/kg DEX treatment case has almost the same proportion
of convection-to-diffusion-dominated region as the 3 mg/kg case. Thus, the 3 mg/kg DEX was chosen to illustrate
the treatment case in Figure 8. We found that the tumor volume fraction of convection-dominated region for the
control case is only 49%, whereas this jumps to 78% for a tumor treated with DEX. This represents a 61% increase
in the volume fraction of the tumor that is dominated by convective transport as a result of TME normalization with
DEX treatment. Note that the transvascular fluxes in Figure 8 are scaled according to the 70 kDa dextran, and the
corresponding convective and diffusive flux profiles are presented in Figure S5. The findings using the 70 kDa dextran
to determine the convection- and diffusion-dominated regions are consistent with those using the 500 kDa dextran,
as shown in Figure 7. Both doses almost equally increase the volume of the convection-dominated region, but the 3
mg/kg DEX is superior because it also significantly increases the maximum convective flux.

To quantify the contributions of convection and diffusion throughout the tumor, we assessed the spatially-averaged
transvascular convective and diffusive fluxes and presented them in a bar plot as illustrated in Figure 7(d). We ob-
served a 360% increase in convective flux with 3 mg/kg DEX and a 80% increase with 30 mg/kg DEX compared to
the control case. This indicates that DEX dose has a significant impact on convective transport. It turns out that a
moderate dose of DEX greatly enhances convection. Excess DEX still enhances convective transport, but much less
effectively. The reason is that the vascular hydraulic conductivity Lp for 30 mg/kg DEX is much less than 3 mg/kg
DEX (Table 4). In addition, we found that a higher dose of DEX treatment leads to a lower spatially-averaged diffusive
flux (20% decrease with 3 mg/kg DEX and 65% decrease with 30 mg/kg DEX compared to control). One reason is
that the elevated convective flux with DEX treatment results in a much higher interstitial concentration. Thus, the
driving force from transvascular concentration gradient decreases, leading to a lower diffusive flux. In addition, we
reported in Martin et al. 10 that the vessel wall pore size is smaller with 30 mg/kg DEX treatment because vascular
normalization reduces vessel leakiness by shrinking vessel wall pores. Accordingly, the diffusive hindrance (introduced
in S1.3 of the SI) is also smaller. Note that a smaller diffusive hindrance represents higher impairment to diffusion 7.
Thus, 30 mg/kg DEX treatment results in a lower diffusive flux. In conclusion, these results demonstrate that DEX
increases the accumulation of nanocarriers in tumors by increasing the convective transvascular flux, but the dose
of TME normalization treatment should be titrated to avoid reducing vessel wall pore sizes that limit the benefit to
enhanced convection.
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Convective interstitial flux Diffusive interstitial flux

Perfuse vessel

Control 3 mg/kg DEX treatment

F IGURE 8 Cross sections of the spherical tumor are illustrated in this schematic for the control (left) and 3
mg/kg DEX treatment (right) cases. Perfuse vessels are more abundant and have a larger average diameter following
DEX treatment versus the control case; a result of normalizing the tumor microenvironment. The outer orange
shaded sections represent the convection-dominated region with significant pressure gradients resulting in
predominant convective transvascular flux (yellow arrows). The inner blue shaded sections represent the
diffusion-dominated region with almost no pressure gradient (highest interstitial fluid pressure (IFP)) resulting in
predominant diffusive transvascular flux (light blue arrows). The blue region is much larger for the control case with
the demarcation (orange dashed curves) between regions occurring at r̂ = 0.8, whereas the demarcation between
regions for the DEX treatment case is at r̂ = 0.6. Convective transvascular flux is significantly enhanced after DEX
treatment. The orange arrows pointing radially outward and blue arrows pointing radially inward represent,
respectively, the nanocarrier convective and diffusive flux in the tumor interstitium. The direction of interstitial
convective transport of nanocarriers is outward towards the periphery, caused by the IFP gradient, while the
direction of interstitial diffusive transport of nanocarriers is inward towards the center, caused by the concentration
gradient. The overall interstitial fluxes are significantly greater following DEX treatment. The interstitial fluxes and
transvascular fluxes are illustrated based on the global optimization results for 13 nm nanocarrier experiments. Note
that the interstitial and transvascular flux arrow lengths are each normalized to their own relevant bases for ease of
illustration and should not be compared to one another. Also note that since interstitial fluxes are spatially
dependent, the arrows represent spatially-averaged fluxes.

