
GPU-Parallel Branch-and-

Bound with Custom Kernels

and Specialized PDLP

Robert Gottlieb, Matthew Stuber

Sept. 4, 2025

Deterministic Global Optimization

➢ Focus is nonconvex (MI)NLPs

➢ Standard approach is spatial B&B

2

1. D. Henrion and J.-B. Lasserre. GloptiPoly: global optimization over polynomials with MATLAB and SeDuMi. In Proceedings of the

41st IEEE Conference on Decision and Control (2002).

2. Burre, J., et al. Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic

models. Computers & Chemical Engineering, (2022): 107806.

High-Performance Computing

3

Graphics Processing Units (GPUs)

➢ Graphics rendering

➢ Machine learning model training4

➢ Generative AI

➢ Data analysis5

➢ Large-scale simulations6

➢ Molecular dynamics

➢ CFD modeling

➢ Supercomputing

➢ […]
3. Sun, Y., et al. Summarizing CPU and GPU design trends with product data. arXiv, (2019). arXiv: 1911.11313

4. Steinkraus, D., et al. Using GPUs for machine learning algorithms. Eighth International Conference on Document Analysis and Recognition, Seoul, South Korea, 2: 1115-1120 (2005).

5. Singh, H., et al. GPU and CUDA in Hard Computing Approaches: Analytical Review. Proceedings of ICRIC 2019, 177-196 (2020).

6. Stone, J.E., et al. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling, 29(2):116-125 (2010).

High-Performance Computing

Graphics Processing Units (GPUs)

➢ Graphics rendering

➢ Machine learning model training4

➢ Generative AI

➢ Data analysis5

➢ Large-scale simulations6

➢ Molecular dynamics

➢ CFD modeling

➢ Supercomputing

Global Solver Uses GPU

BARON7 No

ANTIGONE8 No

SCIP9 No

MAiNGO10 No

EAGO11 No

[…] […]

7. Sahinidis, N.V. BARON: A general purpose global optimization software package. Journal of Global Optimization, 8(2):201–205 (1996).

8. Misener, R. and Floudas, C.A. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations. Journal of Global Optimization, 59(2-3):503–526 (2014).

9. Vigerske, S. and Gleixner, A.. SCIP: global optimization of mixed-integer non-linear programs in a branch-and-cut framework. Optimization Methods and Software, 33(3):563–593 (2017).

10. Bongartz, D., et al. MAiNGO - McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization. Technical report, RWTH-Aachen (2018). URL https://www.avt.rwth-

aachen.de/global/show_document.asp?id=aaaaaaaaabclahw.

11. Wilhelm, M.E. and Stuber, M.D. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software, 37(2):425–450 (2022).

4

5
11. Wilhelm, M.E. and Stuber, M.D. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software, 37(2):425–450 (2022).

12. NVIDIA. NVIDIA Tesla V100 GPU Architecture: The World’s Most Advanced Data Center GPU [White paper]. NVIDIA (2017).

Aligning B&B with GPUs

?

B&B Algorithm GPU Architecture

612. NVIDIA. NVIDIA Tesla V100 GPU Architecture: The World’s Most Advanced Data Center GPU [White paper]. NVIDIA (2017).

GPU Architecture

➢ GPUs are composed of
thousands of cores

➢ Single instructions are
executed by many cores
simultaneously on
different portions of data

GPU Architecture

7

Serial CPU B&B

Preprocess
Lower

Problem
Upper

Problem
PostprocessSelect Node Branch

8

Serial CPU B&B

Preprocess
Upper

Problem
PostprocessSelect Node Branch

Solve LP
Subproblem

Relaxations

Lower
Problem

9

Serial CPU B&B

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

10

Serial CPU B&B

CPU CPU CPU CPU CPU CPU

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

CPU

11

Serial CPU B&B

CPU CPU CPU CPU CPU CPU

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

CPU

Primary Computational
Expense

12

Serial CPU B&B

CPU CPU CPU CPU CPU CPU

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

CPU

Primary Computational
Expense

Can we do these on a GPU?

14

1) Relaxations

15

SourceCodeMcCormick.jl (SCMC)13,14

➢ Based on source code generation

➢ Enables GPU-accelerated:

➢ Inclusion monotonic interval
extensions

➢ McCormick relaxations

➢ Subgradients of McCormick
relaxations

SourceCodeMcCormick.jl

13. Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for

Deterministic Global Optimization with Parallel Architectures. Optimization Methods and

Software, 1–39 (2024).

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of

McCormick-Based Relaxations and Subgradients. Under Review, (2025).

13. Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization with Parallel Architectures. Optimization Methods and

Software, 1–39 (2024).

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025). 16

➢ Generates customized CUDA kernels
to calculate many relaxations at once

SourceCodeMcCormick.jl

17

SourceCodeMcCormick.jl

14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025).

Speedup for 20480
relaxation evaluations

18

Hybrid CPU-GPU B&B

GPU CPU CPU CPU

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

CPUCPU CPU

19

Hybrid CPU-GPU B&B

GPU CPU CPU CPU

Preprocess
Upper

Problem
Postprocess

Select
Node

Branch
Solve LP

Subproblem
Relaxations

CPU

Select more than
one node

CPU CPU

20

Hybrid CPU-GPU B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

21

Hybrid CPU-GPU B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

This would be
extremely inefficient

22

2) Solving LPs

23

PDLP

Primal Dual Hybrid Gradient for LP (PDLP)

➢ Applegate et al. (2021) developed a
competitive first-order method (FOM)
for solving LPs

15. Applegate, D., et al. Practical Large-Scale Linear Programming using Primal-Dual Hybrid

Gradient. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), (2021).

