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Worst-Case Perspective

Think “safety-critical” systems: must ensure feasibility in the face of the
worst-case realization(s) of uncertainty
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Worst-Case Perspective

« Think “safety-critical” systems: must ensure feasibility in the face of the
worst-case realization(s) of uncertainty

— Model validation

— Fault detection and isolation

— Process design under uncertainty
— Process flexibility

— Formal verification

— Among others...




Worst-Case Perspective

Think “safety-critical” systems: must ensure feasibility in the face of the
worst-case realization(s) of uncertainty p
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Worst-Case Perspective

« Think “safety-critical” systems: must ensure feasibility in the face of the
worst-case realization(s) of uncertainty p
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Problem Formulation

Main challenge: most algorithms do not apply to problems with coupling
equality constraints
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Problem Formulation

 Main challenge: most algorithms do not apply to problems with coupling
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ABSTRACT: In this work, equality-constrained bilevel optimization problems, arising from engineering design, economics, and

operations research problems, are reformulated as an equivalent semi-infinite program (SIP) with implicit functions embedded,

which are defined by the original equality constraints that model the system. Using recently developed theoretical tools for

a bounding implicit functions, a recently developed algorithm for global optimizaton of implicit functions, and a recently

,y < m a {g . (Z X p) } developed algorithm for solving standard SIPs with explicit functions to global optimality, a method for solving SIPs with implicit

1 ) ) functions embedded is presented. The method is guaranteed to converge to e-optimality in finitely many iterations given the

existence of a Slater point arbitrarily close to a minimizer. Besides the Slater point assumption, it is assumed only that the
functions are continuous and factorable and that the model equations are once continuously differentiable.
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ABSTRACT: In this work, equality-constrained bilevel optimization problems, arising from engineering design, economics, and
operations research problems, are reformulated as an equivalent semi-infinite program (SIP) with implicit functions embedded,
which are defined by the original equality constraints that model the system. Using recently developed theoretical tools for
bounding implicit functions, a recently developed algorithm for global optimizaton of implicit functions, and a recently
developed algorithm for solving standard SIPs with explicit functions to global optimality, a method for solving SIPs with implicit
functions embedded is presented. The method is guaranteed to converge to e-optimality in finitely many iterations given the
existence of a Slater point arbitrarily close to a minimizer. Besides the Slater point assumption, it is assumed only that the
functions are continuous and factorable and that the model equations are once continuously differentiable.




Problem Formulation

Main challenge: most algorithms do not apply to problems with coupling

equality constraints R
fa}lure B e

min  ¢(x)
xeXeIR™
S.t. max Y

~eR,pePEIR’? 5€R"™

s.t.h(z,x,p) =0
v < max{g,(zx,p)}

Li(u,p, t)=f(z (X'p, t),x,p,t),t €1
z(x,p,0) = z,(x,p)

MOPTA 2023



Problem Formulation

equality constraints
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Main challenge: most algorithms do not apply to problems with coupling
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Abstract

We present a deterministic global optimization method for nonlinear programming
formulations constrained by stiff systems of ordinary differential equation (ODE)
initial value problems (IVPs). The examples arise from dynamic optimization prob-
lems exhibiting both fast and slow transient phenomena commonly encountered in
model-based systems engineering applications. The proposed approach utilizes
unconditionally stable implicit integration methods to reformulate the ODE-
constrained problem into a nonconvex nonlinear program (NLP) with implicit func-
tions embedded. This problem is then solved to global optimality in finite time using
a spatial branch-and-bound framework utilizing convex/concave relaxations of
implicit functions constructed by a method which fully exploits problem sparsity.
The algorithms were implemented in the Julia programming language within the
EAGQ,jl package and demonstrated on five illustrative examples with varying com-
plexity relevant in process systems engineering. The developed methods enable the
guaranteed global solution of dynamic optimization problems with stiff ODE-IVPs
embedded.

