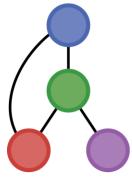


GPU-Parallel Branch-and-Bound with Custom Kernels and Specialized PDLP

Robert Gottlieb, Matthew Stuber Sept. 4, 2025

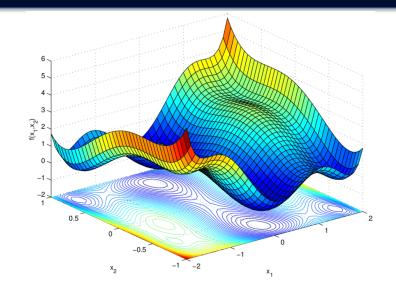


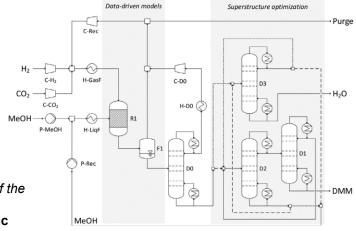
Process Systems and Operations Research Laboratory

Deterministic Global Optimization

- Focus is nonconvex (MI)NLPs
- Standard approach is spatial B&B

$$egin{array}{ll} \min_x & f(x) \ \mathrm{s.\,t.} & \mathbf{g}(x) \leq \mathbf{0} \ & \mathbf{h}(x) = \mathbf{0} \ & x \in X \subset \mathbb{R}^n \end{array}$$





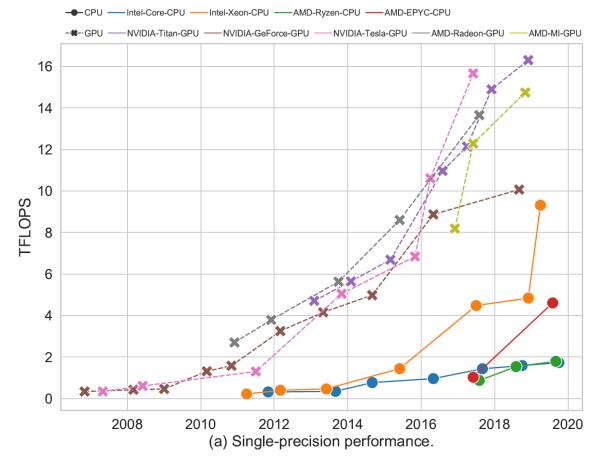
^{1.} D. Henrion and J.-B. Lasserre. **GloptiPoly: global optimization over polynomials with MATLAB and SeDuMi.** *In Proceedings of the 41st IEEE Conference on Decision and Control* (2002).

^{2.} Burre, J., et al. Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic models. Computers & Chemical Engineering, (2022): 107806.

High-Performance Computing

Graphics Processing Units (GPUs)

- Graphics rendering
- Machine learning model training⁴
 - Generative Al
- Data analysis⁵
- Large-scale simulations⁶
 - Molecular dynamics
 - > CFD modeling
- Supercomputing
- > [...]



^{3.} Sun, Y., et al. **Summarizing CPU and GPU design trends with product data**. *arXiv*, (2019). arXiv: 1911.11313

^{4.} Steinkraus, D., et al. **Using GPUs for machine learning algorithms**. *Eighth International Conference on Document Analysis and Recognition*, Seoul, South Korea, 2: 1115-1120 (2005).

^{5.} Singh, H., et al. GPU and CUDA in Hard Computing Approaches: Analytical Review. Proceedings of ICRIC 2019, 177-196 (2020).

Stone, J.E., et al. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling, 29(2):116-125 (2010).

High-Performance Computing

Graphics Processing Units (GPUs)

- Graphics rendering
- Machine learning model training⁴
 - Generative Al
- Data analysis⁵
- Large-scale simulations⁶
 - Molecular dynamics
 - > CFD modeling
- Supercomputing

X				
	Uses GPU	Global Solver		
	No	BARON ⁷		
	No	ANTIGONE ⁸		
	No	SCIP ⁹		
	No	MAiNGO ¹⁰		
	No	EAGO ¹¹		
	[]	[]		

^{7.} Sahinidis, N.V. BARON: A general purpose global optimization software package. *Journal of Global Optimization*, 8(2):201–205 (1996).

^{10.} Bongartz, D., et al. **MAiNGO - McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization.** Technical report, RWTH-Aachen (2018). URL https://www.avt.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaabclahw.

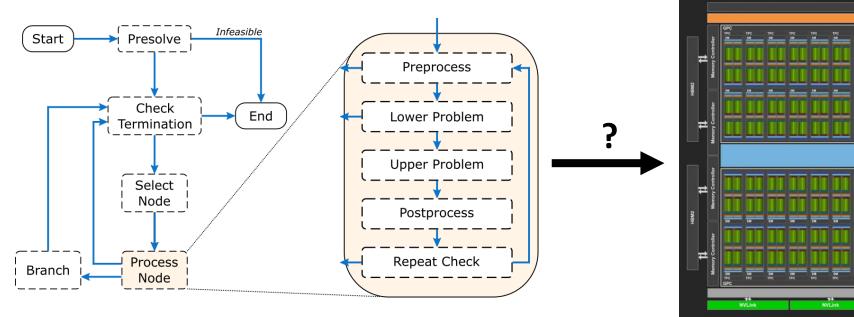
^{8.} Misener, R. and Floudas, C.A. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations. Journal of Global Optimization, 59(2-3):503–526 (2014).

^{9.} Vigerske, S. and Gleixner, A.. SCIP: global optimization of mixed-integer non-linear programs in a branch-and-cut framework. Optimization Methods and Software, 33(3):563–593 (2017).

Aligning B&B with GPUs

B&B Algorithm

GPU Architecture

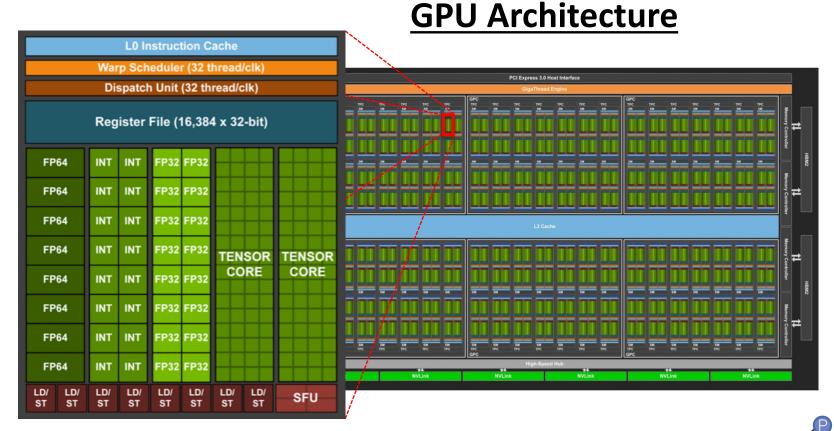


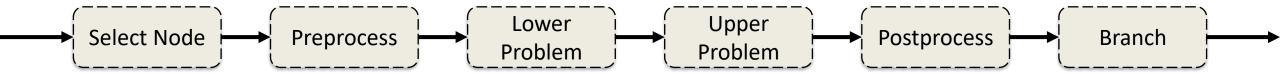
^{11.} Wilhelm, M.E. and Stuber, M.D. EAGO.jl: easy advanced global optimization in Julia. Optimization Methods and Software, 37(2):425–450 (2022).

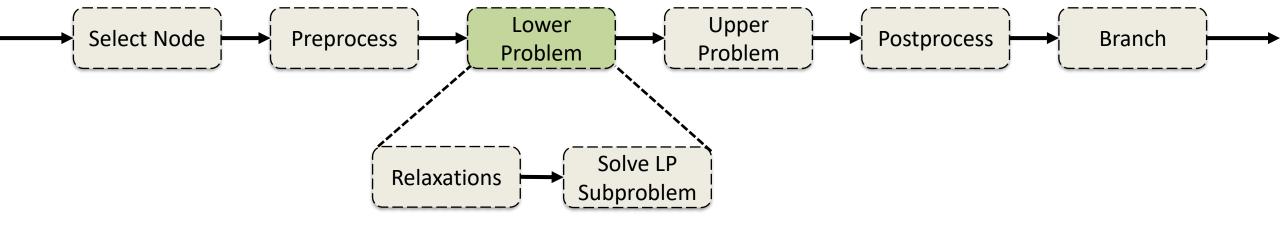
^{12.} NVIDIA. NVIDIA Tesla V100 GPU Architecture: The World's Most Advanced Data Center GPU [White paper]. NVIDIA (2017).

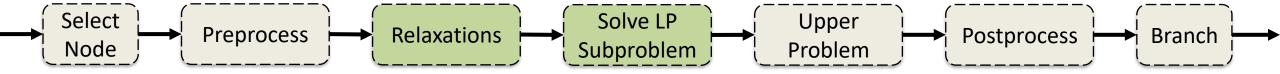
GPU Architecture

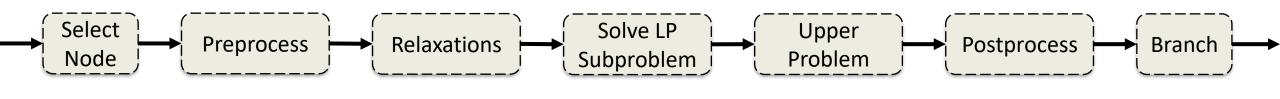
- GPUs are composed of thousands of cores
- Single instructions are executed by many cores simultaneously on different portions of data