3.3 | Global Optimization Reveals Dose of Dexamethasone Maximizing NanocarrierAccumulation
Given that a moderate dose of DEX is superior to no DEX and a high dose of DEX for enhancing transvascular trans-
port, we hypothesized that there is an optimal dose of DEX that can maximize nanocarrier or antibody concentration
accumulation. As indicated by the previous preclinical study10, DEX as a drug for TME normalization is both (1) an
antiangiogenic agent that can normalize tumor vessels and (2) a cancer-associated fibroblast reprogramming agent
that reduces ECM levels leading to decompressed tumor vessels. The functions of (1) and (2) are associated with
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vascular hydraulic conductivity Lp and interstitial hydraulic conductivity K , respectively. Both Lp and K become more
favorable for drug delivery with a moderate dose of DEX treatment, but the relative contributions of (1) and (2) cannot
be directly controlled with a drug like DEX that affects both. In addition, as indicated by Table 4, an excess dose of
DEX decreases Lp thereby limiting transvascular flux for drug delivery. Thus, it is not clear what dose of DEX should
be used to maximize the therapeutic effect of a subsequently administered nanocarrier or antibody. The global opti-
mization method and TME-normalizing therapy design formulation (introduced in Section 2.5) enable the capability
to seek the optimal dose of DEX maximizing the nanocarrier accumulation.

As described in Section 2.5, we considered two cases of TME-normalizing therapy design problems: (Case 1)
the relationships between DEX dose and Lp and K are established based on the original data from Martin et al. 10 ,
expressed as (5) and (6); and (Case 2) the relationships between DEX dose and Lp and K are established based on
the original data combined with auxiliary data points, expressed as (7) and (8). Both TME-normalizing therapy design
problems were solved to global optimality. It took 2.5 h to solve Case 1 and 3.6 h to solve Case 2. The more compli-
cated relationship betweenDEX dose and hydraulic conductivities in Case 2 resulted in higher complexity and a longer
solution time to reach global optimality. Nevertheless, the proposed methodology with a mixed IA/AA approach for
the bounding routine was able to locate an optimal solution in hours. Thus, this short computation time demonstrates
that the proposed TME-normalizing therapy design methodology is practical for real-world clinical studies. An opti-
mal solution for Case 1 is found at x ∗ = 5.30 mg/kg, and for Case 2 is found at x ∗ = 4.41 mg/kg. The optimal dose
found in Case 1 results in 3% higher concentration accumulation than 3 mg/kg DEX treatment and 74% higher than
30 mg/kg DEX treatment. As a result, the TME-normalizing therapy design methods in this work demonstrate that
global optimization can be used in a reasonable timewindow to determine the optimal dose of DEX, which is predicted
to perform 3% better than the best dose determined by the experiments.

3.4 | Dexamethasone Dose Affects the Transvascular Convective TransportSize-Dependently
After finding that the optimal dose of DEX treatment maximizing concentration accumulation, we hypothesized that
the size of nanocarriers also affects interstitial concentration. We compared vascular permeability experimental data
of two nanocarriers with different hydrodynamic diameters (with data from Martin et al. 10 ), because unrelated previ-
ous studies demonstrated that vascular permeability depends on the nanocarrier size53,6,7. The smaller nanocarrier is
13 nm, which is similar to the size of nanoparticle albumin-bound paclitaxel in circulation 7, and the larger is similar to
the size of NC-6004, which is a clinical-stage polymeric micelle containing cisplatin 10. Using this experimental data
and our mathematical model, we investigated the model-predicted interstitial concentration with respect to tumor
radial position for these nanocarriers. As illustrated in Figure 9(a), the interstitial concentrations for the control case
are almost the same for 32 nm and 13 nm dextrans. And for 3mg/kg DEX treatment case illustrated in Figure 9(b),
the peak for 13 nm dextran is slightly higher, but the overall concentration distribution is still very close for these
dextrans. However, for 30 mg/kg DEX treatment case illustrated in Figure 9(c), the concentration profile for 13 nm
dextran is higher than 32 nm. A possible reason is that the vessel wall pore size decreases with 30 mg/kg DEX treat-
ment10. Thus, the steric hindrance is larger, especially for larger nanocarriers. Consequently, there are fewer larger
nanocarriers that transport into the tumor tissue, leading to a lower concentration profile. To better understand this
phenomena, we needed to investigate the effects of convective and diffusive transport.