KEYWORDS

dynamic simulation, global optimization, implicit functions, stiff systems




Hybrid Modeling

Process

| l

Mechanism — Data

v v v

4 N )

First-Principles Models Hybrid Models Data-Driven Models
* Process mechanism is known * Process knowledge is * Input-output data inference
e Laws of nature are applied partially unknown * No need for mechanism
* Idealized by assumptions * Takes advantages of both e Valid within the domain

[1] von Stosch, M.; Oliveira, R.; Peres, J.; de Azevedo, S. F. Hybrid semi-parametric
modeling in process systems engineering: Past, present and future. Computers &
Chemical Engineering 2014,60, 86—101.




Hybrid Modeling

* Hybrid model architectures
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DGO of ANNSs

« Hybrid models with artificial neural networks are still nonconvex
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DGO of ANNSs

« Hybrid models with artificial neural network
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Convex and concave envelopes of artificial neural network
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In this work, we present general methods to construct convex/concave relaxations of the acti-
vation functions that are commonly chosen for artificial neural networks (ANNs). The choice
of these functions is often informed by both broader modeling considerations balanced with a
need for high computational performance. The direct application of factorable programming
techniques to compute bounds and convex/concave relaxations of such functions often lead to
L Output (™| weak enclosures due to the dependency problem. Moreover, the piecewise formulation that
defines several popular activation functions, prevents the computation of convex/concave
relaxations as they violate the factorable function requirement. To improve the performance
of relaxations of ANNs for deterministic global optimization applications, this study presents
the development of a library of envelopes of the thoroughly studied rectifier-type and sig-
moid activation functions, in addition to the novel self-gated sigmoid-weighted linear unit
(S5iLU) and Gaussian error linear unit activation functions. We demonstrate that the envelopes
of activation functions directly lead to tighter relaxations of ANNs on their input domain.
In turn, these improvements translate to a dramatic reduction in CPU runtime required for
solving optimization problems involving ANN models to epsilon-global optimality. We fur-
ther demonstrate that the factorable programming approach leads to superior computational
performance over alternative state-of-the-art approaches.
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SIPs with Hybrid Models

SIP structure is the same, but some decomposition and simplification may

be exploited
mi? (x) Where:
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ABSTRACT: The robust design of performance/safety-critical process systems,
from a model-based perspective, remains an existing challenge. Hybrid first-
principles data-driven models offer the potential to dramatically improve model
prediction accuracy, stepping closer to the digital twin concept. Within this
context, worst-case engineering design feasibility and reliability problems give rise
to a class of semi-infinite program (SIP) formulations with hybrid models as
coupling equality constraints. Reduced-space deterministic global optimization
methods are exploited to solve this class of SIPs to ¢-global optimality in finitely
many iterations. This approach is demonstrated on two challenging case studies: a
nitrification reactor for a wastewater treatment system to address worst-case
feasibility verification of dynamical systems and a three-phase separation system
plagued by numerical domain violations to demonstrate how they can be overcome using a nonsmooth SIP formulation with hybrid
models and a validity constraint incorporated.
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SIPs with Hybrid Models
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Solution Method

EAGO.jl: easy advanced global optimization in Julia

Backbone:
deterministic global

M. E. Wilhelm @ and M. D. Stuber
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optimization solver

ABSTRACT

An extensible open-source deterministic global optimizer (EAGO)
programmed entirely in the Julia language is presented. EAGO
was developed to serve the need for supporting higher-complexity
user-defined functions (e.g. functions defined implicitly via algo-
rithms) within optimization models. EAGO embed:s a first-of-its-kind
implementation of McCormick arithmetic in an Evaluator structure
allowing for the construction of convex/concave relaxations using
a combination of source code transformation, multiple dispatch,
and context-specific approaches. Utilities are included to parse user-
defined functions into a directed acyclic graph representation and
perform symbolic transformations enabling dramatically improved
solution speed. EAGO is compatible with a wide variety of local opti-
mizers, the most exhaustive library of transcendental functions, and
allows for easy accessibility through the JuMP modelling language.
Together with Julia’s minimalist syntax and competitive speed, these
powerful features make EAGO a versatile research platform enabling
easy construction of novel meta-solvers, incorporation and utiliza-
tion of new relaxations, and extension to advanced problem for-
mulations encountered in engineering and operations research (e.g.
multilevel problems, user-defined functions). The applicability and
flexibility of this novel software is demonstrated on a diverse set of
examples. Lastly, EAGO is demonstrated to perform comparably to
state-of-the-art commercial optimizers on a benchmarking test set.
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SIPs with Hybrid Models