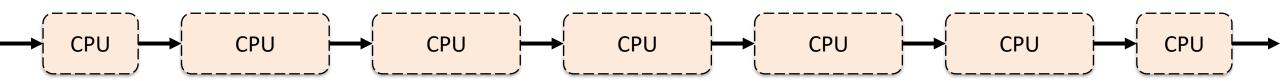


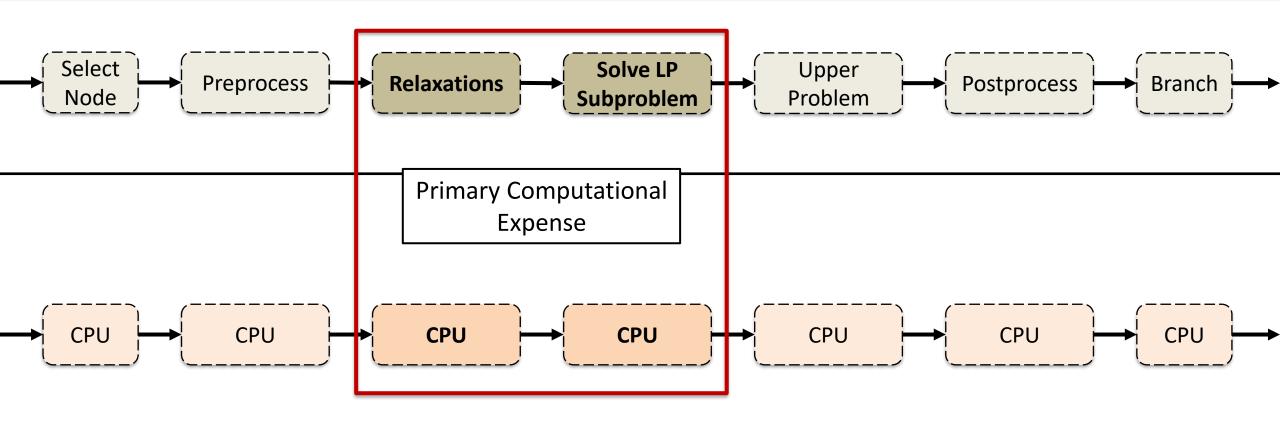


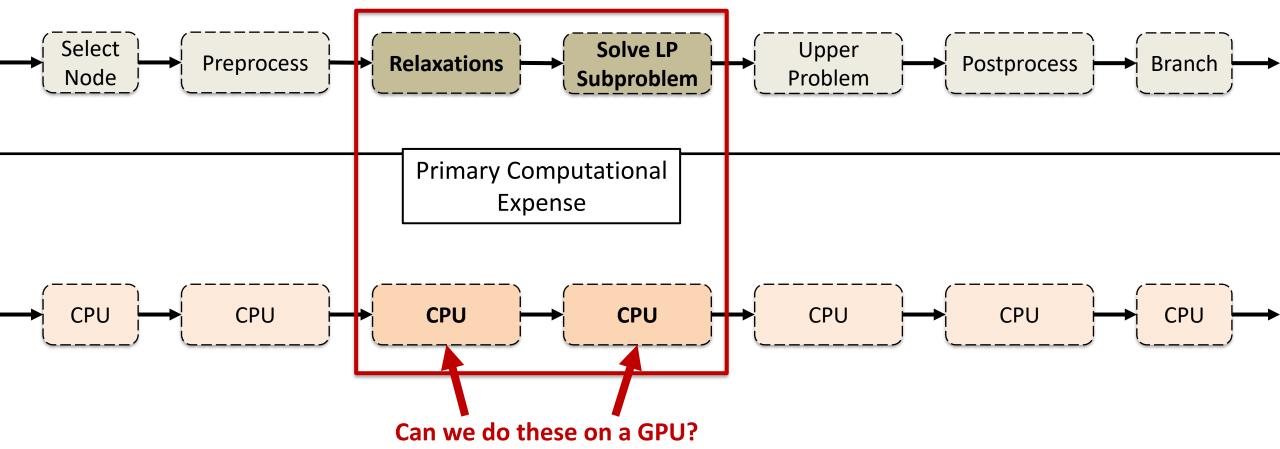










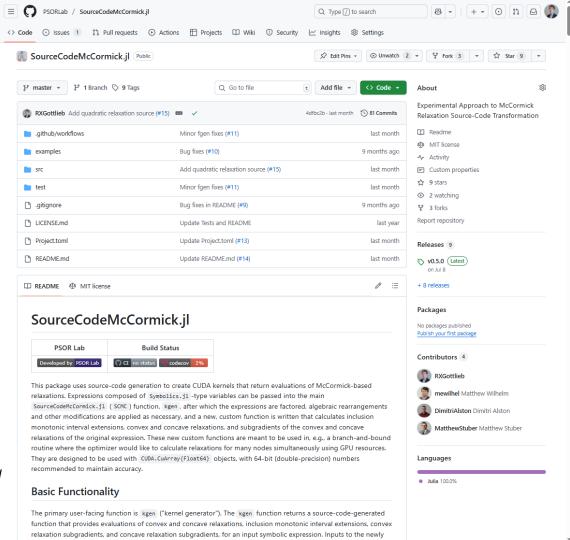


1) Relaxations

SourceCodeMcCormick.jl

SourceCodeMcCormick.jl (SCMC)^{13,14}

- Based on source code generation
- Enables GPU-accelerated:
 - Inclusion monotonic interval extensions
 - McCormick relaxations
 - Subgradients of McCormick relaxations
- 13. Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization with Parallel Architectures. *Optimization Methods and Software*, 1–39 (2024).
- 14. Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025).



SourceCodeMcCormick.jl

Generates customized CUDA kernels to calculate many relaxations at once

```
using SourceCodeMcCormick
@variables x, y
func = kgen(1 / (1 + exp(x)*exp(y)))

v_1 = x
v_2 = y
v_3 = \exp(v_1)
v_4 = \exp(v_2)
v_5 = v_3 v_4
v_6 = 1 + v_5
v_7 = v_6^{-1}
v_7
v_8
v_8
v_9
```

```
# Generated at 2025-08-22T17:22:03.345
# Kernel(s) generated for the expression: 1 / (1 + \exp(y) * \exp(x))
function f_B3WZmzXUeWL_1(OUT, x, y)
   idx = threadIdx().x + (blockIdx().x - Int32(1)) * blockDim().x
   stride = blockDim().x * gridDim().x
   col = Int32(1)
   colmax = Int32(2)
   temp1 lo = 0.0
   temp1 hi = 0.0
   temp1 cv = 0.0
   temp1 cc = 0.0
   temp1 cvgrad = @MVector zeros(Float64, 2)
   temp1_ccgrad = @MVector zeros(530at64, 2)
   temp2 lo = 0.0
   temp2 hi = 0.0
   temp2_cv = 0
   temp2 cc = 0.0
   temp2_cvgrad \ @MVector zemos(rloat64, 2)
   temp2_ccgrad = @MVect . zeros(Float64, 2)
   while idx <= Int32(size(OUT,1))
       ## Addition of Two Variables ##
       # Reset the column counter
       col = Int32(1)
```

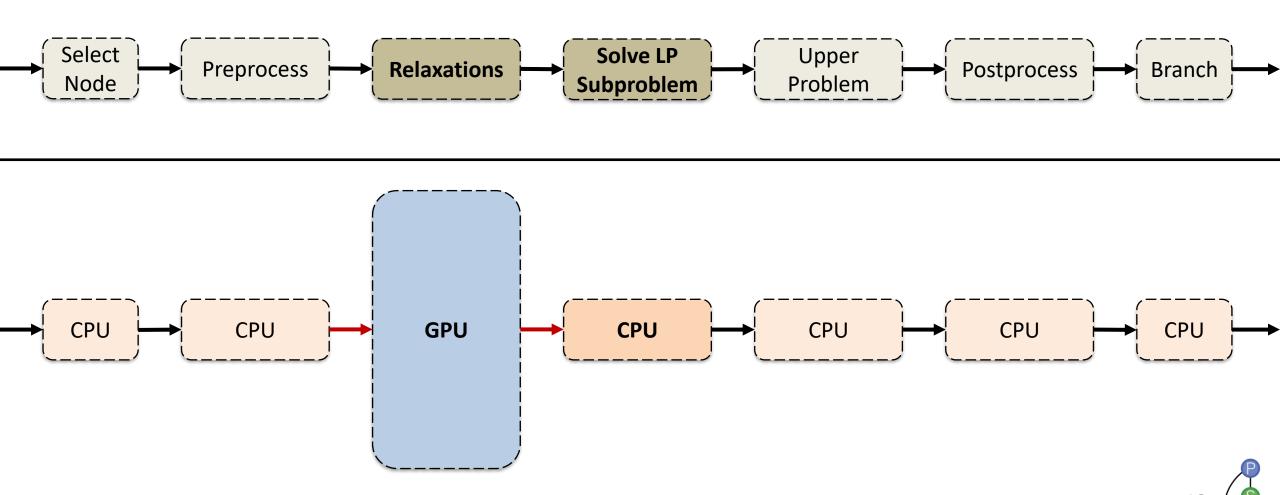

^{13.} Gottlieb, R.X., Xu, P., and Stuber, M.D. Automatic Source Code Generation for Deterministic Global Optimization with Parallel Architectures. Optimization Methods and Software, 1–39 (2024).

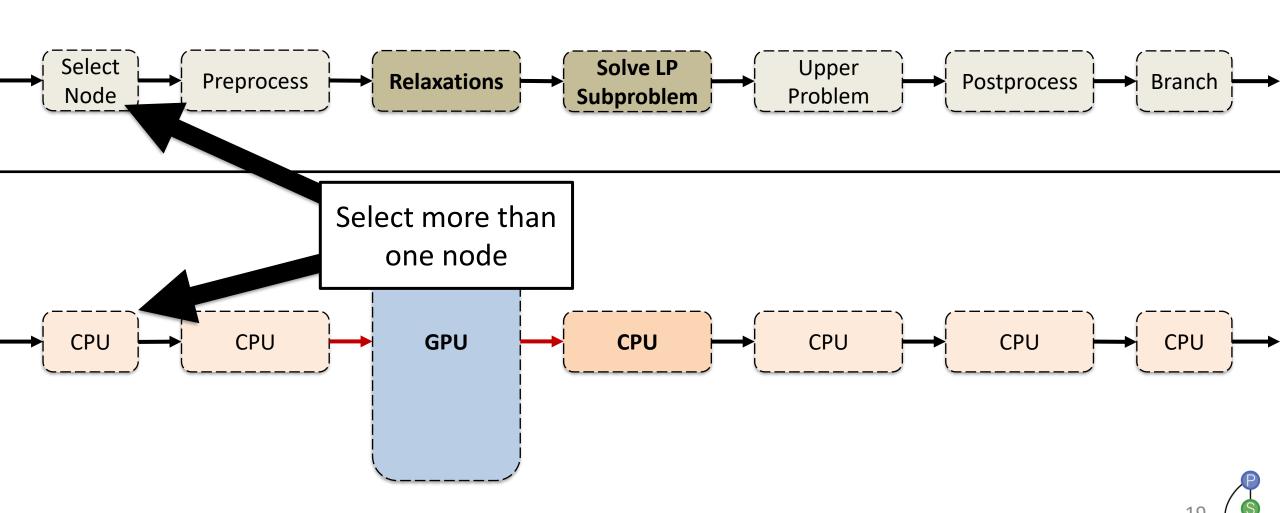
^{14.} Gottlieb, R.X. and Stuber, M.D. Automatic Generation of GPU Kernels for Evaluators of McCormick-Based Relaxations and Subgradients. Under Review, (2025).

