Source Code Transformation for GPUEnhanced Deterministic Global Optimization

Robert Gottlieb, PhD Student
Matthew Stuber, Associate Professor

November 6 ${ }^{\text {th }}, 2023$

Process Systems and Operations Research _aboratory

Deterministic Global Optimization

> Nonconvex problems naturally arise in many applications
> Guaranteed global solutions require specialized algorithms such as branch-and-bound (B\&B)
> $\mathrm{B} \& \mathrm{~B}$ is computationally expensive
> Solvable problems typically have very few decision variables

Parameter Estimation and Model Validation ${ }^{2}$

Deterministic Global Optimization

Deterministic Global Optimization

Why GPUs?

Strengths

> Faster calculation speed
$>$ More efficient energy utilization
> More cost effective than CPUs for scale-up

Why GPUs?

Strengths

Weaknesses

> Faster calculation speed
$>$ More efficient energy utilization
$>$ More cost effective than CPUs for scale-up
> Standard B\&B software not automatically compatible with GPUs
> Requires re-architecting algorithms to be data-parallel
> "Branches" in code massively degrade performance

CPU vs. GPU Parallelism

> Multicore CPUs use task parallelism (MIMD)
$>$ Different cores perform different tasks independently
$>$ GPUs use data parallelism (SIMD)
$>$ Different cores perform the same task on different portions of data
$>$ Efficient with a pipeline: minimal decision-making, minimal branches based on data

McCormick Relaxations of Factorable Functions

$\mathbf{y}=\mathbf{f}(\mathbf{g}(\mathbf{x}), \ldots, \mathbf{h}(\mathbf{x}))$
McCormick-Based Relaxations 5,6

https://www.github.com/PSORLab/EAGO.jl
5. Mitsos, A., et al. McCormick-based relaxations of algorithms. SIAM Journal on Optimization, SIAM (2009) 20, 73-601.
6. Scott, J.K., et al. Generalized McCormick relaxations. Journal of Global Optimization 51.4 (2011): 569-606.

McCormick.jI

1) Create a library of math operators, overloaded* to apply McCormick rules

$$
\exp (x / y)-x y^{2} /(y+1)
$$

McCormick.jl

1) Create a library of math operators, overloaded* to apply McCormick rules

$$
\exp (x / y)-x y^{2} /(y+1)
$$

2) Create "McCormick objects" for variables $\{x, y\}$ with specified bounds and pointwise values

McCormick.jI

1) Create a library of math operators, overloaded* to apply McCormick rules

$$
\exp (x / y)-x y^{2} /(y+1)
$$

2) Create "McCormick objects" for variables $\{x, y\}$ with specified bounds and pointwise values
3) Evaluate the math expression using McCormick objects

McCormick.jI

$$
\exp (x / y)-x y^{2} /(y+1)
$$

1
Relaxations at specified values/bounds of x, y

1) Create a library of math operators, overloaded* to apply McCormick rules
2) Create "McCormick objects" for variables $\{x, y\}$ with specified bounds and pointwise values
3) Evaluate the math expression using McCormick objects

SourceCodeMcCormick.jl

$$
\exp (x / y)-x y^{2} /(y+1)
$$

SourceCodeMcCormick.jl

$$
\exp (x / y)-x y^{2} /(y+1) \longrightarrow \begin{aligned}
& v_{1}=x \\
& v_{2}=y \\
& v_{3}=v_{1} / v_{2} \\
& v_{4}=\exp \left(v_{3}\right) \\
& v_{5}=v_{2}^{2} \\
& v_{6}=v_{1} v_{5} \\
& v_{7}=-v_{6} \\
& v_{8}=v_{2}+1.0 \\
& v_{9}=v_{7} / v_{8} \\
& v_{10}=v_{4}+v_{9}
\end{aligned}
$$

SourceCodeMcCormick.jJ

$$
\begin{aligned}
& v_{1}=x \\
& v_{2}=y \\
& v_{3}=v_{1} / v_{2} \\
& v_{4}=\exp \left(v_{3}\right) \\
& v_{5}=v_{2}^{2} \\
& v_{6}=v_{1} v_{5} \\
& v_{7}=-v_{6} \\
& v_{8}=v_{2}+1.0 \\
& v_{9}=v_{7} / v_{8} \\
& v_{10}=v_{4}+v_{9}
\end{aligned}
$$

1) Factor original math expression

SourceCodeMcCormick.jJ

$$
\begin{aligned}
& v_{1}=x \\
& v_{2}=y \\
& v_{3}=v_{1} / v_{2} \\
& v_{4}=\exp \left(v_{3}\right) \\
& v_{5}=v_{2}^{2} \\
& v_{6}=v_{1} v_{5} \\
& v_{7}=-v_{6} \\
& v_{8}=v_{2}+1.0 \\
& v_{9}=v_{7} / v_{8} \\
& v_{10}=v_{4}+v_{9}
\end{aligned}
$$

1) Factor original math expression
2) Replace each factor with code capturing all variations of that McCormick rule

SourceCodeMcCormick.jl

$$
\begin{aligned}
& v_{1}=x \\
& v_{2}=y \\
& v_{3}=v_{1} / v_{2} \\
& v_{4}=\exp \left(v_{3}\right) \\
& v_{5}=v_{2}^{2} \\
& v_{6}=v_{1} v_{5} \\
& v_{7}=-v_{6} \\
& v_{8}=v_{2}+1.0 \\
& v_{9}=v_{7} / v_{8} \\
& v_{10}=v_{4}+v_{9}
\end{aligned}
$$

1) Factor original math expression
2) Replace each factor with code capturing all variations of that McCormick rule

