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Deterministic Global Optimization

➢ Focus is nonconvex (MI)NLPs

➢ Standard approach is spatial B&B

2

1. D. Henrion and J.-B. Lasserre. GloptiPoly: global optimization over polynomials with MATLAB and SeDuMi. In Proceedings of the

41st IEEE Conference on Decision and Control (2002).

2. Burre, J., et al. Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic

models. Computers & Chemical Engineering, (2022): 107806.



High-Performance Computing
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Graphics Processing Units (GPUs)

➢ Graphics rendering

➢ Machine learning model training4

➢ Generative AI

➢ Data analysis5

➢ Large-scale simulations6

➢ Molecular dynamics

➢ CFD modeling
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Aligning B&B with GPUs

?

B&B Algorithm GPU Architecture
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GPU Architecture

➢ GPUs are composed of 
thousands of cores

➢ Single instructions are 
executed by many cores 
simultaneously on 
different portions of data

GPU Architecture
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Can we do these on a GPU?
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1) Relaxations
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SourceCodeMcCormick.jl (SCMC)13,14

➢ Based on source code generation

➢ Enables GPU-accelerated:

➢ Inclusion monotonic interval 
extensions

➢ McCormick relaxations

➢ Subgradients of McCormick 
relaxations

SourceCodeMcCormick.jl

13. Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for 

Deterministic Global Optimization with Parallel Architectures. Optimization Methods and 

Software, 1–39 (2024).

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of 

McCormick-Based Relaxations and Subgradients. Under Review, (2025).



13. Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization with Parallel Architectures. Optimization Methods and 

Software, 1–39 (2024).

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025). 16

➢ Generates customized CUDA kernels 
to calculate many relaxations at once

SourceCodeMcCormick.jl
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SourceCodeMcCormick.jl

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025).

Speedup for 20480 
relaxation evaluations



18

Hybrid CPU-GPU B&B

GPU CPU CPU CPU

Preprocess
Upper 

Problem
Postprocess

Select 
Node

Branch
Solve LP 

Subproblem
Relaxations

CPUCPU CPU



19

Hybrid CPU-GPU B&B

GPU CPU CPU CPU

Preprocess
Upper 

Problem
Postprocess

Select 
Node

Branch
Solve LP 

Subproblem
Relaxations

CPU

Select more than 
one node

CPU CPU



20

Hybrid CPU-GPU B&B

CPU GPU CPU

Preprocess
Upper 

Problems
Postprocess

Select 
Nodes

Branch
Solve LP 

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU



21

Hybrid CPU-GPU B&B
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2) Solving LPs
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PDLP

Primal Dual Hybrid Gradient for LP (PDLP)

➢ Applegate et al. (2021) developed a 
competitive first-order method (FOM) 
for solving LPs

15. Applegate, D., et al. Practical Large-Scale Linear Programming using Primal-Dual Hybrid 

Gradient. 35th Conference on Neural Information Processing Systems (NeurIPS 2021),  (2021).
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cuPDLP.jl

16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid 

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).
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BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU
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BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU

Other LPs continue 
even if one finishes
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High-Level Organization

➢ Built for smaller LPs (within each block, maps threads to variables)

Thread

Block

Grid

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008). 

Grid size is the 
number of LPs

Each Block ID 
corresponds to one LP
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Memory Organization

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008). 

Global Memory

➢ Problem information (bounds, constraint matrix, 
right-hand side, […])

➢ Problem state (current/average/sum of primal/dual 
solutions, […])

Block Memory

➢ Re-usable storage for parallel reductions (sum, max)

➢ Persistent data/flags (primal weight, step size, […])

Thread Memory

➢ (Thread 1) Parallel reduction results

➢ Critical information (iteration number, […])
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Memory Organization

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008). 

Global Memory

➢ Problem information (bounds, constraint matrix, 
right-hand side, […])
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Exploiting Sparsity

Original NLP
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Exploiting Sparsity
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Exploiting Sparsity
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Benchmark Tests

➢ Subset of “small” NLPs 
from MINLPLib

➢ Original domain partitioned 
into 10000 subdomains

➢ Evaluated subgradients at 3 
points per subdomain to 
generate LP constraints
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Performance Profile

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).
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Performance Profile

Fastest Solver in 
61% of Problems

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).
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Performance Profile

Fastest Solver in 
61% of Problems

Fewest Problems 
Solved (85%)

(FOMs are more 
sensitive to 

numerical issues)

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).
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Results Distribution
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LP Solver Problem Dependence

19. Google OR-Tools. Advanced LP Solving. Accessed 2025-08-22. https://developers.google.com/optimization/lp/lp_advanced

Fastest

Close to 
Fastest
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Integration into B&B
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Numerical Example

20. Liberti, L., et al. New formulations for the Kissing Number Problem. Discrete Applied Mathematics, 155(4): 1837–1841 (2007).
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Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
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Example Convergence Plot

10.7s 52.7s

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
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B&B Progress
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B&B Progress

3500 LPs solved in 
parallel
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Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
GPU [Workstation]: NVIDIA Quadro T2000
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Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
GPU [Workstation]: NVIDIA Quadro T2000

88.0s
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Wrapping Up

➢ Applying GPU resources to address individual B&B 
nodes

➢ Code generation for relaxations

➢ Custom LP solver (BatchPDLP) 

➢ Integration within EAGO allows minimization of 
CPU-GPU data transfer

➢ Integration within EAGO enables any nonconvex 
NLP to be solved using GPUs

https://github.com/PSORLab/
SourceCodeMcCormick.jl

https://github.com/PSORLab/SourceCodeMcCormick.jl
https://github.com/PSORLab/SourceCodeMcCormick.jl
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