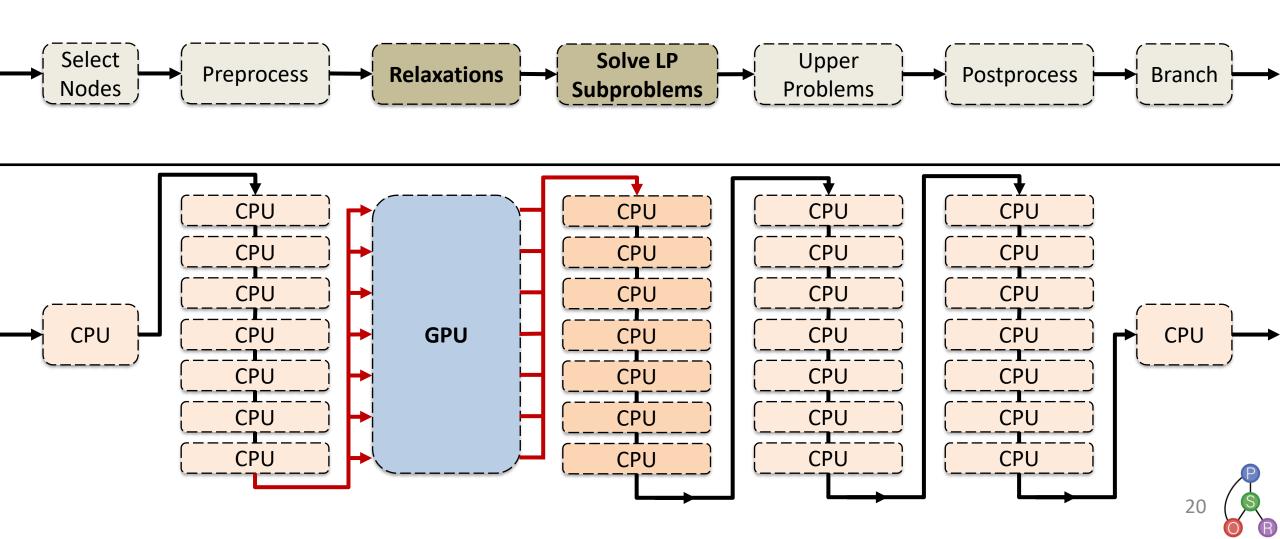
SourceCodeMcCormick.jl

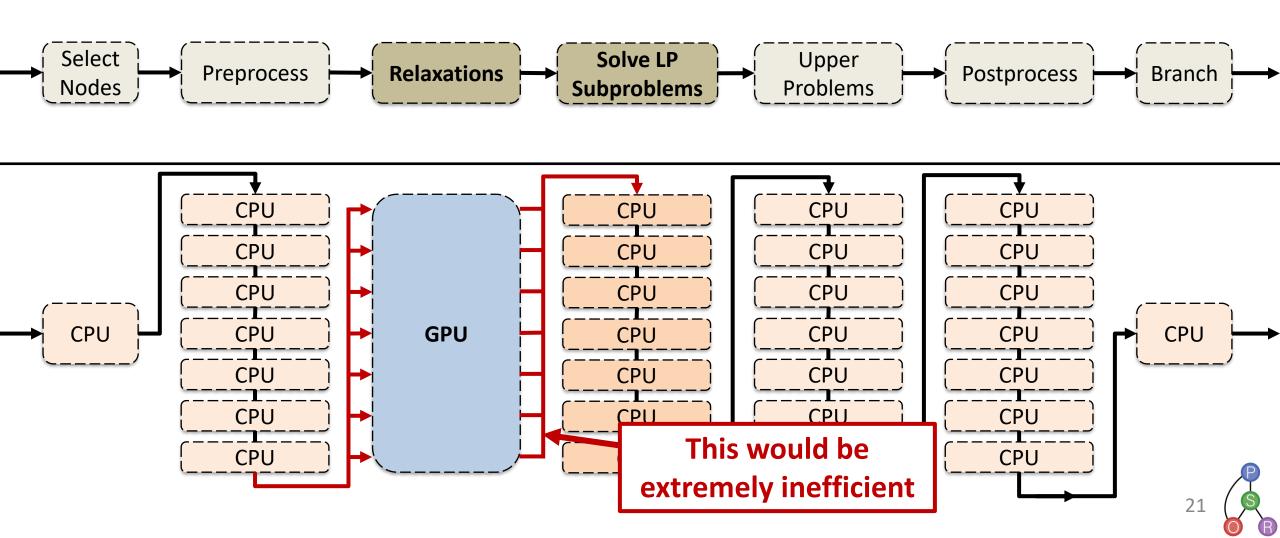
				SCMC	McCormick.jl	
Expression	Initial	Dimensionality	Nonlinear	Avg. Evaluation	Avg. Evaluation	Evaluation Time
Form	Domain		Operators	Time (ns)	Time (ns)	Speed-Up
$\sum_{i=1}^{10} x_i$	$[-1,1]^{10}$	10	(None)	1.9×10^{0}	1.90×10^{2}	99.9x
$\exp(\sum_{i=1}^{10} x_i)$	$[-1,1]^{10}$	10	exp	3.0×10^{0}	2.72×10^2	90.6x
$(\sum_{i=1}^{10} x_i)^2$	$[-1,1]^{10}$	10	^2	3.1×10^{0}	2.36×10^2	76.2x
$\prod_{i=1}^{10} x_i$	$[-1,1]^{10}$	10	*	1.15×10^{1}	5.79×10^{2}	50.3x
$\exp(\prod_{i=1}^{10} x_i)$	$[-1,1]^{10}$	10	*, exp	1.19×10^{1}	6.38×10^{2}	53.6x
$\left(\prod_{i=1}^{10} (x_i)^2\right)$	$[-1,1]^{10}$	10	*, ^2	1.02×10^{1}	9.40×10^{2}	92.1x
$x_1/(\prod_{i=2}^{10} x_i)$	$[-1,1] \times [0.01,1]^9$	10	/, *	6.2×10^{0}	5.11×10^{2}	82.4x
alkyl objective	$[0, 2.0] \times [0, 1.6] \times [0, 1.2] \times$ $[0, 5.0] \times [0, 2.0] \times [0.9, 0.95]$	6	*	$7. \times 10^{-1}$	1.61×10^{2}	229.9x
ex6_2_10 objective	$[10^{-7}, 0.2]^2 \times [10^{-7}, 0.4]^4$	6	/, *, log	9.04×10^{1}	1.37×10^{4}	151.1x
arki0002 objective	$[-10, 10]^{152}$	152	^2	2.58×10^{3}	1.62×10^{7}	6269.5x
Trained ANN	$[-5,5]^8$	8	*, sigmoid	1.90×10^{1}	5.51×10^{3}	290.0x
Training ANN	$[-5,5]^{31}$	31	*, sigmoid	9.59×10^{1}	1.28×10^{4}	133.4x

Speedup for 20480 relaxation evaluations









2) Solving LPs

PDLP

Primal Dual Hybrid Gradient for LP (PDLP)

Applegate et al. (2021) developed a competitive first-order method (FOM) for solving LPs

15. Applegate, D., et al. Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), (2021).

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

David Applegate Google Research dapplegate@google.com Mateo Díaz
California Institute of Technology*
mateodd@caltech.edu

Oliver Hinder Google Research University of Pittsburgh ohinder@pitt.edu

Haihao Lu University of Chicago[†] haihao.lu@chicagobooth.edu Miles Lubin Google Research mlubin@google.com Brendan O'Donoghue DeepMind bodonoghue@deepmind.com

Warren Schudy Google Research wschudy@google.com

Abstract

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primaldual hybrid gradient (PDHG) method, popularized by Chambolle and Pock (2011), to a saddle-point formulation of LP. PDLP enhances PDHG for LP by combining several new techniques with older tricks from the literature; the enhancements include diagonal preconditioning, presolving, adaptive step sizes, and adaptive restarting. PDLP improves the state of the art for first-order methods applied to LP. We compare PDLP with SCS, an ADMM-based solver, on a set of 383 LP instances derived from MIPLIB 2017. With a target of 10⁻⁸ relative accuracy and 1 hour time limit, PDLP achieves a 6.3x reduction in the geometric mean of solve times and a 4.6x reduction in the number of instances unsolved (from 227 to 49). Furthermore, we highlight standard benchmark instances and a large-scale application (PageRank) where our open-source prototype of PDLP, written in Julia, outperforms a commercial LP solver.

PDLP

Primal Dual Hybrid Gradient for LP (PDLP)

Applegate et al. (2021) developed a competitive first-order method (FOM) for solving LPs

$$\min_{x \in X} \max_{y \in Y} \mathcal{L}(x, y) := c^{\mathsf{T}} x - y^{\mathsf{T}} K x + q^{\mathsf{T}} y$$

$$\begin{split} \boldsymbol{x}^{k+1} &= \underset{\boldsymbol{X}}{\mathbf{proj}} (\boldsymbol{x}^k - \boldsymbol{\tau}(\boldsymbol{c} - \boldsymbol{K}^\top \boldsymbol{y}^k)) \\ \boldsymbol{y}^{k+1} &= \underset{\boldsymbol{Y}}{\mathbf{proj}} (\boldsymbol{y}^k + \boldsymbol{\sigma}(\boldsymbol{q} - \boldsymbol{K}(2\boldsymbol{x}^{k+1} - \boldsymbol{x}^k))) \end{split}$$

15. Applegate, D., et al. **Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient.** *35th Conference on Neural Information Processing Systems (NeurIPS 2021)*, (2021).

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

David Applegate Google Research dapplegate@google.com Mateo Díaz
California Institute of Technology*
mateodd@caltech.edu

Oliver Hinder Google Research University of Pittsburgh ohinder@pitt.edu

Haihao Lu University of Chicago[†] haihao.lu@chicagobooth.edu Miles Lubin Google Research mlubin@google.com Brendan O'Donoghue DeepMind bodonoghue@deepmind.com

Warren Schudy Google Research wschudy@google.com

Abstract

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primaldual hybrid gradient (PDHG) method, popularized by Chambolle and Pock (2011), to a saddle-point formulation of LP. PDLP enhances PDHG for LP by combining several new techniques with older tricks from the literature; the enhancements include diagonal preconditioning, presolving, adaptive step sizes, and adaptive restarting. PDLP improves the state of the art for first-order methods applied to LP. We compare PDLP with SCS, an ADMM-based solver, on a set of 383 LP instances derived from MIPLIB 2017. With a target of 10⁻⁸ relative accuracy and 1 hour time limit, PDLP achieves a 6.3x reduction in the geometric mean of solve times and a 4.6x reduction in the number of instances unsolved (from 227 to 49). Furthermore, we highlight standard benchmark instances and a large-scale application (PageRank) where our open-source prototype of PDLP, written in Julia, outperforms a commercial LP solver.

cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid Gradient for Linear Programming in Julia

Haihao Lu*

Jinwen Yang[†]

June 2024

Abstract

In this paper, we provide an affirmative answer to the long-standing question: Are GPUs useful in solving linear programming? We present cuPDLP.jl, a GPU implementation of restarted primal-dual hybrid gradient (PDHG) for solving linear programming (LP). We show that this prototype implementation in Julia has comparable numerical performance on standard LP benchmark sets to Gurobi, a highly optimized implementation of the simplex and interior-point methods. This demonstrates the power of using GPUs in linear programming, which, for the first time, showcases that GPUs and first-order methods can lead to performance comparable to state-of-the-art commercial optimization LP solvers on standard benchmark sets.

1 Introduction

Linear programming (LP) is a fundamental optimization problem class with a long history and a vast range of applications in operation research and computer science, such as agriculture, transportation, telecommunications, economics, production and operations scheduling, strategic decision-making, etc [22, 14, 12, 29, 10, 49].

Since the 1940s, speeding up and scaling up LP has been a central topic in the optimization community, with extensive studies from both academia and industry. The current general-purpose LP solvers, such as Gurobi [41], COPT [18], CPLEX [34] and HiGHS [26], are quite mature. These

16. Lu, H. and Yang, J. cuPDLP.jl: A GPU Implementation of Restarted Primal-Dual Hybrid Gradient for Linear Programming in Julia. arXiv:2311.12180v4 (2024).