24

PDLP

Primal Dual Hybrid Gradient for LP (PDLP)

➢ Applegate et al. (2021) developed a
competitive first-order method (FOM)
for solving LPs

15. Applegate, D., et al. Practical Large-Scale Linear Programming using Primal-Dual Hybrid

Gradient. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), (2021).

25

cuPDLP.jl

16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

26
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

27
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

28
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

29
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

30
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

31
16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid

Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

cuPDLP.jl

➢ Entire GPU used for each step (maps threads to variables)

➢ Useful for large problems

32

Hybrid CPU-GPU B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GPU

Goal is many LPs,
not one big LP

33

BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU

34

BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU

35

BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU

36

BatchPDLP

➢ Custom novel implementation of PDLP, written as a single CUDA kernel

➢ Each LP solved by a portion of the GPU

Other LPs continue
even if one finishes

37

High-Level Organization

➢ Built for smaller LPs (within each block, maps threads to variables)

Thread

Block

Grid

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008).

Grid size is the
number of LPs

Each Block ID
corresponds to one LP

38

Memory Organization

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008).

Global Memory

➢ Problem information (bounds, constraint matrix,
right-hand side, […])

➢ Problem state (current/average/sum of primal/dual
solutions, […])

Block Memory

➢ Re-usable storage for parallel reductions (sum, max)

➢ Persistent data/flags (primal weight, step size, […])

Thread Memory

➢ (Thread 1) Parallel reduction results

➢ Critical information (iteration number, […])

39

Memory Organization

17. Lindholm, E., et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro, 28(2): 39–55 (2008).

Global Memory

➢ Problem information (bounds, constraint matrix,
right-hand side, […])

➢ Problem state (current/average/sum of primal/dual
solutions, […])

Block Memory

➢ Re-usable storage for parallel reductions (sum, max)

➢ Persistent data/flags (primal weight, step size, […])

Thread Memory

➢ (Thread 1) Parallel reduction results

➢ Critical information (iteration number, […])

40

Exploiting Sparsity

Original NLP

41

Exploiting Sparsity

Original NLP

1
x

2
x

3
x

4
x

5
x

Objective

Constraint 1

Constraint 2

Constraint 3

42

Exploiting Sparsity

Original NLP LP from Relaxation Subgradients

1
x

2
x

3
x

4
x

5
x

Objective

Constraint 1

Constraint 2

Constraint 3

43

Exploiting Sparsity

Original NLP LP from Relaxation Subgradients

1
x

2
x

3
x

4
x

5
x

Objective

Constraint 1

Constraint 2

Constraint 3

1
x

2
x

3
x

4
x

5
x

44

Exploiting Sparsity

Original NLP LP from Relaxation Subgradients

1
x

2
x

3
x

4
x

5
x

Objective

Constraint 1

Constraint 2

Constraint 3

1
x

2
x

3
x

4
x

5
x

45

Benchmark Tests

➢ Subset of “small” NLPs
from MINLPLib

➢ Original domain partitioned
into 10000 subdomains

➢ Evaluated subgradients at 3
points per subdomain to
generate LP constraints

46

Performance Profile

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).

47

Performance Profile

Fastest Solver in
61% of Problems

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).

48

Performance Profile

Fastest Solver in
61% of Problems

Fewest Problems
Solved (85%)

(FOMs are more
sensitive to

numerical issues)

18. Dolan, E and Moré, J. Benchmarking optimization software with performance profiles. Math. Program. Ser. A, 91: 201–213 (2002).

49

Results Distribution

50

LP Solver Problem Dependence

19. Google OR-Tools. Advanced LP Solving. Accessed 2025-08-22. https://developers.google.com/optimization/lp/lp_advanced

Fastest

Close to
Fastest

51

Integration into B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GPU

52

Integration into B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GPU

Node Bounds

53

Integration into B&B

CPU GPU CPU

Preprocess
Upper

Problems
Postprocess

Select
Nodes

Branch
Solve LP

Subproblems
Relaxations

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

GPU

Node Bounds LP Objective Values

54

Numerical Example

20. Liberti, L., et al. New formulations for the Kissing Number Problem. Discrete Applied Mathematics, 155(4): 1837–1841 (2007).

55

Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100

56

Example Convergence Plot

10.7s 52.7s

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100

57

B&B Progress

58

B&B Progress

3500 LPs solved in
parallel

59

Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
GPU [Workstation]: NVIDIA Quadro T2000

60

Example Convergence Plot

CPU: Intel Xeon W-2195
GPU [HPC]: NVIDIA Quadro GV100
GPU [Workstation]: NVIDIA Quadro T2000

88.0s

61

Wrapping Up

➢ Applying GPU resources to address individual B&B
nodes

➢ Code generation for relaxations

➢ Custom LP solver (BatchPDLP)

➢ Integration within EAGO allows minimization of
CPU-GPU data transfer

➢ Integration within EAGO enables any nonconvex
NLP to be solved using GPUs

https://github.com/PSORLab/
SourceCodeMcCormick.jl

https://github.com/PSORLab/SourceCodeMcCormick.jl
https://github.com/PSORLab/SourceCodeMcCormick.jl

Acknowledgements

62

Funding:

 National Science Foundation, Award No.: 2330054

 Pratt & Whitney Endowed Professorship

Members of the Process Systems and Operations Research Laboratory

at the University of Connecticut (https://psor.uconn.edu/)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation or the United States Government.

https://www.psor.uconn.edu

https://psor.uconn.edu/
https://www.psor.uconn.edu/

	Slide 1: GPU-Parallel Branch-and-Bound with Custom Kernels and Specialized PDLP
	Slide 2: Deterministic Global Optimization
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Acknowledgements