We quantified the spatially-averaged convective and diffusive fluxes for 13 nm and 32 nm dextrans to demon-
strate their impact on accumulation. As illustrated in Figure 9(d), 3 mg/kg DEX treatment enhances convection to
a similar extent for each dextran (360% increase for both 13 and 32 nm dextran compared with the control case).
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However, 30 mg/kg DEX treatment leads to a 80% increase of convection for 32 nm dextran and a 180% increase
for 13 nm dextran. Therefore, the relatively lower convective flux with 30 mg/kg DEX for 32 nm dextran results in
less accumulation into the tumor tissue. In addition, we found that DEX reduces diffusion for both nanocarriers. The
higher interstitial concentration and smaller pore size with 30 mg/kg DEX lead to lower diffusive fluxes. Since diffu-
sion is inversely related to hydrodynamic diameter of nanocarriers, reduced diffusion after DEX is more important for
smaller nanocarriers, which rely on diffusion. In conclusion, we found 3 mg/kg DEX enhanced transvascular trans-
port size-independently, which conforms to the findings using the ECM normalizing agent tranilast in Papageorgis
et al. 54 . However, given the antiangiogenic properties of DEX, an excess dose of DEX is less effective for enhancing
convection especially for larger nanocarriers.

Spatially-Averaged Transvascular Flux

(a) (b)

(d)(c)

F IGURE 9 Interstitial concentrations ĉ of different sizes nanocarriers (500 kDa nanocarrier - 32 nm; 70 kDa
nanocarrier - 13nm; Case 1 - 16.40 nm) one-hour post-administration are plotted versus dimensionless tumor radial
position r̂ for (a) control; (b) 3 mg/kg DEX treatment; and (c) 30 mg/kg DEX treatment cases. (d) The
spatially-average transvascular convective and diffusive fluxes are plotted for 32 nm and 13 nm dextrans one-hour
post-administration. The interstitial concentration with 30 mg/kg DEX treatment for 32 nm dextran is lower than 13
nm dextran mainly due to its lower convective flux.
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3.5 | Global Optimization Determines the Dexamethasone Dose and Nanocarrier SizeMaximizing Accumulation
We found that DEX enhances convection yet reduces diffusion, so we sought to determine the optimal hydrody-
namic diameter of nanocarrier that exploits the balance of these two effects to realize a maximum accumulation with
safety/performance specifications. We considered three cases of drug size design problems. These corresponded to
3 mg/kg DEX treatment, the optimal dose of DEX for Case 1 (5.30 mg/kg), and the optimal dose of DEX for Case
2 (4.41 mg/kg), respectively. The 3 mg/kg dose induced the highest transvascular flux in experiments10, whereas
Case 1 and Case 2 were determined from the corresponding TME-normalizing therapy design problems. These drug
size design problems formulated as (10) were solved to global optimality. The optimal solutions found and time costs
for each case are summarized in Table 6. Note that the optimal nanocarrier sizes in these designs strictly satisfy the
safety/performance requirements to avoid potential side effects and guarantee the effectiveness, which constrain the
nanocarrier concentrations in the periphery of tumor normal tissue, as demonstrated in (10). Though smaller nanocar-
riers diffuse and accumulate inside the tumor interstitial space more quickly, it might violate the safety specifications
in these designs. Thus, these optimal solutions account for the drug size design results with requirements. In addition,
these problems can be solved in minutes, demonstrating the practicability for real-world applications.
TABLE 6 Optimal solutions and time costs of drug size design problems for the case studies of 3 mg/kg DEX
treatment, Case 1, and Case 2 of the therapy design problem.

Case study 3 mg/kg Case 1 Case 2
Optimal solution (d ∗m , nm) 19.65 16.55 12.51
Time (s) 355 384 120

The simultaneous therapy design approach with ANNmodels formulated as (12) was also performed with Case 1
and Case 2 studies. An optimal solution for Case 1 was found at (x ∗, d ∗m ) = (5.32, 16.40) and for Case 2 at (x ∗, d ∗m ) =
(4.38, 12.41) . The time costs are 42 s for Case 1 and 350 s for Case 2. However, global optimal solution of (11) with
the mechanistic model could not be obtained within a reasonable time limit. We expect that continued research on
global boundingmethodsmay be able to accelerate convergence and address this issue in the future. Alternatively, we
implemented a multi-start local optimization procedure for problems formulated as (11) and selected the results with
the lowest objective function values: ((x ∗, d ∗m ) = (5.33, 16.54) for Case 1 and (x ∗, d ∗m ) = (4.36, 12.58) for Case 2). We
found that the optimal solutions obtained with the ANNmodels are very close to the best-found local optimal results
obtained via themulti-start procedure. Since theANNmodelswere very accurate surrogates of themechanisticmodel,
this provides supporting evidence that the local results obtained are close estimates of the global optima. Therefore,
these results provide support for the practicability of the ANN models for use in optimal decision-making in cancer
therapeutics.