Practical Large-Scale Linear Programming using Primal-Dual Hybrid Gradient

David Applegate Google Research dapplegate@google.com Mateo Díaz
California Institute of Technology*
mateodd@caltech.edu

Oliver Hinder Google Research University of Pittsburgh ohinder@pitt.edu

Haihao Lu
University of Chicago†
haihao.lu@chicagobooth.edu

Miles Lubin Google Research mlubin@google.com Brendan O'Donoghue DeepMind bodonoghue@deepmind.com

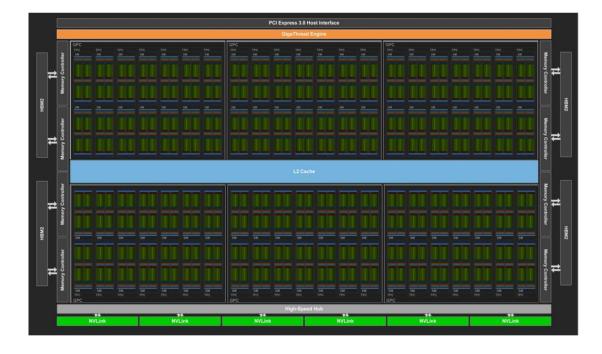
Warren Schudy Google Research wschudy@google.com

Abstract

We present PDLP, a practical first-order method for linear programming (LP) that can solve to the high levels of accuracy that are expected in traditional LP applications. In addition, it can scale to very large problems because its core operation is matrix-vector multiplications. PDLP is derived by applying the primaldual hybrid gradient (PDHG) method, popularized by Chambolle and Pock (2011), to a saddle-point formulation of LP. PDLP enhances PDHG for LP by combining several new techniques with older tricks from the literature; the enhancements include diagonal preconditioning, presolving, adaptive step sizes, and adaptive restarting. PDLP improves the state of the art for first-order methods applied to LP. We compare PDLP with SCS, an ADMM-based solver, on a set of 383 LP instances derived from MIPLIB 2017. With a target of 10⁻⁸ relative accuracy and 1 hour time limit, PDLP achieves a 6.3x reduction in the geometric mean of solve times and a 4.6x reduction in the number of instances unsolved (from 227 to 49). Furthermore, we highlight standard benchmark instances and a large-scale application (PageRank) where our open-source prototype of PDLP, written in Julia, outperforms a commercial LP solver.

- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)
     Input: Initial point z^{0,0};
 1 Initialize outer loop counter n \leftarrow 0, total iterations k \leftarrow 0, step-size \hat{\eta}^{0,0} \leftarrow 1/\|K\|_{\infty},
      primal weight \omega^0 \leftarrow \text{InitializePrimalWeight}(c, q);
 2 repeat
          t \leftarrow 0;
  4
               z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow \text{AdaptiveStepPDHG}(z^{n,t}, \omega^n, \hat{\eta}^{n,t}, k);
  5
               \bar{z}^{n,t+1} \leftarrow \frac{1}{\sum_{i=1}^{t+1} \eta^{n,i}} \sum_{i=1}^{k+1} \eta^{n,i} z^{n,i};
                z_c^{n,t+1} \leftarrow \text{GetRestartCandidate}(z^{n,t+1}, \bar{z}^{n,t+1});
               t \leftarrow t + 1, k \leftarrow k + 1:
          until restart or termination criteria holds;
          restart the outer loop z^{n+1,0} \leftarrow z_c^{n,t}, n \leftarrow n+1;
10
          \omega^n \leftarrow \text{PrimalWeightUpdate}(z^{n,0}, z^{n-1,0}, \omega^{n-1});
12 until termination criteria holds;
     Output: z^{n,0}.
```



- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)
     Input: Initial point z^{0,0};
 1 Initialize outer loop counter n \leftarrow 0, total iterations k \leftarrow 0, step-size \hat{\eta}^{0,0} \leftarrow 1/\|K\|_{\infty}
       primal weight \omega^0 \leftarrow \text{InitializePrimalWeight}(c, q);
 2 repeat
          t \leftarrow 0;
               z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow \text{AdaptiveStepPDHG}(z^{n,t}, \omega^n, \hat{\eta}^{n,t}, k);
               \bar{z}^{n,t+1} \leftarrow \frac{1}{\sum_{i=1}^{t+1} \eta^{n,i}} \sum_{i=1}^{k+1} \eta^{n,i} z^{n,i};
                z_c^{n,t+1} \leftarrow \text{GetRestartCandidate}(z^{n,t+1}, \bar{z}^{n,t+1});
               t \leftarrow t + 1, k \leftarrow k + 1:
          until restart or termination criteria holds;
          restart the outer loop z^{n+1,0} \leftarrow z_c^{n,t}, n \leftarrow n+1;
10
          \omega^n \leftarrow \text{PrimalWeightUpdate}(z^{n,0}, z^{n-1,0}, \omega^{n-1});
12 until termination criteria holds;
     Output: z^{n,0}.
```


- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)

Input: Initial point z^{0,0};

1 Initialize outer loop counter n \in 0, total iterations k \in 0, step-size \hat{\eta}^{0,0} \in 1/\|K\|_{\infty}, primal weight \omega^0 \in \text{InitializePrimalWeight}(c,q);

2 repeat

3 | t \in 0;

4 | repeat

5 | z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow \text{AdaptiveStepPDHG}(z^{n,t}, \omega^n, \hat{\eta}^{n,t}, k);

6 | z^{n,t+1} \in \frac{1}{\sum_{i=1}^{t} \eta^{n,i}} \sum_{i=1}^{k+1} \eta^{n,i} z^{n,i},

7 | z^{n,t+1} \in \text{GetRestartCandidate}(z^{n,t+1}, z^{n,t+1});

8 | t \in t+1, k \in k+1;

9 | until restart or termination criteria holds;

10 | restart the outer loop z^{n+1,0} \in z^{n,t}, n \in n+1;

11 | \omega^n \in \text{PrimalWeightUpdate}(z^{n,0}, z^{n-1,0}, \omega^{n-1});

12 | until termination criteria holds;

Output: z^{n,0}.
```


- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)
     Input: Initial point z^{0,0};
 1 Initialize outer loop counter n \leftarrow 0, total iterations k \leftarrow 0, step-size \hat{\eta}^{0,0} \leftarrow 1/\|K\|_{\infty},
      primal weight \omega^0 \leftarrow \text{InitializePrimalWeight}(c, q);
 2 repeat
         t \leftarrow 0;
  4
         repeat
               z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow \text{Adaptive} \text{StepPDHG}(z^{n,t}, \omega^n, \hat{\eta}^{n,t}, k);
 6
              z_c^{n,t+1} \leftarrow \text{GetRestartCandidate}(z^{n,t+1}, \bar{z}^{n,t+1}):
              t \leftarrow t + 1, k \leftarrow k + 1;
         until restart or termination criteria holds;
         restart the outer loop z^{n+1,0} \leftarrow z_c^{n,t}, n \leftarrow n+1;
10
          \omega^n \leftarrow \text{PrimalWeightUpdate}(z^{n,0}, z^{n-1,0}, \omega^{n-1});
12 until termination criteria holds;
     Output: z^{n,0}.
```


- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)

Input: Initial point z^{0,0};

1 Initialize outer loop counter n \leftarrow 0, total iterations k \leftarrow 0, step-size \hat{\eta}^{0,0} \leftarrow 1/\|K\|_{\infty}, primal weight \omega^0 \leftarrow InitializePrimalWeight(c,q);

2 repeat

3 | t \leftarrow 0;

4 repeat

5 | z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow AdaptiveStepPDHG(z^{n,t}, \omega^n, \hat{\eta}^{n,t}, k);

6 | \bar{z}^{n,t+1} \leftarrow \frac{1}{\sum_{i=1}^{t+1} \eta^{n,i}} \sum_{i=1}^{k+1} \eta^{n,i} z^{n,i};

7 | z^{n,t+1}_c \leftarrow GetRestartCandidate(z^{n,t+1}, \bar{z}^{n,t+1});

8 | t \leftarrow t+1, k \leftarrow k+1;

9 | until restart or termination criteria holds;

10 | restart the outer loop z^{n+1,0} \leftarrow z^{n,t}_c, n \leftarrow n+1;

11 | \omega^n \leftarrow PrimalWeightUpdate(z^{n,0}, z^{n-1,0}, \omega^{n-1});

12 | until termination criteria holds;

Output: z^{n,0}.
```


- > Entire GPU used for each step (maps threads to variables)
 - Useful for large problems

```
Algorithm 1: Restarted PDHG (after preconditioning)

Input: Initial point z^{0,0};

1 Initialize outer loop counter n \leftarrow 0, total iterations k \leftarrow 0, step-size \hat{\eta}^{0,0} \leftarrow 1/\|K\|_{\infty}, primal weight \omega^0 \leftarrow InitializePrimalWeight(c,q);

2 repeat

3 | t \leftarrow 0;

4 repeat

5 | z^{n,t+1}, \eta^{n,t+1}, \hat{\eta}^{n,t+1} \leftarrow AdaptiveStepPDHG(z^{n,t},\omega^n,\hat{\eta}^{n,t},k);

6 | \bar{z}^{n,t+1} \leftarrow \frac{1}{\sum_{i=1}^{t+1} \eta^{n,i}} \sum_{i=1}^{k+1} \eta^{n,i} z^{n,i};

7 | z^{n,t+1} \leftarrow GetRestartCandidate(z^{n,t+1},\bar{z}^{n,t+1});

8 | t \leftarrow t+1, k \leftarrow k+1;

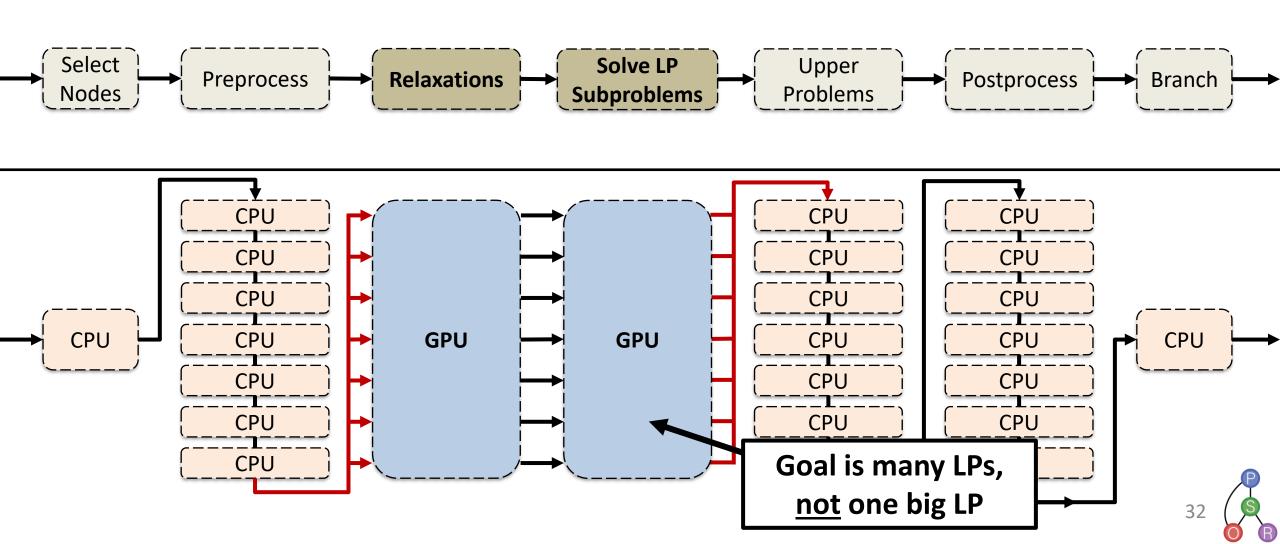
9 | until restart or termination criteria holds;

10 | restart the outer loop z^{n+1,0} \leftarrow z^{n,t}_c, n \leftarrow n+1;