Solution Method

Backbone: SIP Solver: SIPres
deterministic global cutting-plane algorithm
optimization solver (Mitsos, 2011)

UBD = f(x)

X =X
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SIPs with Hybrid Models

Solution Method

Backbone: SIP Solver: SIPres Data-Driven Model: ANN
deterministic global cutting-plane algorithm with supported activation
optimization solver (Mitsos, 2011) functions (NNIlib.jl)
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SIPs with Hybrid Models

Solution Method

Backbone: , Y+ del: ANN
deterministic global |- rogat yctivation
optimization Solver y = scale output(ANN model, x[1], p[1]) Ilbjl)
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Ex: Simple

« Consider the SIP:
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ABSTRACT: In this work, equality-constrained bilevel optimization problems, arising from engineering design, economics, and
operations research problems, are reformulated as an equivalent semi-infinite program (SIP) with implicit functions embedded,
which are defined by the original equality constraints that model the system. Using recently developed theoretical tools for
bounding implicit functions, a recently developed algorithm for global optimization of implicit functions, and a recently
developed algorithm for solving standard SIPs with explicit functions to global optimality, a method for solving SIPs with implicit
functions embedded is presented. The method is guaranteed to converge to e-optimality in finitely many iterations given the
existence of a Slater point arbitrarily close to a minimizer. Besides the Slater point assumption, it is assumed only that the
functions are continuous and factorable and that the model equations are once continuously differentiable.
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« Consider the SIP:
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Ex: Nitrification CSTR

First-Principles
Model

Other state variables

Model: dC
1 . :
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---------------- Controller r-----
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Ex: Nitrification CSTR
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Ex: Remote Separations

AlChE

Worst-Case Design of Subsea Production Facilities Using
Semi-Infinite Programming S3 s9

Al
Matthew D. Stuber, Achim Wechsung, Arul Sundaramoorthy, and Paul 1. Barton . o o S8
Process Systems Engineering Laboratory, Dept. of Chemical Engineering, Massachusetts Institute of Technology, e, G“'S'qumd Sep quLHd'quLHd Sep
Cambridge, MA 02139

DOF 101002/ aic. 14447
FPublished online April 3, 2014 in Wiley Online Library (wileyonlinelibrary.com)

The problem of designing novel process systems for deployment in exireme and hostile environmentis is addressed. Spe-
cifically, the process system of interest is a subsea production facility for ultra deepwater oil and gas production. The
costs associated with operational failures in deepwater environmenis are profiibitively high and, therefore, warrant the
application of worst-case design strategies. That is, prior to the construction and deployment of a process, a certificare
of robust feasibility is obtained for the proposed design. The concept of worst-case design is addressed by formulating
the design feasibility problem as a semi-infinite optimization problem with implicit functions embedded. A basic model
of a subsea production faciliry is presented for a case study of rigorous performance and safery verificarion. Relying on
recent advances in global optimization of implicit functions and semi-infinite programming, the design feasibility proh-
lem is solved, demonstraiing that this approach is effective in addressing the problem of worst-case design of novel pro-
cess systems. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2513-2524, 2014

Keywords: robust design, design under uncertainty, verification, global opfimization, semi-infinite programming
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Ex: Remote Separations

53 59

S8

Gas-Liqud Sep Liqud-Liquid Sep

julia> acos(-1.1)
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Conclusions

« Worst-case optimization under uncertainty problems are nonconvex SIPs
with coupling equality constraints

« Hybrid modeling approaches can be used to potentially reduce the
complexity of the optimization problem

« Toolchain based on EAGO for solving SIPs (with hybrid models)

« Examples illustrate some usage cases for relevant applications in process
systems engineering, including:

— dynamic optimization
— validity domains
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