The therapy design methods in this work provide capability to identify optimal dose and drug size for maximiz-
ing the improvement in nanocarrier delivery induced by TME-normalizing therapies. One area of future work is to
investigate the effects of half-life circulation time on drug delivery. Smaller nanocarriers, which diffuse faster than
larger nanocarriers, benefit from having a higher intravascular concentration resulting from longer circulation time.
Thus, testing the impacts of different circulation time on concentration accumulation of different size nanocarriers
can be a useful future study. In addition, Martin et al. 10 reported that TME normalization increases the perfused vas-
cular density, which is not incorporated in this work. Higher vascular density indicates additional functional perfused
vessels, which is beneficial for drug delivery and accumulation in tumor tissue. Thus, we predicted that results for TME-
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normalizing therapy will be better if accounting for changing vascular density. Additionally, based on simulations of
the model, the variation of vascular density (S/V from 50 to 300) evidently does not affect the nanocarrier concen-
tration profiles. Nevertheless, the impacts of the vascular density require further investigation and integrating this
attribute could elucidate more details of the underlying transport mechanisms. While the current work demonstrates
the influence of transvascular transport on nanocarrier delivery, investigating how dexamethasone affects interstitial
transport could establish a more comprehensive foundation for further enhancing therapy design methods.

4 | CONCLUSION
Rigorous methods of model validations and optimal TME-normalizing dose and nanocarrier size therapy designs were
developed. This work wasmotivated by the need for more rigorous methods for in silicomodel-based decision-making
in cancer research. We established and demonstrated the use of a comprehensive theoretical framework for model-
based applications in preclinical PKPD research and development . The dynamic optimization problems for this study
were formulated as PDE-constrained NLPs and solved to global optimality, providing rigorous solutions for cancer
drug delivery studies. An efficient bounding routine using IA/AA and DI approaches and a special bounding rule for
the Péclet number in the solute source term were proposed for improving the performance of the global optimiza-
tion algorithm. In addition, machine learning approaches were utilized to establish a data-driven model via ANNs as
surrogate models for the original PDE system. The ANNs were utilized in place of the mechanistic model for solving
the parameter estimation problems with a simplified formulation. In particular, based on the global solution values
obtained for the hydraulic conductivities, transvascular transport was quantified with respect to convective and diffu-
sive fluxes to elucidate their contributions to the accumulation of anticancer nanocarriers in tumors following TME-
normalizing DEX treatment. Moreover, a methodology for optimal TME-normalizing therapy design was proposed
to optimize the dose of DEX for enhanced accumulation of anticancer nanocarriers in tumors. The nanocarrier size
design method was also proposed to determine an optimal size for patient-specific TMEs with safety/performance
specifications. Finally, a simultaneous design formulation was considered to determine an optimal dose of DEX and
an optimal nanocarrier size that would lead to maximized accumulation in the tumor interstitium. This work can be
extended to robust design problems that account for the impacts of uncertainty that may arise from noisy data or
incomplete characterization of a patient’s TME.
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S1 | TUMOR TRANSPORT MODEL
The 1-dimensional (1D) tumor transport model proposed by Baxter and Jain1,2,3,4 is used in this study as amechanistic
foundation for studying transvascular exchange and extravascular transport in tumors. The real vasculature of the
tumor is intricate and the cells between regions have large differences5. There is a necrotic region at the center of the
tumor (i.e., most/all cells are dead). In contrast, the outer region of the tumor contains rapidly dividing cells requiring
a large blood supply by abundant active blood vessels. Thus, actual solid tumors are spatially heterogeneous and it
may be that some physiological parameters in this model are spatially dependent. In our work, we simplify the tumor
microenvironment (TME) to be spatially homogeneous without lymphatics or extravascular bindings, which is helpful
for certifying and evaluating the overall role of the interstitial fluid pressure (IFP) on fluid transport and penetration
of nanocarriers in a tumor. The blood vessels, cells, extracellular matrix (ECM), and other microscopic structures, as
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illustrated in Figure S1, are also not considered explicitly in the model because this level of granularity is not important
at the length scales we are concerned with in this study. In addition, a main focus of our research is on studying the
overall macromolecular solute concentrations in a tumor over a prescribed time horizon. Therefore, we utilize spatial
averaging in the data and simulation results, which essentially homogenizes the macroscopic structures. In addition,
it is also assumed that the vasculature is distributed continuously over the spatial domain rather than at discrete or
localized positions.