11 | \omega^n \leftarrow PrimalWeightUpdate(z^{n,0}, z^{n-1,0}, \omega^{n-1});

12 | until termination criteria holds;

Output: z^{n,0}.
```

- > Custom novel implementation of PDLP, written as a single CUDA kernel
- Each LP solved by a portion of the GPU

```
Algorithm 1: Single-Kernel PDLP
 1 foreach LP do
          Input: An initial solution z_i^{0,0};
          Initialize outer loop counter n_i \leftarrow 0, total iterations k_i \leftarrow 0, step size
            \hat{\eta}_i^{0,0} \leftarrow 1/\|K_i\|_{\infty}, primal weight \omega_i^0 \leftarrow \text{InitializePrimalWeight}(c_i, q_i);
          repeat
                t_i \leftarrow 0;
                     z_i^{n_i,t_i+1}, \eta_i^{n_i,t_i+1}, \hat{\eta}_i^{n_i,t_i+1} \leftarrow \texttt{AdaptivePDHGStep}(z_i^{n_i,t_i}, \omega_i^{n_i}, \hat{\eta}_i^{n_i,t_i}, k_i);
                     \bar{z_i}^{n_i,t_i+1} \leftarrow \frac{1}{\sum_{j=1}^{t_i+1} \eta_i^{n_i,j}} \sum_{j=1}^{t_i+1} \eta_i^{n_i,j} z_i^{n_i,j};
                     z_{c,i}^{n_i,t_i+1} \leftarrow \texttt{GetRestartCandidate}(z_i^{n_i,t_i+1},\bar{z_i}^{n_i,t_i+1},\omega_i^{n_i});
                     t_i \leftarrow t_i + 1, k_i \leftarrow k_i + 1;
10
                until restart or termination criteria holds;
11
                Restart the outer loop. z_i^{n_i+1,0} \leftarrow z_{c,i}^{n_i,t_i}, n_i \leftarrow n_i+1;
12
                \omega_i^{n_i} \leftarrow \text{PrimalWeightUpdate}(z_i^{n_i,0}, z_i^{n_i-1,0}, \omega_i^{n_i-1});
13
          until termination criteria holds;
14
          Output: z_i^{n_i,0}.
15
16 end
```


- > Custom novel implementation of PDLP, written as a single CUDA kernel
- Each LP solved by a portion of the GPU

```
Algorithm 1: Single-Kernel PDLP
 1 foreach LP do
          Input: An initial solution z_i^{0,0};
          Initialize outer loop counter n_i \leftarrow 0, total iterations k_i \leftarrow 0, step size
            \hat{\eta}_i^{0,0} \leftarrow 1/\|K_i\|_{\infty}, primal weight \omega_i^0 \leftarrow \text{InitializePrimalWeight}(c_i, q_i);
          repeat
                t_i \leftarrow 0;
                     z_i^{n_i,t_i+1}, \eta_i^{n_i,t_i+1}, \hat{\eta}_i^{n_i,t_i+1} \leftarrow \texttt{AdaptivePDHGStep}(z_i^{n_i,t_i}, \omega_i^{n_i}, \hat{\eta}_i^{n_i,t_i}, k_i);
                     \bar{z_i}^{n_i,t_i+1} \leftarrow \frac{1}{\sum_{j=1}^{t_i+1} \eta_i^{n_i,j}} \sum_{j=1}^{t_i+1} \eta_i^{n_i,j} z_i^{n_i,j};
                     z_{c,i}^{n_i,t_i+1} \leftarrow \texttt{GetRestartCandidate}(z_i^{n_i,t_i+1},\bar{z_i}^{n_i,t_i+1},\omega_i^{n_i});
                     t_i \leftarrow t_i + 1, k_i \leftarrow k_i + 1;
10
                until restart or termination criteria holds;
11
                Restart the outer loop. z_i^{n_i+1,0} \leftarrow z_{c,i}^{n_i,t_i}, n_i \leftarrow n_i+1;
12
                \omega_i^{n_i} \leftarrow \text{PrimalWeightUpdate}(z_i^{n_i,0}, z_i^{n_i-1,0}, \omega_i^{n_i-1});
13
          until termination criteria holds;
14
          Output: z_i^{n_i,0}.
15
16 end
```


- > Custom novel implementation of PDLP, written as a single CUDA kernel
- Each LP solved by a portion of the GPU

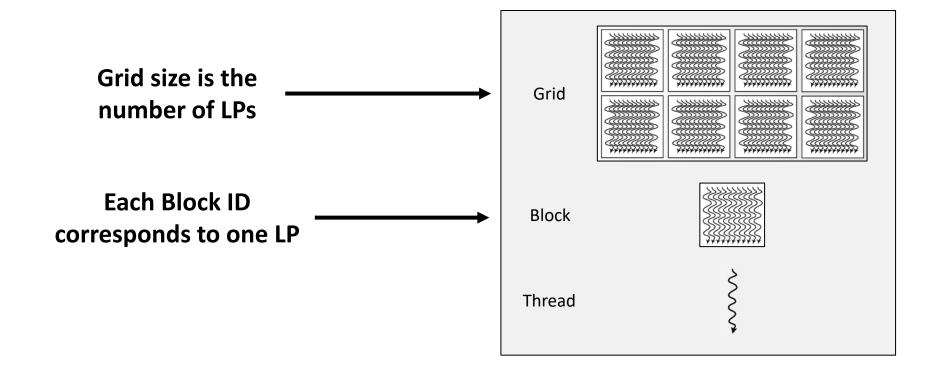
```
Algorithm 1: Single-Kernel PDLP
1 foreach LP do
          Input: An initial solution z_i^{0,0};
          Initialize outer loop counter n_i \leftarrow 0, total iterations k_i \leftarrow 0, step size
            \hat{\eta}_i^{0,0} \leftarrow 1/\|K_i\|_{\infty}, primal weight \omega_i^0 \leftarrow \text{InitializePrimalWeight}(c_i, q_i);
          repeat
               t_i \leftarrow 0;
                     z_i^{n_i,t_i+1}, \eta_i^{n_i,t_i+1}, \hat{\eta}_i^{n_i,t_i+1} \leftarrow \texttt{AdaptivePDHGStep}(z_i^{n_i,t_i}, \omega_i^{n_i}, \hat{\eta}_i^{n_i,t_i}, k_i);
                     \bar{z_i}^{n_i,t_i+1} \leftarrow \frac{1}{\sum_{j=1}^{t_i+1} \eta_i^{n_i,j}} \sum_{j=1}^{t_i+1} \eta_i^{n_i,j} z_i^{n_i,j};
                     z_{c,i}^{n_i,t_i+1} \leftarrow \texttt{GetRestartCandidate}(z_i^{n_i,t_i+1},\bar{z_i}^{n_i,t_i+1},\omega_i^{n_i});
                    t_i \leftarrow t_i + 1, k_i \leftarrow k_i + 1;
                until restart or termination criteria holds;
                Restart the outer loop. z_i^{n_i+1,0} \leftarrow z_{c,i}^{n_i,t_i}, n_i \leftarrow n_i+1;
12
               \omega_i^{n_i} \leftarrow \text{PrimalWeightUpdate}(z_i^{n_i,0}, z_i^{n_i-1,0}, \omega_i^{n_i-1});
          until termination criteria holds;
          Output: z_i^{n_i,0}.
16 end
```


- > Custom novel implementation of PDLP, written as a single CUDA kernel
- Each LP solved by a portion of the GPU

