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Worst-Case Perspective
• Think “safety-critical” systems: must ensure feasibility in the face of the 

worst-case realization(s) of uncertainty 
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Worst-Case Perspective
• Think “safety-critical” systems: must ensure feasibility in the face of the 

worst-case realization(s) of uncertainty 

– Model validation
– Fault detection and isolation
– Process design under uncertainty
– Process flexibility
– Formal verification
– Among others…
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Worst-Case Perspective
• Think “safety-critical” systems: must ensure feasibility in the face of the 

worst-case realization(s) of uncertainty p
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Bilevel program with 
coupling equality constraints
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Problem Formulation
• Main challenge: most algorithms do not apply to problems with coupling 

equality constraints
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Problem Formulation
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Semi-infinite program with 
implicit functions embedded
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Hybrid Modeling

First-Principles Models
• Process mechanism is known
• Laws of nature are applied
• Idealized by assumptions

Hybrid Models
• Process knowledge is 

partially unknown
• Takes advantages of both

Data-Driven Models
• Input-output data inference
• No need for mechanism
• Valid within the domain

Mechanism Data

Process

17
[1] von Stosch, M.; Oliveira, R.; Peres, J.; de Azevedo, S. F. Hybrid semi-parametric 
modeling in process systems engineering: Past, present and future. Computers & 
Chemical Engineering 2014,60, 86–101. 

MOPTA 2023



Hybrid Modeling
• Hybrid model architectures
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DGO of ANNs
• Hybrid models with artificial neural networks are still nonconvex
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SIPs with Hybrid Models
• SIP structure is the same, but some decomposition and simplification may 

be exploited
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SIPs with Hybrid Models
Solution Method
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Ex: Simple
• Consider the SIP:
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Robust operation:

Ex: Nitrification CSTR
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…

First-Principles 
Model

Input Output

Other state variables

Model:
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First-Principles 
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Input Output

Other state variables

Model:

*

1
( )

( )

 

 

NH
in in out NH AO AO

NI
AO AO NO NO

NA
NO NO

O
AO AO AO NO NO NO la O O

dC
m C m C r X

dt V
dC

r X r X
dt

dC
r X

dt
dC

r X r X k C C
dt

  

 



      

 

*

0.2967 SOTE

O

Q
C V

⋅
⋅

MOPTA 2023

u UQ 

in
C   

*

*

*

40

521.

80.28

76u



 







Ex: Remote Separations
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Ex: Remote Separations
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Conclusions
• Worst-case optimization under uncertainty problems are nonconvex SIPs 

with coupling equality constraints
• Hybrid modeling approaches can be used to potentially reduce the 

complexity of the optimization problem
• Toolchain based on EAGO for solving SIPs (with hybrid models)
• Examples illustrate some usage cases for relevant applications in process 

systems engineering, including: 
– dynamic optimization
– validity domains
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