S1 .1 | Fluid Transport

The fluid transport in the interstitium of a tumor follows Darcy’s law:
u = −K+p. (S1)

Here, u is the interstitial fluid velocity (IFV) (cm/s), K is the hydraulic conductivity of tumor interstitium (cm2/mm Hg-
sec), and p is the IFP (mm Hg). We assume axisymmetric flow in the spherical coordinate, and (S1) can be simplified
to

u = −K dp

dr
, (S2)

where r is the radial position (cm).

The continuity equation for steady-state incompressible fluid flow in spherical coordinates is given by:
1

r 2
d (r 2u)
dr

= Lp
S

V
(pv − p) . (S3)

Here, Lp is the hydraulic conductivity of the microvascular wall (cm/mm Hg-sec), S/V is the vascular surface area per
unit volume (cm−1), and pv is the vascular pressure (mm Hg). Substituting (S1) into the continuity equation (S3), the
steady-state fluid transport model is given by

1

r 2
d

dr

(
r 2

dp

dr

)
=

α2

R 2
(p − pss ), (S4)

where

α = R

√
S

V

Lp

K

is a dimensionless parameter representing the ratio of resistances of the fluid flow in the interstitium to across the
vasculature, R is the radius of the spherical tumor (cm), and pss is the steady-state interstitial pressure where the
efflux from the vessels equals the influx (mm Hg), and is equal to pv in this study.

The boundary conditions consist of a no-flux symmetry condition at the center of the spherical tumor and a
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Dirichlet condition at the periphery, respectively, as:
dp

dr

����
r=0

= 0, (S5)
p |r=R = p∞,

where p∞ denotes the surrounding tissue pressure (mm Hg).

S1 .2 | Solute Transport
To describe and characterize the transport mechanism of nanocarriers in tumors, the macromolecular solute transport
model is governed by the convection-diffusion equation:

∂c

∂t
+ 1

r 2
∂ (r 2uc)

∂r
= D

1

r 2
∂

∂r

(
r 2

∂c

∂r

)
+ φs , (S6)

where c is the concentration of the solute in the interstitium of the tumor (g/mL), D is the diffusion coefficient
(cm2/sec), and φs is the distributed source term based on a vessel pore model for transcapillary exchange6, given
by

φs = Lp
S

V
(pv − p) (1 − σ)cv + P

S

V
(cv − c) P e

eP e − 1
(S7)

Here, P e = Lp (pv − p) (1 − σ)/P is the Péclet number representing the ratio of the rates of convection to diffusion
across the vascular wall, σ is the solute reflection coefficient, P is the vascular permeability of the solute through
the vascular wall (cm/sec), and cv is the solute concentration in tissue vessels (g/mL). Since the bolus injection model
is applied, the vascular solute concentration decays exponentially with time as cv = coe

−t/kd , where co is the initial
macromolecular solute concentration in the blood (g/mL), and kd is the half-life circulation time of the nanocarriers
(sec).

It is assumed that nomacromolecular solutes exist in the tumor before injection, and therefore the initial condition
is c (0, r ) = 0. The boundary conditions are defined as:

−D ∂c

∂r

����
r=0

+ uc |r=0 = 0 (S8)
c |r=R = c∞,

where the interstitial concentration satisfies the no-flux condition at the center, is continuous across the tumor pe-
riphery, and equals c∞, representing the concentration (g/mL) in the normal tissue surrounding the tumor.