```
Algorithm 1: Single-Kernel PDLP
 1 foreach LP do
           Input: An initial solution z_i^{0,0};
          Initialize outer loop counter n_i \leftarrow 0, total iterations k_i \leftarrow 0, step size
            \hat{\eta}_i^{0,0} \leftarrow 1/\|K_i\|_{\infty}, primal weight \omega_i^0 \leftarrow \text{InitializePrimalWeight}(c_i, q_i);
          repeat
                t_i \leftarrow 0;
                      z_i^{n_i,t_i+1}, \eta_i^{n_i,t_i+1}, \hat{\eta}_i^{n_i,t_i+1} \leftarrow \texttt{AdaptivePDHGStep}(z_i^{n_i,t_i}, \omega_i^{n_i}, \hat{\eta}_i^{n_i,t_i}, k_i);
                     \begin{split} & \bar{z_i}^{n_i,t_i+1} \leftarrow \frac{1}{\sum_{j=1}^{t_i+1} \eta_i^{n_i,j}} \sum_{j=1}^{t_i+1} \eta_i^{n_i,j} z_i^{n_i,j}; \\ & z_{c,i}^{n_i,t_i+1} \leftarrow \texttt{GetRestartCandidate}(z_i^{n_i,t_i+1}, \bar{z_i}^{n_i,t_i+1}, \omega_i^{n_i}); \end{split}
                     t_i \leftarrow t_i + 1, k_i \leftarrow k_i + 1;
10
                 until restart or termination criteria holds;
11
                 Restart the outer loop. z_i^{n_i+1,0} \leftarrow z_{c,i}^{n_i,t_i}, n_i \leftarrow n_i
12
                 \omega_i^{n_i} \leftarrow \text{PrimalWeightUpdate}(z_i^{n_i,0}, z_i^{n_i-1,0}, \omega_i^{n_i-1,0})
                                                                                                                  Other LPs continue
           until termination criteria holds;
                                                                                                                  even if one finishes
          Output: z_i^{n_i,0}.
16 end
```


High-Level Organization

Built for smaller LPs (within each block, maps threads to variables)



Memory Organization

Global Memory

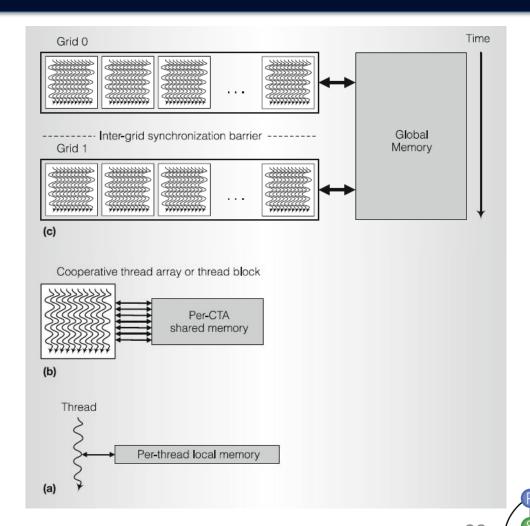
- Problem information (bounds, constraint matrix, right-hand side, [...])
- Problem state (current/average/sum of primal/dual solutions, [...])

Block Memory

- Re-usable storage for parallel reductions (sum, max)
- Persistent data/flags (primal weight, step size, [...])

Thread Memory

- (Thread 1) Parallel reduction results
- Critical information (iteration number, [...])



Memory Organization

Global Memory

- ➤ **Problem information** (bounds, constraint matrix, right-hand side, [...])
- Problem state (current/average/sum of primal/dual solutions, [...])

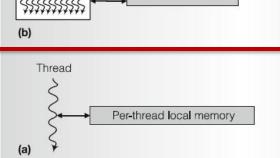
Grid 0 Time Global Memory (c)

Block Memory

- Re-usable storage for parallel reductions (sum, max)
- Persistent data/flags (primal weight, step size, [...])

Thread Memory

- > (Thread 1) Parallel reduction results
- > Critical information (iteration number, [...])



Cooperative thread array or thread block

Per-CTA shared memory

Original NLP

$$f^* = \min_{\mathbf{x}} (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4 + (x_4 - x_5)^4$$
s.t. $x_2^2 + x_3^3 + x_1 = 6.24264068711929$

$$- x_3^2 + x_2 + x_4 = 0.82842712474619$$

$$x_1 x_5 = 2$$

$$\mathbf{x} \in X \subset \mathbb{R}^5$$

Original NLP

$$f^* = \min_{\mathbf{x}} (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4 + (x_4 - x_5)^4$$
s.t. $x_2^2 + x_3^3 + x_1 = 6.24264068711929$

$$- x_3^2 + x_2 + x_4 = 0.82842712474619$$