SourceCodeMcCormick.jl

$$
\begin{aligned}
& v_{1}=x \\
& v_{2}=y \\
& v_{3}=v_{1} / v_{2} \\
& v_{4}=\exp \left(v_{3}\right) \\
& v_{5}=v_{2}^{2} \\
& v_{6}=v_{1} v_{5} \\
& v_{7}=-v_{6} \\
& v_{8}=v_{2}+1.0 \\
& v_{9}=v_{7} / v_{8} \\
& v_{10}=v_{4}+v_{9}
\end{aligned}
$$

1) Factor original math expression
2) Replace each factor with code capturing all variations of that McCormick rule
3) Compile code into an "evaluator function"

SourceCodeMcCormick.jl

$$
\exp (x / y)-x y^{2} /(y+1)
$$

$$
\downarrow
$$

new_func $\left(x^{c v}, x^{c c}, x^{L}, x^{U}, y^{c v}, y^{c c}, y^{L}, y^{U}\right)$

\downarrow
Plug in values/bounds of x, y to obtain relaxations

1) Factor original math expression
2) Replace each factor with code capturing all variations of that McCormick rule
3) Compile code into an "evaluator function"

SourceCodeMcCormick.jl

$\exp (x / y)-x y^{2} /(y+1)$

Fully compatible with GPUs
Pointwise evaluations ~3 OOM faster than McCormick.jI
to obtain relaxations

Past Hurdles

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Past Hurdles

1) Only returned relaxations and natural interval extensions (no subgradients)
> Reliant on subgradient-free lower-bounding methods
> Cannot handle non-trivial constraints
2) Relaxation rules have combinatorial complexity $>$ Large compile times
$>$ Greater chance of branching in rules

Newest Improvements

1) Can now handle subgradients!

Newest Improvements

1) Can now handle subgradients!

Newest Improvements

1) Can now handle subgradients!

Newest Improvements

1) Can now handle subgradients! > Does not address nontrivial constraints

Newest Improvements

1) Can now handle subgradients!
> Does not address nontrivial constraints
2) Automatic function generation!
$>$ Evaluator functions stitched into larger function
> Faster compilation times

Newest Improvements

1) Can now handle subgradients!
> Does not address nontrivial constraints
2) Automatic function generation!
$>$ Evaluator functions stitched into larger function
> Faster compilation times

$$
\log \left(\pi^{\text {calc }}\right)=\sum_{i=0}^{2} a_{i} w^{i}+\frac{\sum_{i=0}^{2} b_{i} w^{i}}{T}
$$

ParBB

Kinetic Parameter Estimation

Concentrations after an initial laser flash pyrolysis are modeled using the system of ODEs: ${ }^{8}$

$$
\begin{array}{rlrl}
\frac{d x_{A}}{d t} & =k_{1} x_{Z} x_{Y}-c_{O_{2}}\left(k_{2 f}+k_{3 f}\right) x_{A}+\frac{k_{2 f}}{K_{2}} x_{D}+\frac{k_{3 f}}{K_{3}} x_{B}-k_{5} x_{A}^{2}, \\
\frac{d x_{B}}{d t} & =c_{O_{2}} k_{3 f} x_{A}-\left(\frac{k_{3 f}}{K_{3}}+k_{4}\right) x_{B}, \\
\frac{d x_{D}}{d t} & =c_{O_{2}} k_{2 f} x_{A}-\frac{k_{2 f}}{K_{2}} x_{D}, & I=x_{A}+\frac{2}{21} x_{B}+\frac{2}{21} x_{D} \\
\frac{d x_{Y}}{d t} & =-k_{1 s} x_{Z} x_{Y}, \\
\frac{d x_{Z}}{d t} & =-k_{1} x_{z} x_{Y}, \quad x_{A}(0)=x_{B}(0)=x_{D}(0)=0, \quad x_{Y}(0)=0.4, \quad x_{Z}(0)=140 .
\end{array}
$$

Results

Solution Method	Convergence Time (s)	Nodes Accessed
Base EAGO	445.1	$8.4 E 5$

Results

Solution Method	Convergence Time (s)	Nodes Accessed
Base EAGO	445.1	8.4 E 5
Pointwise GPU	130.4	4.5 E 6

Results

Solution Method	Convergence Time (s)	Nodes Accessed
Base EAGO	445.1	8.4 E 5
Pointwise GPU	130.4	4.5 E 6
Subgradient GPU	202.7	5.2 E 6

Conclusions

> Evaluations of relaxations and subgradients performant on GPU
> GPU-based B\&B algorithm implemented in SourceCodeMcCormick.jl
> Current method cannot handle non-trivial constraints
> Would require batch parallelized GPU LP solver

Conclusions

> Evaluations of relaxations and subgradients performant on GPU
> GPU-based B\&B algorithm implemented in SourceCodeMcCormick.jl
> Current method cannot handle non-trivial constraints
> Would require batch parallelized GPU LP solver*

Acknowledgements

Members of the Process Systems and Operations Research Laboratory at the University of Connecticut (https://psor.uconn.edu/)

Funding:

National Science Foundation, Award No.: 1932723
DOE / EERE / AMO Award No.: DE-EE0009497
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation, the Department of Energy, or the United States Government.

Questions?

©
Process Systems and Operations Research Laboratory
https://www.psor.uconn.edu

https://www.github.com/PSORLab/EAGO.jl

Results

Solution Method	Convergence Time (s)	Nodes Accessed
Base EAGO	445.1	8.4 E 5
Pointwise GPU	130.4	4.5 E 6
Subgradient GPU	202.7	5.2 E 6
Subgradient GPU (multi)	291.9	4.3 E 6