S1 .3 | Pore Theory
We follow the pore theory developed in Bungay and Brenner7. The pores of the vessels are assumed to be cylindrical,
in this case, we can evaluate the hydraulic conductivity of the tumor vessels Lp , the vascular permeability P , and the
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reflection coefficient σ by the pore theory

Lp =
γr 2o
8µL

(S9)
P =

γHDo

L

Do =
kBT

6πµrm

σ = 1 −W

where γ is the fraction of the surface area occupied by pores, ro is the pore radius (nm), µ is the blood viscosity (mmHg-
sec), L is the thickness of the vessel wall (µm), Do is the diffusion coefficient of the nanocarrier in free solution at 37◦C
given by the Stokes-Einstein relationship, kB is the Boltzmann constant (1.380648× 10−23J/K),T is the temperature of
solution (310.15 K), rm is the particle radius (nm), H andW are respectively diffusive and convective hindrance factors
based on the ratio of the particle size over the pore size, which are given in Bungay and Brenner7:

H =
6πΦ

Kt
, (S10)

W =
Φ (2 − Φ)Ks

2Kt
,

where Φ is the partition coefficient defined as the ratio of the average intrapore concentration to that in the bulk
solution at equilibrium. When the interactions between the solutes and pore wall are purely steric, the partition
coefficient is taken as Φ = (1 − λ)2, where λ is the ratio of particle size (dm , nm) to the pore size (do , nm). Note that λ
should be less than one. The Kt and Ks factors for the convective hindrance termW are defined as

Kt =
9

4
π2

√
2(1 − λ)−5/2 [1 +

2∑
k=1

αk (1 − λ)k ] +
4∑

k=0

αk+3λ
k (S11)

Ks =
9

4
π2

√
2(1 − λ)−5/2 [1 +

2∑
k=1

βk (1 − λ)k ] +
4∑

k=0

βk+3λ
k

The corresponding coefficients ak and bk are listed in Table S1. As indicated by (S9), the vascular permeability P

depends on the particle size and vessel wall properties, such as pore size, thickness, charge, and arrangement. Larger
particles will result in lower P , and when the particle size is larger than the pore cut-off size, P becomes zero. The
vascular hydraulic conductivity Lp relies on the morphology of the wall and the fraction of the wall surface occupied
by active pores8.
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S1 .4 | Solution Strategy
The fluid and solute transport models were solved numerically. First, the dimensionless form of the tumor radius, IFP,
and solute concentration, were defined as:

r̂ =
r

R
, (S12)

p̂ =
p − p∞
pss − p∞

,

ĉ =
c − c∞
co − c∞

.

After reformulating the tumor transport model into dimensionless form, the centered finite difference method was
used to discretize the spatial domain. The IFP profile is obtained by solving the fluid transport model (S4). As for the
solute transport model, the backward difference scheme was employed for discretization of the first partial derivative
∂c/∂r . Then, the explicit Eulermethodwas used to integrate the transient convection-diffusion equationwith stepsize
set as h = 15 s to obtain the medicine concentration profile over the tumor radius.

S2 | SET-VALUED MAPPING APPROACHES
This section introduces some basic set-valued mapping approaches utilized in Section 2.2 of the main manuscript as
a compensation.

S2 .1 | Interval Arithmetic and Affine Arithmetic
Interval arithmetic (IA) is an arithmetic performed on intervals according to primitive interval computation rules. The
main objective of IA to calculate upper and lower bounds for the range of a function in one or more variables. Readers
can navigate to Neumaier 9 for details in IA rules. IA suffers from the dependency problem as the different intervals
in an equation are treated as entirely independent variables. When some of the intervals depend on each other (e.g.,
a variable occurs several times in an equation), the combinations of IA operations of the function may significantly
overestimate the enclosure of the function.

Affine Arithmetic (AA) can overcome the overestimation induced by the dependency problem of traditional IA. AA
keeps track of the dependency between the interval variables throughout the calculations resulting in better interval
approximations in most cases10,11. In addition, the associated properties for the joint range of the interval variables
can be represented as a geometry by AA that reduces overestimation. When implementing none-affine operations, an
extra noise term is required to estimate the affine approximations of the non-affine part for each operation. Generally
speaking, this results in the elementary operations of AA to be more computationally expensive than standard IA.
However, the method proposed in Section 2.2 of the main manuscript will only apply AA for affine operations. As
such, non-affine operations and the additional complexity that they introduce, are ignored, resulting in no extra time
cost over standard IA.