$$x_1 x_5 = 2$$

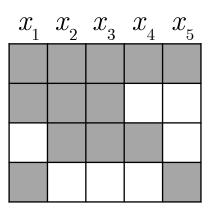
$$\mathbf{x} \in X \subset \mathbb{R}^5$$

Objective

Constraint 1

Constraint 2

Constraint 3



Original NLP

$$f^* = \min_{\mathbf{x}} (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4 + (x_4 - x_5)^4$$
s.t. $x_2^2 + x_3^3 + x_1 = 6.24264068711929$

$$- x_3^2 + x_2 + x_4 = 0.82842712474619$$

$$x_1 x_5 = 2$$

$$\mathbf{x} \in X \subset \mathbb{R}^5$$

Objective

Constraint 1

Constraint 2

Constraint 3

x_1	x_2	x_3	x_4	x_{5}

LP from Relaxation Subgradients

$$f_{\text{aff}}^* = \min_{\mathbf{x}} \eta$$
s.t. $\eta + \text{obj}_{\text{cv}}(x_1, x_2, x_3, x_4, x_5) \ge 0$

$$eq.1_{\text{cv}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

$$eq.1_{\text{cc}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

$$eq.2_{\text{cv}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$eq.2_{\text{cc}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$eq.3_{\text{cv}}^{\text{aff}}(x_1, x_5) \ge 0$$

$$eq.3_{\text{cv}}^{\text{aff}}(x_1, x_5) \ge 0$$

$$eq.3_{\text{cv}}^{\text{aff}}(x_1, x_5) \ge 0$$

$$x \in X \subset \mathbb{R}^5$$

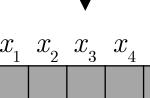
Original NLP

$$f^* = \min_{\mathbf{x}} (x_1 - 1)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^3 + (x_3 - x_4)^4 + (x_4 - x_5)^4$$
s.t. $x_2^2 + x_3^3 + x_1 = 6.24264068711929$

$$- x_3^2 + x_2 + x_4 = 0.82842712474619$$

$$x_1 x_5 = 2$$

$$\mathbf{x} \in X \subset \mathbb{R}^5$$

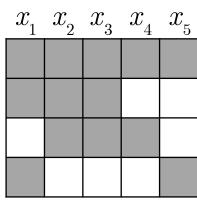


Objective

Constraint 1

Constraint 2

Constraint 3



LP from Relaxation Subgradients

$$f_{\text{aff}}^* = \min_{\mathbf{x}} \eta$$
s.t. $\eta + \text{obj}_{\text{cv}}(x_1, x_2, x_3, x_4, x_5) \ge 0$

$$= \text{eq.} 1_{\text{cv}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

$$= \text{eq.} 1_{\text{cc}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

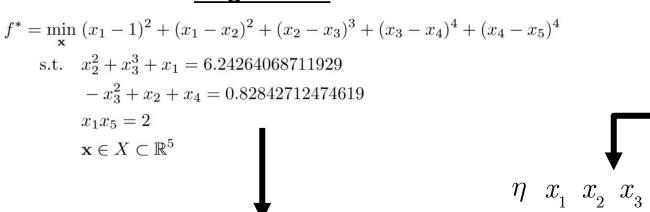
$$= \text{eq.} 2_{\text{cv}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$= \text{eq.} 2_{\text{cc}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$= \text{eq.} 3_{\text{cv}}^{\text{aff}}(x_1, x_5) \ge 0$$

$$= \text{eq.} 3_{\text{cc}}^{\text{aff}}(x_1, x_5) \ge 0$$

Original NLP

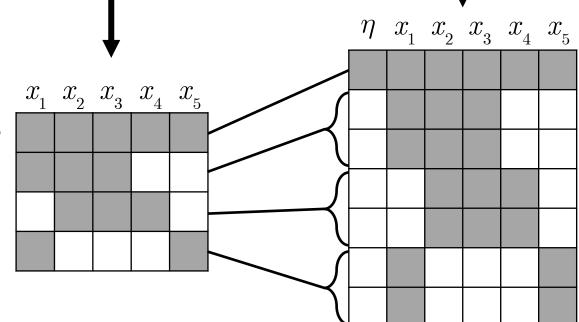


Objective

Constraint 1

Constraint 2

Constraint 3



LP from Relaxation Subgradients

$$f_{\text{aff}}^* = \min_{\mathbf{x}} \eta$$
s.t. $\eta + \text{obj}_{\text{cv}}(x_1, x_2, x_3, x_4, x_5) \ge 0$

$$= \text{eq.1}_{\text{cv}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

$$= \text{eq.1}_{\text{cc}}^{\text{aff}}(x_1, x_2, x_3) \ge 0$$

$$= \text{eq.2}_{\text{cv}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$= \text{eq.2}_{\text{cc}}^{\text{aff}}(x_2, x_3, x_4) \ge 0$$

$$= \text{eq.3}_{\text{cv}}^{\text{aff}}(x_1, x_5) \ge 0$$

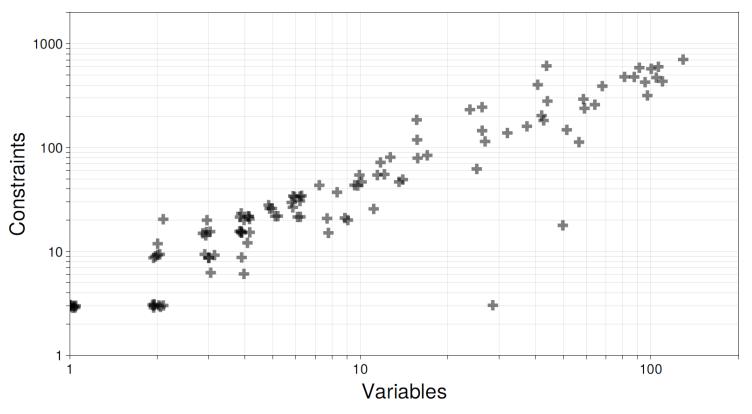
$$= \text{eq.3}_{\text{cc}}^{\text{aff}}(x_1, x_5) \ge 0$$

$$= \text{eq.3}_{\text{cc}}^{\text{aff}}(x_1, x_5) \ge 0$$

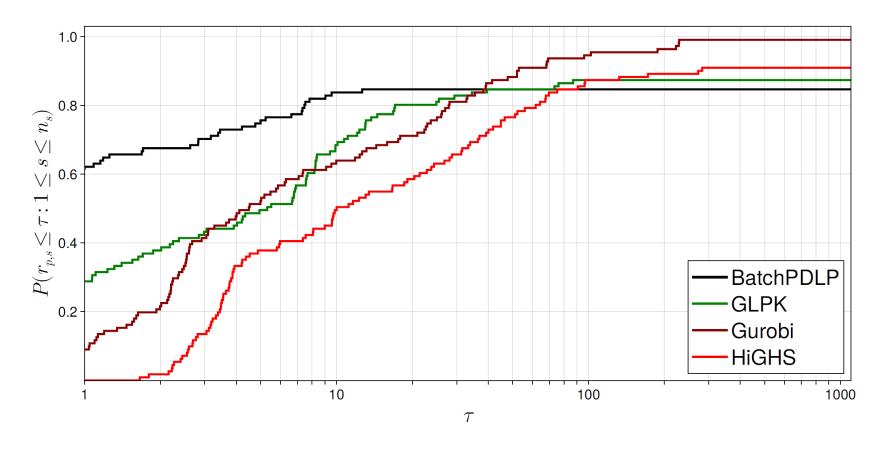
$$= \text{eq.3}_{\text{cc}}^{\text{aff}}(x_1, x_5) \ge 0$$

Benchmark Tests

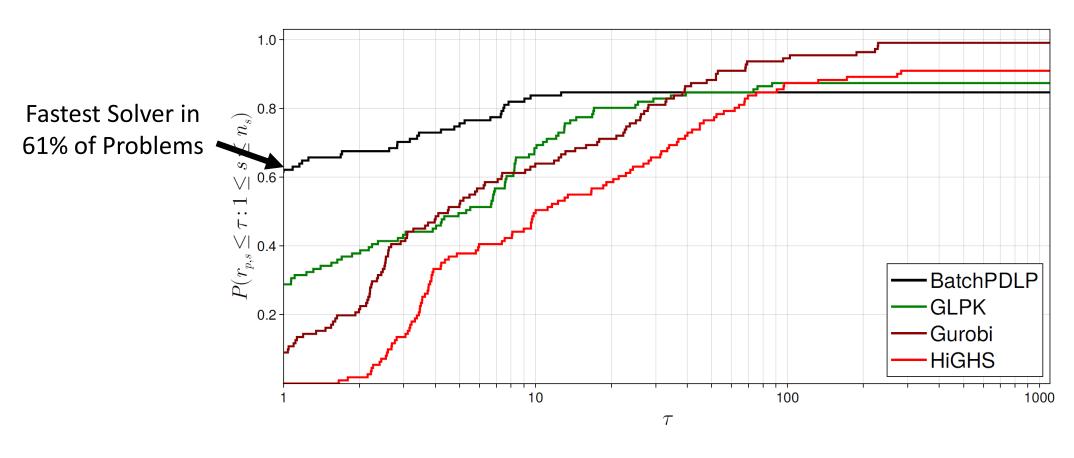
- Subset of "small" NLPs from MINLPLib