S2 .2 | Differential Inequalities
Differential Inequalities (DI) is an approach using IA for constructing the componentwise lower and upper bounds on
the solution set of a system of ordinary differential equations (ODEs), which is first introduced by Harrison 12 . The DI
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methods can be categorized into two types: continuous-time DI and discrete-time DI. In continuous-time DI 13, an
auxiliary system of ODE-IVPs is formulated and directly sent to a numerical integrator for constructing the bounds. In
contrast, the discrete-time DI introduced by14 reformulates the system of ODEs into a discrete-time form. Then the
bounding rules are applied at each discrete time point. Note that we utilized the discrete-time DI method in this work.
In addition, for systems in which additional bounding information is known a priori, an interval refinement operator
can be applied to the standard DI for further reducing overestimation of the bounding results 15. This method is also
implemented in Section 2.2 of the main manuscript for comparison.

S3 | SIMPLIFICATION OF INEQUALITY CONSTRAINTS

In this section, we demonstrate that the inequality constraints on the superficial IFP in (4) of the main manuscript can
be expressed as linear constraints on the optimization variables, Lp and K , such that K = ζLp , with ζ ∈ Ò.
First, the dimensonless analytical solution of the fluid transport model1 (S4) can be derived as:

p̂ =

(
1 − sinh (r̂ α)

r̂ sinh (α)

)
, (S13)

where α is given in (S4).
Then, the IFP in the superficial region can be represented as:

p̂per i =

(
1 −

sinh (
r̂per i α

)
r̂per i sinh (α)

)
, (S14)

where r̂per i is the dimensionless radius from the center towards the superficial region of a tumor.
Substituting (S14) into the inequality constraints of (4) of the main manuscript results in:(

1 −
sinh (

r̂per i α
)

r̂per i sinh (α)

)
≥ p̂per i ,min, (S15)(

1 −
sinh (

r̂per i α
)

r̂per i sinh (α)

)
≤ p̂per i ,max . (S16)

If (S15) is active, then the following equality holds:

1 −
sinh (

r̂per i α
)

r̂per i sinh (α) = p̂per i ,min . (S17)

Differentiating (S17) with respect to Lp , yields the following expression:(
−
r̂per i sinh (α) cosh (

r̂per i α
)
− sinh (

r̂per i α
) cosh (α)

r̂per i sinh2 (α)
) (

dα

dLp

)
= 0. (S18)
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Since α > 0 always holds (Lp > 0), it can be verified that
(
−

r̂per i sinh(α ) cosh
(
r̂per i α

)
−sinh(

r̂per i α
) cosh(α )

r̂per i sinh2 (α )
)
, 0. Therefore, if

the constraint is active, then we must have:
dα

dLp
= 0 (S19)

⇒
d

(
R

√
SLp
VK

)
dLp

= 0

For this expression to hold, this means that α must be constant with respect to Lp . Since all parameters in α other
than Lp and K are constants, K must necessarily be a scalar multiple of Lp .

This gives the following result:
K = ζLp , for some ζ ∈ Ò such that p̂ = p̂per i ,min . (S20)

By the same procedure, K must be a scalar multiple of Lp if (S16) is active. Therefore, (S15) and (S16) can be simplified
as, respectively:

K ≤ ζmaxLp , (S21)
K ≥ ζminLp . (S22)

The values of ζmin and ζmax are listed in Table 5 of the main manuscript. The values for ζmin are calculated
according to the following procedure:
1. Choose two different values of Lp within the interval bounds.
2. Solve the nonlinear equation (S17) with each value of Lp for the corresponding K values.
3. Compute ζmin as the slope of the secant line joining the two points on an Lp versus K plot.
The calculation of ζmax values follow analogously.

S4 | RELATIONSHIP BETWEEN NANOCARRIER SIZE AND PHYSIOLOGICALPARAMETERS
There are two physiological parameters directly related to nanocarrier size dm : diffusion coefficient D and half-life
circulation time kd . The previous experimental results for their correlations are listed in Table S4. Nonlinear regression
models are established (power model for D versus dm ; Gaussian model for kd versus dm ) for these quantities as:

fD (dm ) = 1.981 × 10−6 · d−1.157
m + 2.221 × 10−8, (S23)

fkd (dm ) = 1081 exp
(
−

(
dm + 16.63

84.82

)2)
+ 517.4 exp

(
−

(
dm − 65.61

996.6

)2)
,

where fD and fkd represent the values of D and kd , respectively.
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F IGURE S1 A diagram of the tumor microenvironment illustrating fluid and solute transport from the blood
vessels to the interstitium with high transvascular permeability16.
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F IGURE S2 The radial interstitial concentration profiles at the time corresponding to the highest
spatially-averaged concentrations with respect to control (38.8 h), 3 mg/kg dexamethasone treatment (34.2 h), and
30 mg/kg DEX treatment (53.9 h) cases are presented.
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F IGURE S3 The percentages of the spatially-averaged concentrations at 72 h over the respective highest
spatially-averaged concentrations for the control, 3 mg/kg and 30 mg/kg dexamethasone (DEX) treatment cases are
presented. The DEX treatment enhances the retention effect.
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(a) (b)