- Original domain partitioned into 10000 subdomains
- Evaluated subgradients at 3 points per subdomain to generate LP constraints



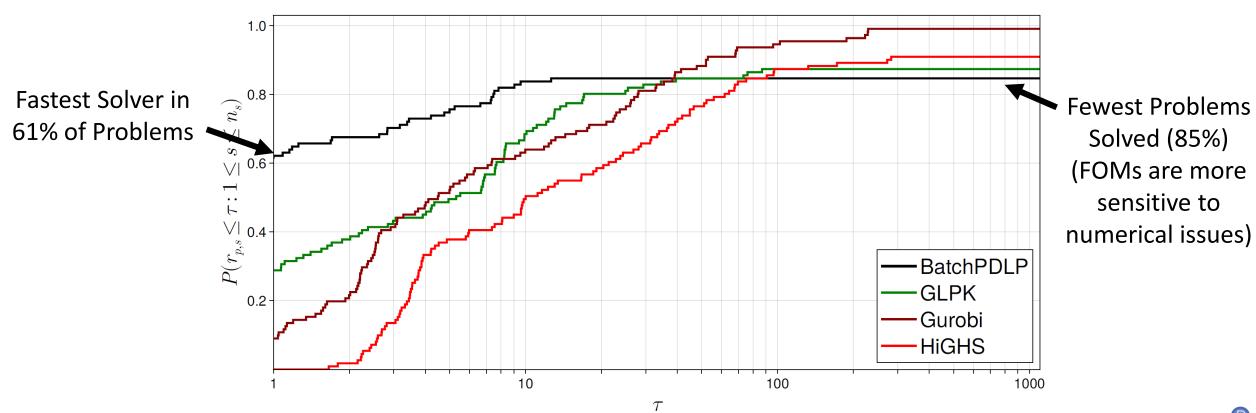
Performance Profile



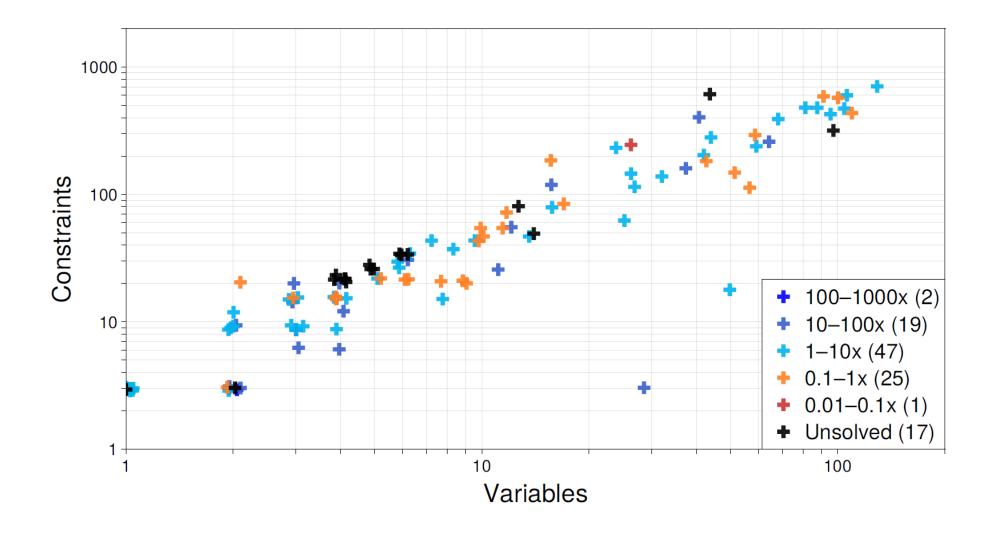
Performance Profile



Performance Profile



Results Distribution



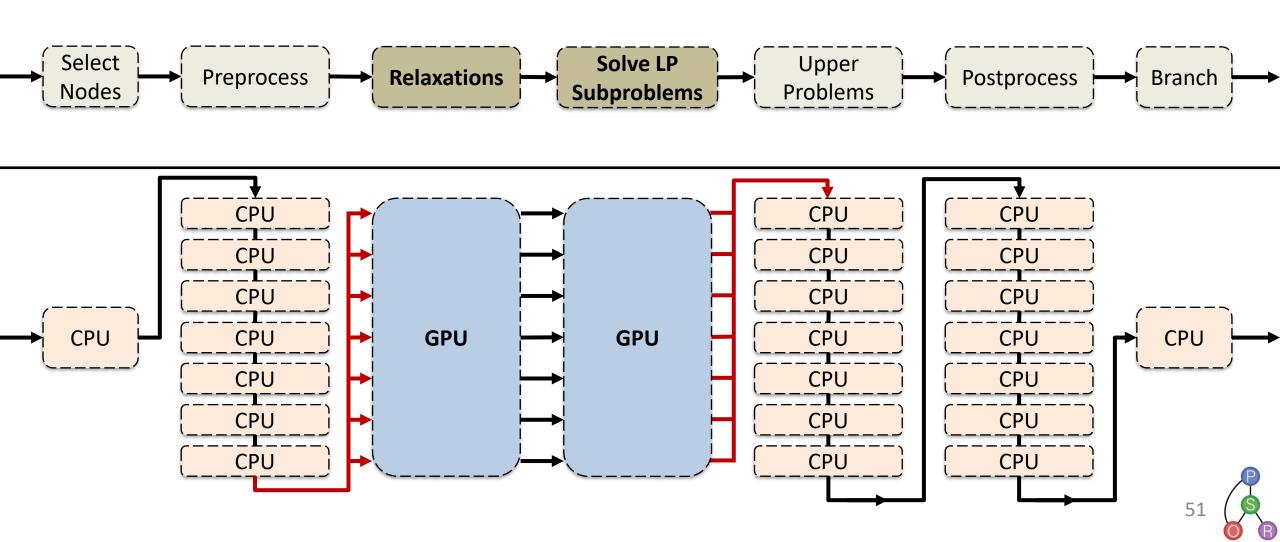
LP Solver Problem Dependence

Instance	Glop Primal Simplex	Glop Dual Simplex	Gurobi Barrier with Crossover	Gurobi Barrier without Crossover	PDLP High Precision	PDLP Low Precision
ex10	>1200	>1200	79.7	63.5	8.2	2.7
nug08-3rd	>1200	252.8	144.6	3.2	1.1	0.9
savsched1	>1200	>1200	156.0	22.6	46.4	32.4
wide15	>1200	20.8	>1200	>1200	916.4	56.3
buildingenergy	178.4	267.5	12.8	12.3	>1200	157.2
s250r10	12.1	520.6	15.2	16.4	>1200	>1200
Solver Version	OR-Tools 9.3	OR-Tools 9.3	Gurobi 9.0	Gurobi 9.0	OR-Tools 9.3	OR-Tools 9.3
solver_ specific_ parameters	(defaults)	use_dual_ simplex: true	Method 2, Threads 1	Method 2, Crossover 0, Threads 1	<pre>termination_criteria { eps_optimal_absolute: 1e-8 eps_optimal_ relative: 1e-8 }</pre>	<pre>termination_criteria { eps_optimal_absolute: 1e-4 eps_optimal_ relative: 1e-4 }</pre>

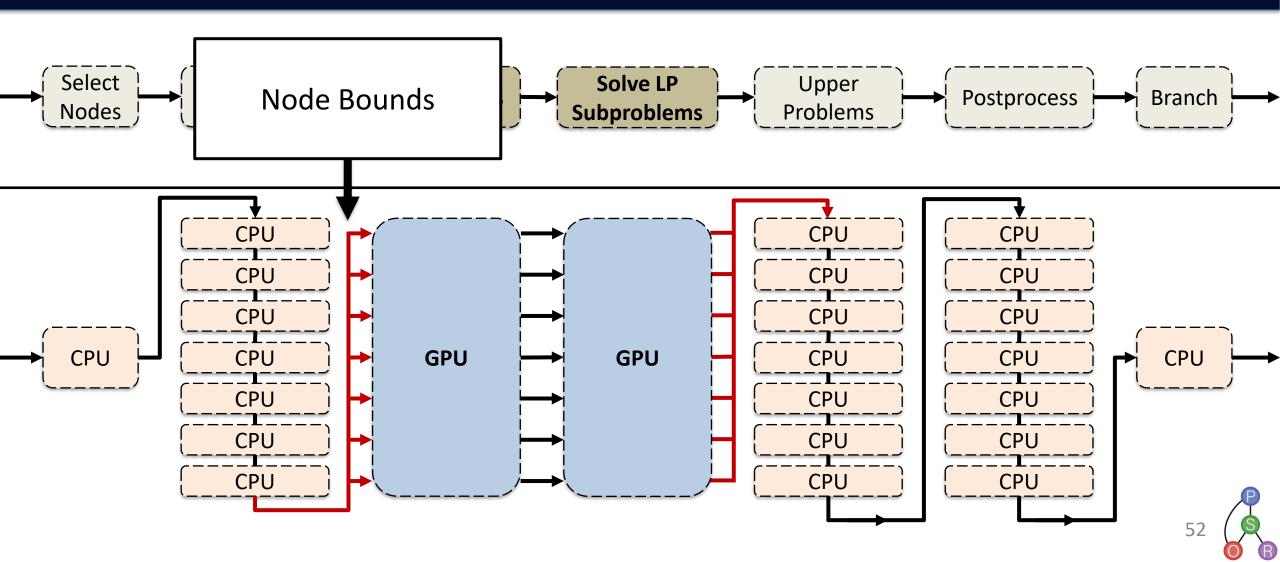
Fastest

Close to Fastest

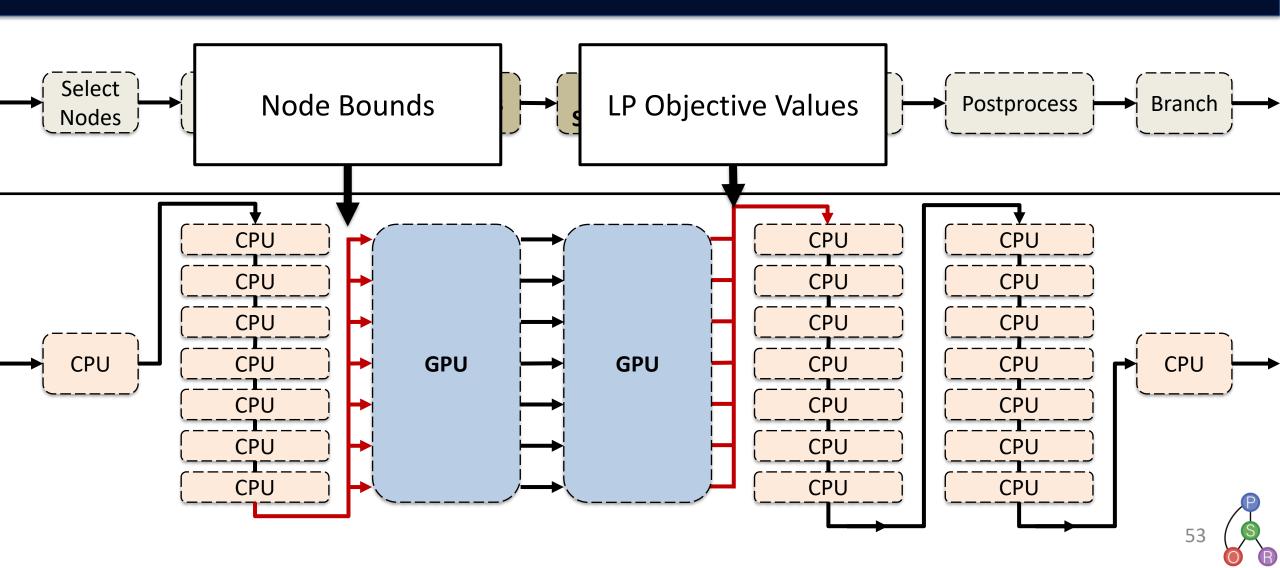
Integration into B&B



Integration into B&B

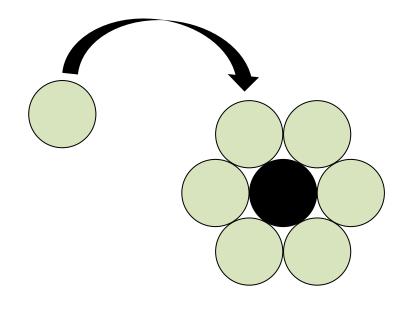


Integration into B&B

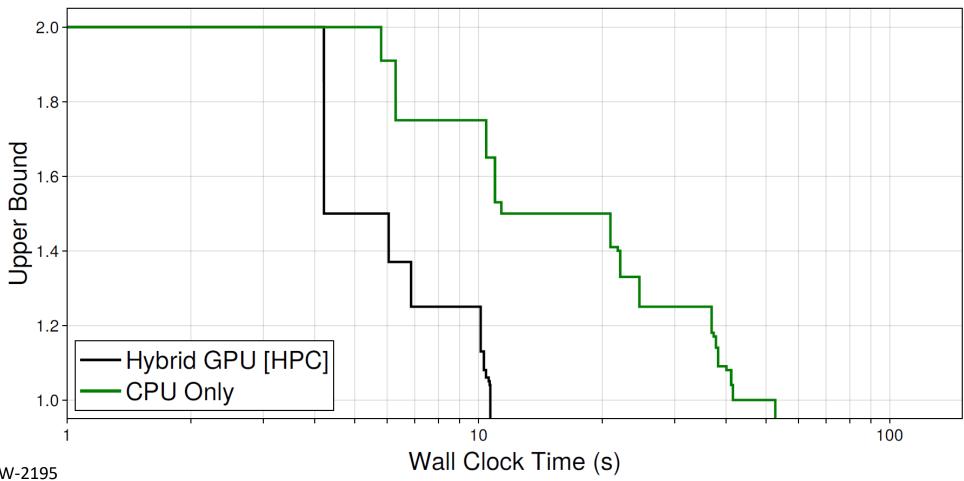


Numerical Example

$$\begin{aligned} \max_{\mathbf{x},\alpha} \alpha \\ \text{s.t.} \quad & \|\mathbf{x}^i\|^2 = 4 & \forall i \leq 7 \\ & 2\alpha + \sum_{k=1}^2 x_k^i x_k^j \leq 4 & \forall i < j \leq 7 \\ & \alpha \geq 1 \\ & x_1^1 = -2 \\ & x_1^i \leq x_1^{i+1} & \forall i \leq 6 \\ & \mathbf{x}^i \in [-2,2]^2 & \forall i \leq 7 \end{aligned}$$



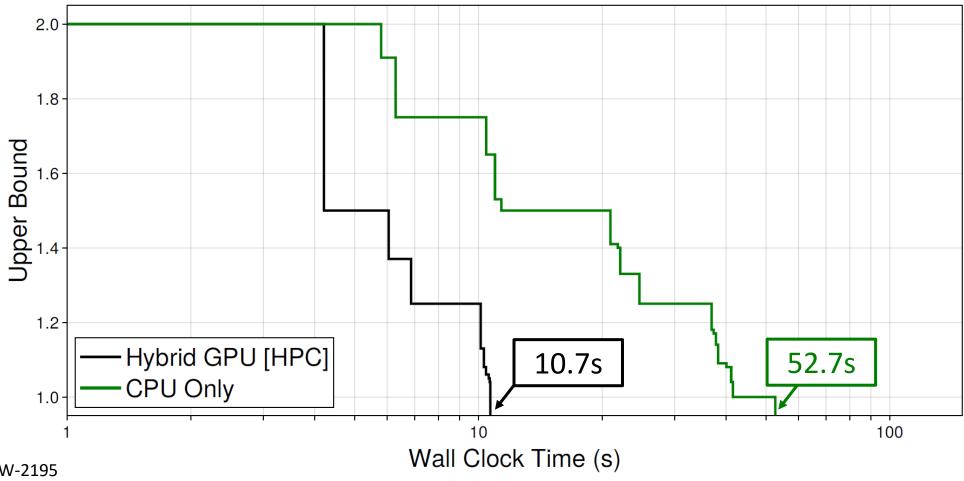
Example Convergence Plot



CPU: Intel Xeon W-2195

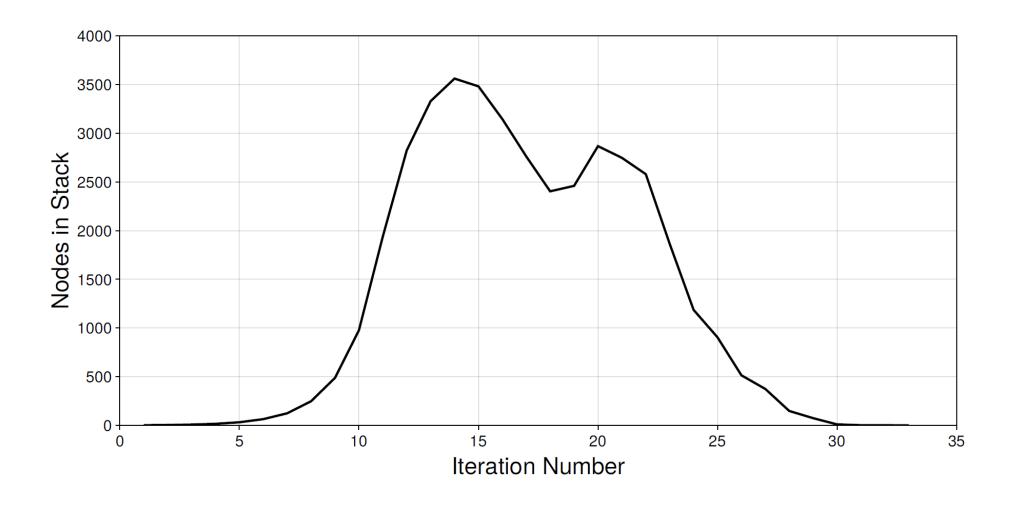
GPU [HPC]: NVIDIA Quadro GV100

Example Convergence Plot

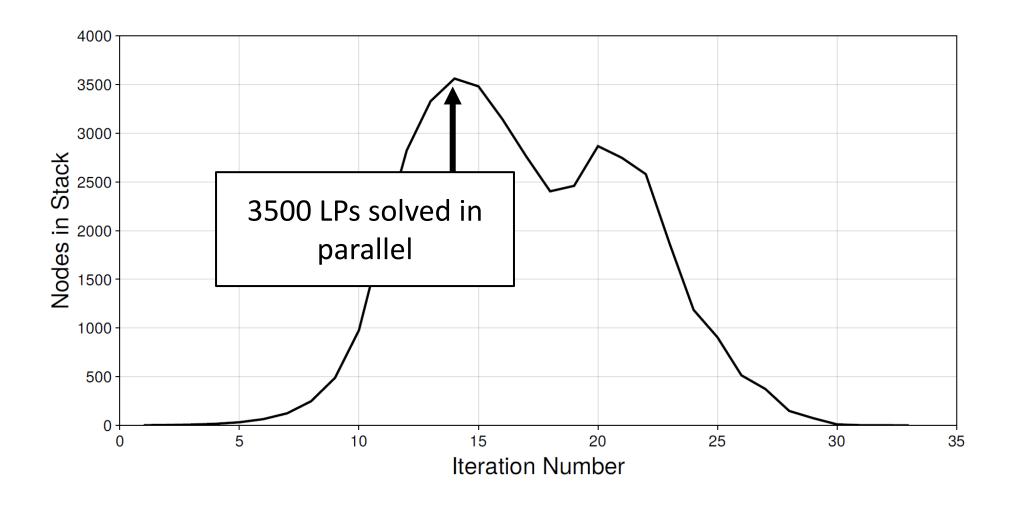


CPU: Intel Xeon W-2195 GPU [HPC]: NVIDIA Quadro GV100

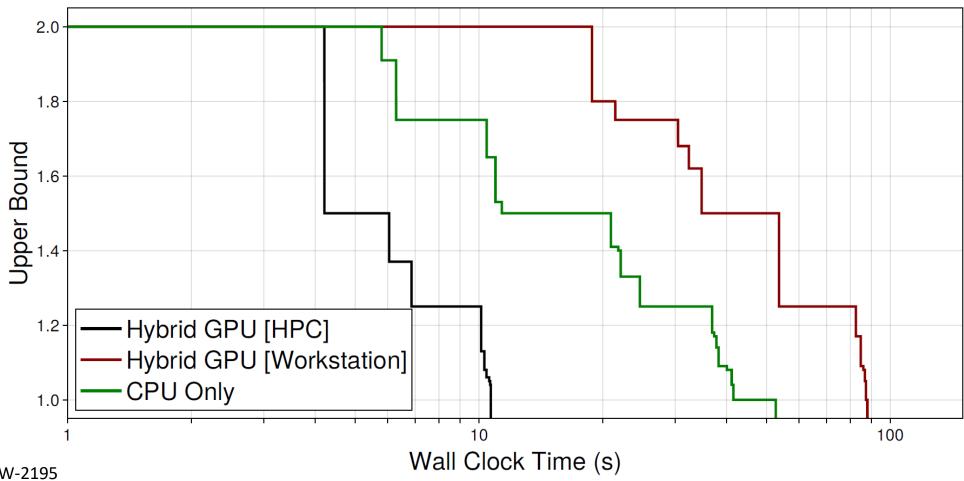
B&B Progress



B&B Progress



Example Convergence Plot

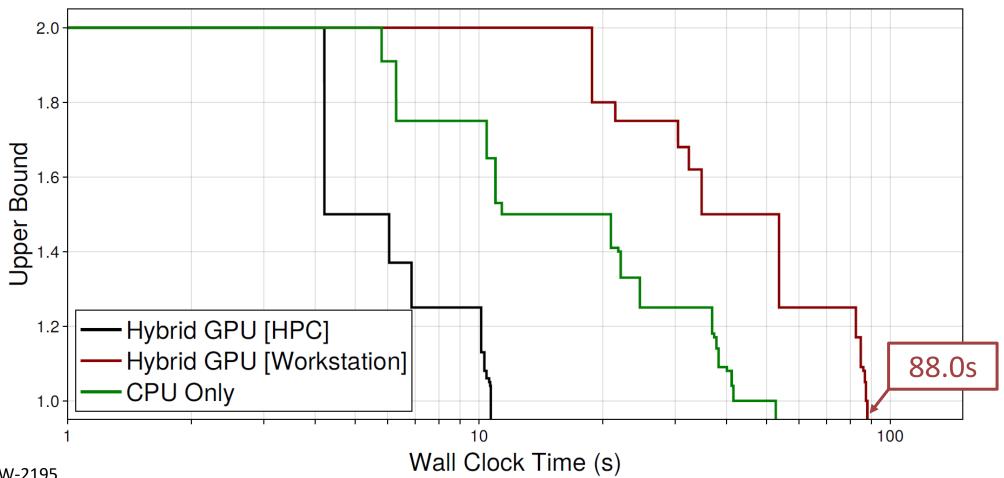


CPU: Intel Xeon W-2195

GPU [HPC]: NVIDIA Quadro GV100

GPU [Workstation]: NVIDIA Quadro T2000

Example Convergence Plot



CPU: Intel Xeon W-2195

GPU [HPC]: NVIDIA Quadro GV100

GPU [Workstation]: NVIDIA Quadro T2000

Wrapping Up

- Applying GPU resources to address individual B&B nodes
 - Code generation for relaxations
 - Custom LP solver (BatchPDLP)
- Integration within EAGO allows minimization of CPU-GPU data transfer
- Integration within EAGO enables any nonconvex NLP to be solved using GPUs

SourceCodeMcCormick.jl

https://github.com/PSORLab/ SourceCodeMcCormick.jl

Acknowledgements

Members of the Process Systems and Operations Research Laboratory

at the University of Connecticut (https://psor.uconn.edu/)

https://www.psor.uconn.edu

Funding:

National Science Foundation, Award No.: 2330054

Pratt & Whitney Endowed Professorship

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the United States Government.