F IGURE S4 The contributions from convective and diffusive flux to spatially-averaged concentrations versus
time for (a) control; (b) 3 mg/kg dexamethasone (DEX) treatment cases are presented. The profiles are plotted with a
12-hour horizon because the diffusive flux becomes extremely small after that. The contribution from convective
flux becomes more dominant after DEX treatment.
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(d)(c)

F IGURE S5 The transvascular flux profiles over the dimensionless radius r̂ for the (a) control; (b) 3 mg/kg
dexamethasone (DEX) treatment; and (c) 30 mg/kg DEX treatment cases with 70 kDa dextran one-hour
post-administration are presented. (d) The spatially-averaged convective and diffusive fluxes at one-hour
post-administration for different doses of DEX are presented in this bar plot.
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TABLE S1 Hydrodynamic coefficients used for the cylindrical pore model.6
k 1 2 3 4 5 6 7
αk -73/60 77293/50400 -22.5083 -5.6117 -0.3363 -1.216 1.647
βk 7/60 -2227/50400 4.0180 -3.9788 -1.9215 4.392 5.006
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TABLE S2 The bounds on input variables, Lp and K , are used for the surrogate model construction to create
ANNs in formulation (3) of the main manuscript.

Bounds Control Treatment
Variable Lower bound Upper bound Lower bound Upper bound
Lp (cm/mm Hg-sec) 1.00 × 10−7 1.75 × 10−6 5.00 × 10−7 3.50 × 10−6

K (cm2/mm Hg-sec) 1.00 × 10−7 1.00 × 10−6 7.00 × 10−7 4.00 × 10−6
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TABLE S3 The benchmark metrics for development time and performance of artificial neural network surrogate
models of difference cases (70 kDa - control; 70 kDa - treatment; 500 kDa - control; 500 kDa - treatment) are
reported. “70 kDa" and ”500 kDa" denote molecular weights of nanocarriers. “Treatment" denotes both 3 mg/kg and
30 mg/kg dexamethasone (DEX) treatment.

Time Metrics Performance Metrics
Case Data Generation (s) Training (s) Mean-Squared Error Mean-Percent Error (%)
70 kDa - Control 166 473 5.49 × 10−7 0.339

70 kDa - Treatment 166 538 2.32 × 10−7 0.102

500 kDa - Control 166 474 3.23 × 10−7 0.467

500 kDa - Treatment 166 539 1.55 × 10−7 0.096
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TABLE S4 Data for diffusion coefficients17 and blood half-life circulation time18 with respect to nanocarrier
sizes are reported. These values are used to construct regression models as formulated in (S23).

Particle size 12nm 60nm 125nm 250nm

Diffusion coefficient (cm2/s) 2 × 10−7 5 × 10−8 6 × 10−9 1 × 10−9

Half-life circulation time (min) 1480 995 582 500∗

∗represents extrapolation from data
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TABLE S5 This table provides benchmark metrics of time and performance (data generation time, training time,
mean-squared error and mean-percent error) for ANN surrogate model development in (12) of the main manuscript.

Time Metrics Performance Metrics
Data Generation (s) Training (s) Mean-Squared Error Mean-Percent Error (%)

ĉANNavg 122 180 7.49 × 10−7 0.172

ĉANN
per i

122 66 5.22 × 10−7 0.276
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TABLE S6 Physiological parameter values are reported for constructing the tumor transport model introduced in
Section S1 . “70 kDa" and ”500 kDa" denote molecular weights of nanocarriers.

Parameter Definition Value Reference
S/V (cm−1) Vascular density 200 19
D (cm2/sec) Diffusion coefficient 2 × 10−7 (70 kDa); 1.375 × 10−7 (500 kDa) 20
pv (mm Hg) Vascular pressure 25 21
kd (min) Blood circulation time 1480 (70 kDa); 1278 (500 kDa) 18
µ (mm Hg-sec) Blood viscosity 3 × 10−5 22
L (µm) Vessel wall thickness 5 23
γ Fraction of pore area 1 × 10−3 24
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